首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
首次从理论分析角度深入探讨了具有代表性的曲柄连杆振动筛式玉米籽粒回收装置;阐述了曲柄连杆振动筛式玉米籽粒回收装置设计上的缺点,并对其进行了改进提高;提出了衡量苞叶、茎秆、茎叶、玉米籽粒等混合物能否被振动筛抛起的指标是运动特征值k是否大于k0;最后,重新设计了新的曲柄连杆式籽粒回收装置的模型。  相似文献   

2.
首次系统介绍了国内市场上存在的3种玉米籽粒回收装置;首次提出了玉米籽粒回收装置回收性能评价指标;分别对3种籽粒回收装置结构和优缺点进行了相关分析;指出曲柄连杆振动筛式籽粒回收装置最具有发展前景。  相似文献   

3.
玉米籽粒收获机分段式振动筛清选装置设计与试验   总被引:3,自引:0,他引:3  
针对目前玉米籽粒收获机籽粒清洁率和损失率不能满足国家标准要求的问题,设计了一种分段式振动圆孔筛清选装置。利用CFD-DEM耦合技术对传统双层往复振动筛清选装置内气固两相运动进行仿真,根据上筛纵向区域内籽粒透筛规律和上筛长度,确定合适的分段式振动筛前筛长度,并设计分段式振动筛后筛,使玉米脱出物在前筛尾部下落到后筛之前可以被前筛上下混合气流继续分散、分层,以提高籽粒清洁率,降低籽粒损失率。在保证分段式振动筛前筛清选性能不变的条件下,以后筛频率、后筛振幅、前后筛垂直间距、前后筛水平间距为试验因素,以籽粒的清洁率和损失率为评价指标,设计二次正交旋转中心组合试验,建立各因素与指标之间的回归数学模型。利用Design-Expert 8.0.6软件的多目标优化算法获得最佳参数组合:后筛频率为4.44 Hz、后筛振幅为15.65 mm、前后筛垂直间距为114 mm、前后筛水平间距为18.53 mm。在清选装置入口气流速度为12.8 m/s、气流方向角为25°、清选装置入口玉米脱出物喂入量为5 kg/s时,分段式振动筛清选装置使籽粒清洁率提高到98.34%,籽粒损失率降至1.45%,籽粒清洁率比传统双层往复振动筛清选装置提高1.26个百分点,损失率降低0.81个百分点,满足国家筛分质量评价技术规范要求。  相似文献   

4.
针对现有联合收获机单风道清选室难以满足脱粒排出物对气流速度和方向的要求这一问题,采用Solid Works软件设计了多风道清选室的流道模型,运用ICEM软件对其划分网格,再利用CFD技术对网格模型进行内部气流场分布的数值模拟,并以离心风机的转速、叶轮的叶片数和风机出风口角度3个设计参数作为实验因素,对清选装置内部气流场分布进行三因素二水平正交仿真实验。通过对多风道清选室全压云图和速度矢量图的对比分析,确定风机叶片数为4、风机叶轮转速为1080r/min、风机出风口角度为25°时,清选装置有利于籽粒从脱出物中有效分离和籽粒的清选。  相似文献   

5.
玉米籽粒收获机清选装置大多采用平行安装的双层筛面,为使双层筛的筛分性能最佳,利用偏置曲柄滑块机构设计了一种多自由度双层不平行振动筛驱动机构,利用矩阵法分析获得筛面的运动方程。选取双层筛筛面安装间距、上筛面安装倾角、筛面横向振幅为试验因素,以玉米籽粒损失率、籽粒含杂率为试验指标,设计二次正交旋转组合试验。利用Design-Expert软件对回归数学模型进行多目标优化,当下筛面安装倾角为3. 5°时,机构最优结构参数组合为:筛面前端安装间距292. 99 mm,上筛面安装倾角3. 04°,筛面横向振幅5. 55 mm。基于优化后的参数,调整驱动机构尺寸进行台架试验,玉米脱出物喂入量为5. 05 kg/s时,筛分后的籽粒损失率、籽粒含杂率均值分别为1. 61%、2. 17%,满足玉米收获机械技术标准。相比传统双层平行式平面往复振动筛清选装置,双层不平行振动筛的籽粒损失率平均降低了1. 59个百分点。  相似文献   

6.
针对目前玉米籽粒收获机不能适应15kg/s以上的大喂入量清选需要,设计了一种具备预清选功能的清选装置。首先对玉米脱出物离开螺旋输送器到达预清选筛前的玉米籽粒进行受力分析,然后对曲柄连杆机构的运动模型加以简化。其次分析玉米籽粒在筛面上的运动状态;对离心风机叶轮、蜗壳进行设计计算。采用单因素试验确定风机转速、振动频率、上筛筛孔开度取值范围;以风机转速、振动频率、上筛筛孔开度为试验因素,以籽粒含杂率和清选损失率为评价指标,设计三因素三水平中心组合试验,建立各因素与指标之间的回归模型。通过响应曲面方法对试验结果进行分析,并采用Design-Expert12对回归模型进行多目标优化。玉米脱出物喂入量为16kg/s时,得出较优组合为:风机转速1202.50r/min、振动频率5.41Hz、上筛筛孔开度18mm,在此条件下籽粒含杂率为0.79%,清选损失率为1.10%;验证试验结果表明,当风机转速1200r/min、振动频率5Hz、上筛筛孔开度18mm时,籽粒含杂率为0.82%,清选损失率为1.14%,试验值与优化值相对误差小于5%,与传统双层往复振动筛清选装置相比籽粒含杂率降低2.07个百分点,清选损失率降低2.13个百分点,证明所设计合理。  相似文献   

7.
玉米籽粒收获机清选装置参数优化试验   总被引:6,自引:0,他引:6  
针对玉米籽粒直收过程中清选作业损失率高、籽粒含杂率高的问题,开展玉米籽粒收获机清选作业参数优化试验,探究整机作业工况下清选装置作业参数对籽粒损失率和含杂率的影响规律,得到清选作业参数最优组合,并进行田间验证试验。玉米籽粒收获机清选作业参数较优水平区间为风机转速800~1 000 r/min,振动频率6~8 Hz,上清选筛筛孔开度15~25 mm。清选作业籽粒含杂率最优作业参数组合为风机转速1 000 r/min,振动频率7 Hz,上清选筛筛孔开度20 mm;籽粒损失率最优作业参数组合为风机转速900 r/min,振动频率6 Hz,上清选筛筛孔开度20 mm;清选作业综合指标最优作业参数组合为风机转速900 r/min,振动频率7 Hz,上清选筛筛孔开度20 mm。得到玉米籽粒收获机清选作业籽粒含杂率、籽粒损失率和综合指标的回归模型,田间验证试验表明,籽粒含杂率相对误差为5. 56%,籽粒损失率相对误差为5. 10%,综合指标相对误差为4. 60%,最优作业参数组合表现良好,且回归模型可靠。  相似文献   

8.
为提高青贮饲料品质,便于牲畜消化吸收,设计了一种新型的青贮饲料收获机籽粒破碎装置,实现对玉米籽粒破碎、玉米芯及秸秆的破节揉丝。田间试验结果证明,籽粒破碎率≥95%,破碎喂入量≥10 kgs,可靠性≥92%,可以满足对高质量青贮饲料收获的要求,推广前景广阔。   相似文献   

9.
从四个方面简要讲述了如何破解玉米籽粒收获机的应用瓶颈问题,并阐述了自己的观点。  相似文献   

10.
介绍了玉米收获机械的发展趋势,不对行玉米籽粒收获机的几个关键点,以及使用中存在的问题,并提出了改进建议。  相似文献   

11.
青贮玉米收获机碟盘式籽粒破碎装置仿真优化与试验   总被引:2,自引:0,他引:2  
针对青贮玉米收获机玉米籽粒破碎效果差、破碎率低、影响青贮秸秆发酵与籽粒养分转化的问题,设计了适合青贮玉米籽粒破碎的碟盘式青贮玉米籽粒破碎试验台,对关键部件刀盘进行了参数化设计,基于DEM法对籽粒破碎过程进行了运动和力学分析,首先建立基于离散元法的玉米籽粒粘结颗粒模型;利用EDEM离散元仿真软件开展正交仿真试验优化,选取刀齿数、刀刃深度、破碎间隙和刀辊转速作为仿真试验因素,籽粒破碎率为试验考察指标,确定了最优组合参数,即刀齿数48、刀刃深度5mm、破碎间隙2mm、刀辊转速59r/s,在该条件下籽粒破碎率为90.35%,仿真试验与台架试验相对误差为3.36%;台架试验结束后,采用宾州筛对其筛分,物料可分为小型、标准、大型和未完全破碎型4种,占比分别为1.3∶6∶1.8∶0.9,与仿真试验结果一致。台架试验各指标满足行业标准,实现了对玉米籽粒的高破碎和高作业效率。  相似文献   

12.
针对轴流式谷物联合收割机脱粒方式的清选装置效率不足的问题,设计了双风机振动筛式清选装置,前风机采用3风道结构。试验时在清选筛筛面上设置若干个测量点,采用风速仪测定各个测量点处的气流速度值,分析筛面气流分布状况。试验结果表明:前风机从3风道吹出的气流大小及分布能满足纵向轴流式脱粒方式对清选装置气流分布的需要;后风机能有效辅助清选筛排出短茎秆,提高清选效果。   相似文献   

13.
针对当前玉米果穗收获存在损伤大、效率低的问题,在原来激振摘穗技术研究的基础上,从激振辊夹持果柄实现激振波有效传递入手,结合激振摘穗实现果-茎分离的条件,开发了基于椭圆截面的新型摘穗装置,确定了该型摘穗辊结构参数的设计方法;根据激振摘穗过程中产生的激振波波形确定了椭圆激振辊的布局和结构参数,建立了椭圆激振摘穗试验台;通过正交试验确定了影响摘穗质量(果穗啃伤率、落粒率和茎秆折断率)的主次因素依次为激振辊长短径之比、激振辊基圆直径、摘穗辊转速;确定了较优组合,即当激振辊长短径之比为0.7、激振辊基圆直径为7.5cm、摘穗辊转速为1000r/min时,果穗啃伤率为0.38%,落粒率为0.12%,茎秆折断率为0.49%,均低于国家玉米收获机械技术标准要求。在较优参数组合下进行了试验验证,结果表明激振辊长短径之比为0.7、激振辊基圆直径为7.5cm、摘穗辊转速为1000r/min时,果穗啃伤率为0.39%,落粒率为0.12%,茎秆折断率为0.48%,与前期试验结果基本保持一致。  相似文献   

14.
为了改善联合收割机风筛式清选装置的清选质量,对其筛面气流场进行了研究,阐述了ANSYS(Analysis System)软件中的流体动力学仿真分析方法,具体讨论了其实现过程,包括仿真模型的建立以及仿真分析结果的处理等.以联合收割机风筛式清选装置中气流场的流动仿真分析为例,得到了理想的气流场分布状态,说明了这种仿真分析方法的有效性及其优越性.  相似文献   

15.
玉米收获机茎秆切割铺放装置的设计与试验   总被引:1,自引:0,他引:1  
随着畜牧业和工业的发展,农作物秸秆作为重要的饲料与工业原料,其需求越来越多,玉米秸秆的回收利用更是受到人们的广泛关注。为此,设计了一种新型的玉米收获机茎秆切割铺放装置,能够实现玉米茎秆的切割、压整和铺放。经田间试验证明,该装置效果良好,切断的茎秆能够满足打捆要求。  相似文献   

16.
玉米联合收获机摘穗装置比较分析研究   总被引:2,自引:0,他引:2  
摘穗装置是玉米联合收获机和玉米摘穗割台的核心部件之一,其技术性能优劣直接影响玉米联合收获机和玉米摘穗割台的作业质量.针对现有玉米联合收获机和玉米摘穗割台的摘穗装置,存在的收获损失大、籽粒破碎严重、适应性不强的问题,对摘穗装置性能进行比较分析,改进了优化玉米摘穗装置的技术性能,提高了玉米联合收获技术水平.  相似文献   

17.
玉米联合收获机清选损失监测装置设计与试验   总被引:1,自引:0,他引:1  
针对玉米籽粒收获时,损失率检测不准的问题,以压电薄膜作为敏感材料,设计了一种由冲击传感器、信号处理电路和安装装置等组成的玉米收获机籽粒清选损失监测装置,并采用支持向量机多分类算法提取玉米籽粒冲击信号,实现了玉米籽粒损失的实时监测。首先,在不同冲击角度和高度的试验条件下,对不同大小的玉米籽粒和杂余进行冲击信号的采集试验,提取冲击信号的主要特征。采用支持向量机多分类算法对模型进行训练,并在监测装置上实现实时分类。使用不同品种和含水率玉米对分类模型进行验证。然后,在不同风机转速和清选筛开度条件下,得到测试时间内传感器检测的籽粒数与总损失量之间的关系,并根据谷物流量值,计算得到实时的清选损失率。最后,将该监测装置安装在4YL-8型玉米联合收获机上进行田间试验。结果表明,该监测装置与人工检测相比,平均相对误差为12.98%,可以为收获机的控制提供反馈信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号