首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
通过计算机视觉技术对齐穗期至成熟期的水稻叶片图像进行分割,提取水稻叶片图像在RGB和HSV颜色空间中的6种颜色特征参数,计算典型的18种颜色分量,分析了颜色特征参数和颜色分量与水稻叶片SPAD值之间的相关关系;然后,采用线性回归分析方法,分别建立了基于RGB颜色空间和基于RGB与HSV颜色空间的SPAD值的估测模型,并采用逐步回归方法,分别建立了基于颜色特征参数和颜色分量的SPAD值的估测模型。结果表明:RGB颜色空间和HSV颜色空间均与水稻叶片的SPAD值有极显著的相关关系,以HSV颜色空间与水稻叶片SPAD值的相关关系更为密切;颜色特征参数H与SPAD值之间的相关关系最密切,其次是S、R、V;颜色分量r/b与SPAD值之间的相关关系最密切,其次是R-B、b、r;在建立的水稻叶片SPAD值的4个估测模型中,以基于颜色分量的逐步回归模型的拟合效果最好。因此,综合RGB和HSV颜色空间中图像颜色信息的分析应用,有利于提高水稻叶片SPAD值的图像反演精度。  相似文献   

2.
【目的】探究玉米叶片SPAD值与其高光谱特征之间的品种差异,构建不同玉米品种叶片SPAD值估测模型,并对模型应用范围进行验证。【方法】通过大田试验,测定多个玉米品种叶片的SPAD值及其高光谱数据,利用相关分析及逐步回归分析等方法,构建和筛选玉米叶片SPAD值与相关光谱参数的回归模型,并利用偏差率对模型精度进行检验。【结果】不同玉米品种叶片的SPAD值与其高光谱反射率及一阶导数的相关波段存在差异,但品种间差异较小,关系最密切的波段均处于560和700nm附近。对不同玉米品种的光谱反射率一阶导数进行比较时,出现"红移"现象,"红移"规律与各品种叶片SPAD值大小表现一致;叶片SPAD值与光谱反射率一阶导数的显著相关波段在510,615,690和740nm附近。在构建估测模型时,以单波段光谱参数构建的模型估测效果较组合波段构建的模型好,且模型类型为多元方程和指数方程。以单一玉米品种叶片光谱参数建立的模型可以对其他玉米品种叶片的SPAD值进行估测,但估测精度在不同品种间存在差异。【结论】以高光谱560nm附近波段反射率建立的模型精度最高,对不同品种的玉米叶片SPAD预测值偏差率普遍小于5.00%。  相似文献   

3.
叶绿素含量影响水稻的各种生理机能,供氮水平影响水稻的产量,探究水稻花后叶片相对叶绿素含量与不同供氮水平二者间的关系,为高产绿色栽培提供参考.采用淮稻5号、扬粳4227、常优5号、甬优8号4个水稻代表性品种,设计低(N1)、中(N2)、高(N3)3个氮素水平,每隔7 d测定水稻上3叶的SPAD值,利用倒Logistic数学模型,分析特征参数.结果表明,供氮水平的提高可减缓水稻上3叶叶绿素流失速率;倒3叶对土壤氮素供应反应敏感,可视为反映水稻氮素营养状况的指示叶;在不同供氮水平下4种水稻品种花后上3叶SPAD值变化曲线均符合倒"S"形分布,其中常优5号中供氮水平更为符合;4种水稻品种在相同氮素处理下的倒3叶渐降期、快降期、缓降期时间和最大速率点相似.  相似文献   

4.
5.
6.
杂交中稻齐穗后叶片SPAD值衰减对再生力的影响   总被引:3,自引:0,他引:3  
 【目的】探明影响再生力的主作关键植株性状,为杂交水稻及其再生稻的高产育种与栽培提供参考。【方法】以18个杂交中稻品种为材料,在大田高产栽培条件下,通过相关、回归与通径分析,研究了杂交中稻植株性状与再生力关系及主作和再生总体高产组合的穗粒结构。【结果】活芽率、发苗力、再生稻有效穗和产量4个性状是代表品种再生力的关键因子,增加有效穗是进一步提高再生稻产量的重要途径;穗粒数、叶颖花比、叶粒数比、叶粒重比、LAI衰减指数和SPAD值衰减指数分别与活芽率、发苗力、再生稻有效穗和产量呈显著或极显著相关,其中仅有头季稻齐穗期至成熟期叶片SPAD值衰减指数对活芽率、发苗力、再生稻有效穗和产量的偏相关均达显著以上水平;同一个组合同时实现头季稻和再生稻均分别达到最高产量的可能性小,两季总产同时满足理论产量达11.5 t?hm-2和产量潜力达14 t?hm-2的高产组合的主作群体主要特征最佳取值范围:穗粒数为160~190粒,叶粒重比0.0737~0.0827 cm2?mg-1、SPAD值衰减指数0.4029~0.5409、有效穗232.12万~249.40万/hm2、结实率81.54%~85.74%、千粒重28.58~30.07 g、单穗重4.13~4.43 g。【结论】再生稻进一步高产的主攻目标是增加有效穗,头季稻齐穗到成熟叶片SPAD值衰减指数可作为鉴定再生力的新指标,中等偏大穗品种是中稻-再生稻总体高产的重要特征。  相似文献   

7.
8.
研究于2021—2022年以合美占和粤晶丝苗2号为供试水稻品种进行了不同氮肥水平(0、60、120、180、240 kg/hm2)的田间试验,分别在水稻分蘖期、拔节期、孕穗期、乳熟期建立基于叶片SPAD值的双季早稻氮肥推荐模型,并对模型推荐的施肥量进行试验验证。结果表明:随着生育期推移,早稻叶片SPAD值呈下降的趋势;同一生育时期,早稻叶片SPAD值随着氮肥用量的增加呈递增的趋势;各生育期水稻产量与叶片SPAD值、施氮量具有显著相关性;以最高产量的90%~95%作为临界值,推知水稻分蘖期、拔节期、孕穗期、乳熟期的临界SPAD值分别为41.2、40.1、33.6、23.5;根据临界SPAD值,计算出基肥、分蘖期、拔节期、孕穗期、乳熟期的氮肥推荐施用量分别为90、27.2、12.7、21.5、6.4 kg/hm2,比常规施氮量减少了37.2 kg/hm2,节省了19%的氮肥,产量比常规施肥稍有增加,但差异未达显著水平。该研究建立的基于叶片SPAD值的早稻氮肥推荐模型可以为水稻全生育期氮素诊断提供参考。  相似文献   

9.
[目的]探明水稻叶片SPAD值分布特征及其与施氮量的关系,为构建基于SPAD值的水稻施氮管理线性模型提供参考依据.[方法]试验采用裂区设计,主处理设2个不同品种(Q优6号和准两优527),副处理设6种不同施氮量水平(0、75、150、225、300和375 kg/ha,以纯N计),测定不同施氮水平下水稻重要生育时期的叶片SPAD值,并分析稻叶SPAD值分布特征及其与施氮量的关系.[结果]Q优6号在不同施氮处理下的产量排序为300 kg/ha>225 kg/ha> 150kg/ha>375 kg/ha>75 kg/ha>0 kg/ha,准两优527产量随施氮量的增加而增加;准两优527的有效穗数和千粒重显著高于Q优6号.两个水稻品种不同施氮水平间SPAD值的动态变化趋势相似,但SPAD值最高值出现的时间和幅度略有差别.两个水稻品种SPAD值与施氮量在拔节期、抽穗期和成熟期均呈极显著正相关(P<0.01),拟合方程斜率均较低.不同测定时期SPAD值存在品种间和叶位间的差异.各SPAD值次级指标与施氮量的一元二次多项式拟合结果表明,下部叶片SPAD值(L3和L4)与施氮量的曲线拟合度高于上部叶片SPAD值(L1和L2),两次追肥时期的SPADL4X3/mean值可作为氮素营养实时诊断的理想指标.[结论]水稻叶片SPADL4xL3/mean与施氮量具有较好的拟合关系,且这一关系不受时间和品种的影响,可作为构建基于SPAD值水稻变量施氮模型时的理想参数.  相似文献   

10.
基于光谱分析不同温度下棉花叶片SPAD值含量估测   总被引:1,自引:0,他引:1  
【目的】研究不同温度对棉花叶片SPAD值的影响,利用高光谱反演叶片SPAD值。【方法】以不同温度处理花铃期水培棉花叶片为材料,利用美国SVC-HR768光谱仪测定叶片光谱反射率和SPAD502叶绿素计测定叶片SPAD值,采用相关分析、线性回归等方法,分析叶片SPAD值与原始光谱、一阶微分光谱和高光谱参数数据之间的关系。【结果】随着温度的升高,叶片SPAD值和原始光谱反射率逐渐下降,叶片SPAD值与原始光谱、一阶微分光谱和高光谱参数数据均具有较好的相关性,通过相关系数、调整R2和平均相对误差最大优选原则综合比较,筛选建立的叶片SPAD值与原始光谱、一阶微分光谱和高光谱参数的较优估测模型,相关系数分别为0.81、0.857和0.833,调整R2分别0.747、0.844和0.824,平均相对误差分别为9.12%、5.78%和7.72%。【结论】一阶微分光谱671和683 nm组合波段构建的模型Y=50.487 X683-131.617 X671+36.777预测叶片SPAD值最为精确,高光谱参数次之,原始光谱最差,为利用高光谱遥感信息反演花铃期棉花叶片SPAD值提供理论依据。  相似文献   

11.
Modeling Dynamics of Leaf Color Based on RGB Value in Rice   总被引:2,自引:0,他引:2       下载免费PDF全文
This paper was to develop a model for simulating the leaf color changes in rice (Oryza sativa L.) based on RGB (red, green, and blue) values. Based on rice experiment data with different cultivars and nitrogen (N) rates, the time-course RGB values of each leaf on main stem were collected during the growth period in rice, and a model for simulating the dynamics of leaf color in rice was then developed using quantitative modeling technology. The results showed that the RGB values of leaf color gradually decreased from the initial values (light green) to the steady values (green) during the first stage, remained the steady values (green) during the second stage, then gradually increased to the final values (from green to yellow) during the third stage. The decreasing linear functions, constant functions and increasing linear functions were used to simulate the changes in RGB values of leaf color at the first, second and third stages with growing degree days (GDD), respectively; two cultivar parameters, MatRGB (leaf color matrix) and AR (a vector composed of the ratio of the cumulative GDD of each stage during color change process of leaf n to that during leaf n drawn under adequate N status), were introduced to quantify the genetic characters in RGB values of leaf color and in durations of different stages during leaf color change, respectively; FN (N impact factor) was used to quantify the effects of N levels on RGB values of leaf color and on durations of different stages during leaf color change; linear functions were applied to simulate the changes in leaf color along the leaf midvein direction during leaf development process. Validation of the models with the independent experiment dataset exhibited that the root mean square errors (RMSE) between the observed and simulated RGB values were among 8 to 13, the relative RMSE (RRMSE) were among 8 to 10%, the mean absolute differences (da) were among 3.85 to 6.90, and the ratio of da to the mean observation values (Clap) were among 3.04 to 4.90%. In addition, the leaf color model was used to render the leaf color change over growth progress using the technology of visualization, with a good performance on predicting dynamic changes in rice leaf color. These results would provide a technical support for further developing virtual plant during rice growth and development.  相似文献   

12.
机器视觉在HSV颜色空间下稻瘟病病程分级判定研究   总被引:1,自引:0,他引:1  
该研究旨在开发基于机器视觉技术的稻瘟病病程分级系统,实现对稻瘟病病程分级准确、客观的判定。提出基于GrabCut、高斯滤波、OTSU二值化、颜色空间转换、阈值切割等处理的稻瘟病分级判定算法模型,该算法模型利用OpenCV与python语言实现,以反向阈值切割为核心策略分离叶片与病斑,再以循环遍历模式统计像素点得出病斑面积占比,实现对稻瘟病的快速、精确分级。试验结果表明,该算法模型与专业研究人员人工判定的结果匹配度达95.77%,相对于人工判定,具备更高的稳定性和客观性。目前对稻瘟病病程分级主要依赖研究人员通过经验判定,客观、准确的判定病程对防治稻瘟病具有重要意义。该系统以手机APP为图像采集端口,不依赖其他仪器和设备,通过手机拍照即可实时获得稻瘟病精确的分级结果,降低了研究门槛,提高了科研工作的效率。  相似文献   

13.
叶片叶绿素含量是评价作物生长状况的重要指标。为实现玉米叶片叶绿素含量的准确、高效高光谱估测,以玉米大田试验为基础,于7月1日(大喇叭口期)、7月19日(灌浆初期)和8月18日(腊熟期)利用ASD高光谱仪和便携式叶绿素仪(SPAD-502)分别测定了玉米叶片高光谱数据和叶绿素含量相对值SPAD;利用连续投影算法提取出玉米叶片光谱的特征波长,再用BP神经网络构建SPAD值的估算模型,并对模型进行验证。结果表明,3个日期的分段监测模型及统一监测模型的R2分别为0.885,0.900,0.675,0.827;RMSE分别为2.156,2.103,3.236,2.651;7月1日模型、7月19日模型和统一监测模型均具有较高的精度,同时检验模型RPD均大于2,具有很好的预测能力;而8月18日的监测模型表现较差(RPD=1.641),但也达到可用水平。表明利用连续投影算法结合BP神经网络可以进行玉米叶片SPAD值的高光谱估算。  相似文献   

14.
[目的]研究水稻齐穗后叶片SPAD值衰减与氮素稻谷生产效率的关系,以期为杂交水稻氮肥高效利用的品种选育提供理论与实践依据。[方法]2008~2010年,每年以18个杂交中稻品种为材料,研究齐穗后叶片SPAD值衰减与氮素稻谷生产效率的关系。[结果]氮素稻谷生产效率与齐穗期至成熟期的植株叶片SPAD值衰减指数呈极显著正相关关系,其原因在于:SPAD值衰减指数越大,LAI衰减指数也越多,地上部干物质向穗部运转比例越高,以至氮素稻谷生产效率与收获指数呈极显著正相关。[结论]该研究建立了利用SPAD值衰减指数预测氮素稻谷生产效率的新方法。  相似文献   

15.
【目的】为提高棉花叶片叶绿素含量的反演精度,并掌握其在山东省夏津县的空间分布特征。【方法】本研究以山东省德州市夏津县为研究区,以夏津县大李庄棉田为试验区,通过SPAD(soil and plant analyzer development,SPAD)仪实地测定试验区棉花叶片叶绿素含量的相对值(SPAD值),并获取同期试验区无人机(unmanned aerial vehicle,UAV)近地多光谱图像和研究区Sentinel-2A MSI(MSI)卫星影像;然后分别基于UAV和MSI的光谱反射率,构建并筛选最优光谱参量,采用多元线性回归(multiple linear regression,MLR)建立SPAD值定量反演模型;最后采用二次多项式拟合法融合UAV和Sentinel-2A MSI对应的最优光谱参量,对比分析融合前后模型效果,优选最佳反演模型,实现研究区SPAD值反演。【结果】研究表明,(REG-R)/(REG+R)、R/G、CL(red edge)、NDVI可作为SPAD值的最优光谱参量;基于UAV图像的定量反演模型精度优于基于MSI影像的模型;基于二次多项式拟合后建模R 2提高了0.015—0.057,RMSE降低了0.457—0.638,验证R 2提高了0.040—0.085,RMSE降低了0.387—0.397,RPD提高了0.020—0.139;将融合后的MSI光谱参量代入基于UAV图像的反演模型(Fused MSI-ModUAV),也可获得较高的反演精度,建模R 2达0.672,RMSE为3.982,验证R 2达0.713,RMSE为3.859,RPD为1.685;基于上述模型进行研究区棉花叶片SPAD值反演分析,试验区整体呈南高北低的分布趋势,研究区呈中间低、四周高的分布趋势,均与实地情况一致,具有较好的预测效果。【结论】采用二次多项式拟合法融合无人机和卫星影像数据,可较好地实现区域高精度作物生长指标的定量反演,研究结果可丰富多源遥感融合理论与技术,为后续棉花长势监测与精准生产提供技术参考和数据支持。  相似文献   

16.
始穗后弱光对不同基因型水稻叶片特性的影响   总被引:8,自引:0,他引:8  
弱光胁迫对始穗后叶片生长有明显影响。弱光下 ,叶片的长度、宽度均比对照高 ,且不同品种反应有差异 ,以D优 6 8受弱光影响增幅最大。遮光 4 9%时 ,各品种的平均LAI比对照高 ,遮光率为 6 9%时 ,LAI比遮光 4 9%有所降低。D优 6 8、冈优 2 2的SLA在低光强下明显增加 ,叶片厚实的Ⅱ优 16 2的SLA在遮荫前期增加而后期减少。叶绿素a、叶绿素b、叶绿素a+b随光强降低而增加 ,Ⅱ优 16 2、D优 6 8叶绿素b比叶绿素a增幅更大 ,叶绿素a/b的值随光强减弱而降低 ,冈优 2 2的叶绿素a/b以遮荫 4 9%时最高。在弱光下 ,叶片相对干物重高于对照 ,Ⅱ优 16 2的增幅低于D优 6 8与冈优 2 2。  相似文献   

17.
基于数码相机的玉米冠层SPAD遥感估算   总被引:1,自引:0,他引:1  
贺英  邓磊  毛智慧  孙杰 《中国农业科学》2018,51(15):2886-2897
【目的】叶绿素是植物光合作用中重要的色素。利用作物光谱信息对叶绿素含量进行反演,为作物的实时监测和生长状态诊断提供重要依据。【方法】以大田环境下不同氮肥水平(0,50%和100%)的开花期玉米为研究对象,利用轻小型无人机搭载数码相机,获取试验区RGB影像。使用土壤调整植被指数(soil adjusted vegetation index,SAVIgreen)对图像进行分割,基于分割前后的影像分别提取15种常见的可见光植被指数,综合分析指数与玉米冠层叶绿素相对含量SPAD值的相关关系。采用单变量回归模型、多元逐步回归模型和随机森林(random forest,RF)回归算法构建玉米SPAD值的遥感估算模型,通过模型精度评价指标决定系数(coefficient of determination,R2)、均方根误差(root mean square error,RMSE)、平均相对误差(mean relative error,MRE)和显著性检验水平(P0.01),确定最佳指标和最优模型。【结果】基于分割前后的数码影像提取的VIplot和VIplant植被指数与玉米冠层SPAD值之间具有显著的相关关系,其中VIplant中的红光标准化值(NRI)、归一化叶绿素比值植被指数(NPCI)、蓝红比值指数(BRRI)、差值植被指数(DVI)与SPAD值的相关性在0.77以上;以相关性高于0.77的VIplant指数NRI、NPCI、BRRI、DVI构建的线性、指数、对数、二次多项式、幂函数的单变量回归模型中,NRI指数构建的二次多项式模型效果最好,决定系数R2为0.7976,RMSE为4.31,MRE为5.91%。在VIplant指数NRI、NPCI、BRRI、DVI参与建立的多变量SPAD反演模型中,使用随机森林方法的模型精度最高,决定系数R2为0.8682,RMSE为3.92,MRE为4.98%,而多元逐步回归模型的精度高于任意单变量回归模型,决定系数R2为0.819,RMSE为4,MRE为5.67%;对数码影像结合各模型制作的SPAD分布图进行精度分析,使用随机森林回归模型对SPAD的估测值与实测值最为接近,具有最佳的预测效果,R2为0.8247,RMSE为4.3,MRE为5.36%,可以作为玉米冠层叶绿素信息监测的主要方法。【结论】本研究证明将数码相机影像提取的可见光植被指数应用于玉米叶绿素相对含量的估测是可行的,这也为无人机遥感系统在农业方面的应用增添了新的手段和经验。  相似文献   

18.
齐红  任洪娥  刘冕 《安徽农业科学》2014,(24):8459-8462
为了实现生产中微米木纤维直径智能检测,结合先进的数字图像处理技术,并改进传统纤维分段测量法,研究了一种基于目标提取与最大内切圆的纤维直径检测算法.该算法对木纤维显微图像进行基于HSV空间的目标提取,分析木纤维形态并引入用户需求概念,通过改进的分段测量法实现木纤维直径检测.结果表明,采用的算法在木纤维直径检测中,具有良好的适用性,检测精度满足生产要求.  相似文献   

19.
基于SPAD值的水稻施氮叶值模型构建及应用效果   总被引:5,自引:1,他引:4  
【目的】研究分析不同地力条件、施氮量、SPAD值衍生指标、产量之间的关系,实现简便、快速、无损地推荐水稻施氮量,构建基于SPAD值的水稻施氮叶值模型。【方法】2015年和2016年以杂交籼稻Q优6号为试验材料,设4种施氮水平(0、75、150、225 kg·hm~(-2)),探讨产量、SPAD值衍生指标与田块表观供氮量之间的关系,并对初步构建的叶值模型进行变量施氮应用效果研究。【结果】产量与抽穗期田块表观供氮量之间具有极显著的曲线关系,两年拟合度R2分别为0.5523,0.7148。在其拟合关系下2年度最高产量分别为9 264.93 kg·hm~(-2)、11 167.97 kg·hm~(-2),相差1 903.14 kg·hm~(-2),2016年产量相比2015年增加20.54%;达到最高产量的表观总吸氮量较为接近,分别为575.27 kg·hm~(-2),546.71 kg·hm~(-2),仅相差28.56 kg·hm~(-2),2016年表观总吸氮量相比2015年减少4.96%。不同年度的拔节期和抽穗期,SPAD值衍生指标中SPADL3(顶3叶SPAD值)、SPADL4(顶4叶SPAD值)、SPADmean(顶部4张叶片的平均SPAD值)、SPADL3×L4/mean(顶3叶SPAD值×顶4叶SPAD值/顶部4张叶片的平均SPAD值)与田块表观供氮量之间具有显著或极显著的线性关系。单张叶片中,SPADL3与拔节期田块表观供氮量,SPADL1与抽穗期田块表观供氮量线性拟合的系数在年份间变化均较小,分别为0.0156,0.0154;0.0172,0.0173。年份间,2016年SPADL3×L4/mean与田块表观供氮量线性拟合的系数和b值比2015年的拔节期依次增加了-28.70%,17.41%;抽穗期依次增加了-15.34%,56.11%。叶值模型施氮总量为表观总吸氮量与土壤表观供氮量之差,通过SPAD值衍生指标可以估测土壤表观供氮量,且抽穗期时SPAD值衍生指标与田块表观供氮量的线性拟合度较拔节期时的高。拔节期时,SPADL4与SPADL3×L4/mean,SPADL3与SPADmean之间估测推荐的施氮总量较为接近,且SPADL4、SPADL3×L4/mean估测的施氮量高出SPADL3、SPADmean50%左右。基于叶值模型的变量施氮效果表明,变量区产量高出对照区产量820.68kg·hm~(-2),变量区的氮素偏生产力、农学利用率和贡献率均明显高于对照区,分别高出13.74%,103.45%,104.12%。确定叶值模型的一般表达式为:Nw=Nz-[(Ys-b)/k-Ng],式中Nw表示施氮总量(kg·hm~(-2)),Nz表示水稻品种表观总吸氮量(kg·hm~(-2)),Ys表示叶片SPAD值衍生指标,Ng表示追肥之前已经施入的氮量(kg·hm~(-2)),k、b是田块表观供氮量(Nx)与叶片SPAD值衍生指标线性关系中的斜率和截距,而田块表观供氮量等于土壤表观供氮量(Nt)与人工已施氮量(Ng)之和。【结论】应用叶值模型的变量施氮减少了产量差,提高了产量以及氮素农学利用率、偏生产力和贡献率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号