首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of earthworms on Zn fractionation in soils   总被引:11,自引:0,他引:11  
Laboratory incubation experiments were conducted to examine the effect of earthworm (Pheretima sp.) activity on soil pH, zinc (Zn) fractionation and N mineralization in three soils. No Zn uptake by earthworms was observed. Zinc addition decreased pH of red soil (soil 1) and hydragric paddy soil (soil 3) by 0.5 and 0.2 unit, respectively, but had no effect on alluvial soil (soil 2). The effect of Zn on soil pH was possibly due to a specific adsorption mechanism between Zn and oxides. Earthworm activity significantly decreased the pH of the red soil, a key factor affecting Zn solubility, but not of the other two soils. Earthworm activity significantly increased DTPA-Zn (DTPA-extractable) and OxFe-Zn (NH2OH-HCl-extractable) in the red soil, but had little effect on other fractions. In the alluvial soil, earthworm activity significantly increased OxFe-Zn but decreased organic-Zn (organic-associated Zn). In the hydragric paddy soil, earthworm activity significantly increased MgCl2-Zn (MgCl2-extractable) and organic-Zn. The level of CaCl2-extractable Zn in all three soils was not affected by earthworm activity. Nitrogen mineralized as a result of earthworm activity was equivalent to 110, 120 and 30 kg N ha-1 in soils 1, 2 and 3, respectively. Zinc added at rates less than 400 mg Zn kg-1 did not seem to affect the activity of N-mineralizing microorganisms. The present results indicated the possibility of increasing the metal bioavailability of relatively low level metal-contaminated soils, with a higher organic matter content, by earthworm inoculation.  相似文献   

2.
Planting trees to stabilize metalliferous mine tailings is a widely used form of land reclamation although substantial soil amendment is invariably required, both to improve the physico-chemical status of the tailings and to ameliorate toxicity prior to planting. Here, we report a glasshouse study of the combined effects of burrowing earthworms (Pheretima guillelmi) and arbuscular mycorrhizal fungi (Glomus spp., AMF) on establishment of a naturally invasive, woody, nitrogen-fixing legume, Leucaena leucocephala, on topsoil-amended Pb/Zn mine tailings. AMF provided the most effective preliminary inoculant, improving N, P and K uptake, but earthworms had more influence improving N nutrition. In most cases, the combined effects of AMF and earthworms were additive and proved to be beneficial to plant growth, plant nutrition and for protection against uptake of toxic metals. AMF influenced metal uptake more than earthworms, but together they reduced mobility of Pb and Zn in soil by as much as 25%. Some minor but significant negative interactions were also evident; for example, earthworms enhanced soil microbial activity but inhibited the beneficial effects of AMF on N2-fixation. We argue that increased attention to ecological interactions in soil could reduce costs and improve the efficacy of restoring a vegetation cover to land impacted by contaminated spoils.  相似文献   

3.
This study addressed differences between Diplocardia spp. (a native North American earthworm) and Octolasion tyrtaeum (an introduced European species), with respect to behavior, influence on soil microbial biomass, and plant uptake of N in tallgrass prairie soils. We manipulated earthworms in PVC-encased soil cores (20 cm diameter) over a 45-day period under field conditions. Treatments included: (1) control with no earthworms, (2) Diplocardia spp. only, and (3) O. tyrtaeum only. Prior to addition of earthworms, seedlings of Andropogon gerardii (a dominant tallgrass) were established in each core, and a dilute solution of 13C-labeled glucose and 15N-labeled (NH4)2SO4 was added to the soil to facilitate examination of earthworm/microbe/plant interactions. We found that Diplocardia spp. were significantly more active than O. tyrtaeum, and quickly assimilated 13C and 15N from the tracer. Individuals of Diplocardia spp. were present at shallower soil depths than O. tyrtaeum throughout the study. Contrary to expectation, this greater activity of Diplocardia spp. did not result in increased plant productivity. Rather, the activity of Diplocardia spp. was associated with less plant growth and smaller amounts of N acquired by A. gerardii seedlings compared to controls or O. tyrtaeum treatments. We observed few significant influences of earthworm treatments on microbial biomass C or N pool sizes, but the microbial C/N ratio was consistently greater in the presence of Diplocardia spp. relative to O. tyrtaeum. Results of this study indicate that activity of earthworms may enhance competition for N between microbes and plants during the growing season in tallgrass prairie.  相似文献   

4.
The collembolan species Heteromurus nitidus, exclusively located in soils at pH>5, can be cultured in acidic humus. As this species is attracted to the excreta of earthworms from calcic mull, its distribution is supposed to be determined only indirectly by soil pH through the distribution of earthworms. Higher densities and biomasses of Lumbricidae were observed in a calcic mull (pH 7.8) than in an acidic mull (pH 4.8) and a moder humus (pH 4.2). Choice experiments were performed to compare the attraction of H. nitidus to the mucus-urine mix of five earthworm species from the calcic mull and the acidic mull. H. nitidus was attracted to the excreta of the five species, whatever their ecological category and the humus form from which they originated. The collembolan Heteromurus major, which was indifferent to soil pH, was not attracted to earthworm excreta, which emphasizes the significance of this phenomenon for the distribution of H. nitidus over a pH range. The attraction of H. nitidus to earthworm excreta tended to be weaker and more variable when earthworms originated from acidic mull compared to calcic mull, particularly in the case of Lumbricus terrestris. Increased earthworm density reinforced by better mucus quality and quantity could determine the distribution of H. nitidus according to soil acidity. The only urine compound capable of attracting H. nitidus was NH3 at a low concentration (0.03 g l-1). The NH3 content of the mucus-urine mix which attracted H. nitidus was 0.037 g l-1, and was therefore responsible, at least partly, for the attraction.  相似文献   

5.
Background. Earthworm heavy metal concentrations (critical body residues, CBRs) may be the most relevant measures of heavy metal bioavailability in soils and may be linkable to toxic effects in order to better assess soil ecotoxicity. However, as earthworms possess physiological mechanisms to secrete and/or sequester absorbed metals as toxicologically inactive forms, total earthworm metal concentrations may not relate well with toxicity. Objective  The objectives of this research were to: i) develop LD50s (total earthworm metal concentration associated with 50% mortality) for Cd, Pb, and Zn; ii) evaluate the LD50 for Zn in a lethal Zn-smelter soil; iii) evaluate the lethal mixture toxicity of Cd, Pb, and Zn using earthworm metal concentrations and the toxic unit (TU) approach; and iv) evaluate total and fractionated earthworm concentrations as indicators of sublethal exposure. Methods  Earthworms (Eisenia fetida (Savigny)) were exposed to artificial soils spiked with Cd, Pb, Zn, and a Cd-Pb-Zn equitoxic mixture to estimate lethal CBRs and mixture toxicity. To evaluate the CBR developed for Zn, earthworms were also exposed to Zn-contaminated field soils receiving three different remediation treatments. Earthworm metal concentrations were measured using a procedure devised to isolate toxicologically active metal burdens via separation into cytosolic and pellet fractions. Results and Discussion  Lethal CBRs inducing 50% mortality (LD50, 95% CI) were calculated to be 5.72 (3.54-7.31), 3.33 (2.97-3.69), and 8.19 (4.78-11.6) mmol/kg for Cd, Pb, and Zn, respectively. Zn concentrations of dead earthworms exposed to a lethal remediated Zn-smelter soil were 3-fold above the LD50 for Zn and comparable to earthworm concentrations in lethal Zn-spiked artificial soils, despite a 14-fold difference in total soil Zn concentration between lethal field and artificial soils. An evaluation of the acute mixture toxicity of Cd, Pb, and Zn in artificial soils using the Toxic Unit (TU) approach revealed an LD50 (95% CI) of 0.99 (0.57-1.41) TU, indicating additive toxicity. Conclusions  Total Cd, Pb, and Zn concentrations in earthworms were good indicators of lethal metal exposure, and enabled the calculation at LD50s for lethality. The Zn-LD50 developed in artificial soil was applicable to earthworms exposed to remediated Zn-smelter soil, despite a 14-fold difference in total soil Zn concentrations. Mixture toxicity evaluated using LD50s from each single metal test indicated additive mixture toxicity among Cd, Pb, and Zn. Fractionation of earth worm tissues into cytosolic and pellet digests yielded mixed results for detecting differences in exposure at the sublethal level Recommendation and Outlook  CBRs are useful in describing acute Cd, Pb, and Zn toxicity in earthworms, but linking sublethal exposure to total and/or fractionated residues may be more difficult. More research on detoxification, regulation, and tissue and subcellular partitioning of heavy metals in earthworms and other invertebrates is needed to establish the link between body residue and sublethal exposure and toxicity. Keywords: Bioavailability; Cd; critical body residues; earthworms; metals; Pb; soil; Zn An erratum to this article is available at .  相似文献   

6.
This paper reports research that attempts to rehabilitate toxic Pb/Zn mine tailings, in Guangdong, China, to achieve a healthy functional soil that supports sustainable vegetation. We studied the effects of the earthworm Pheretima guillelmi on the growth of a woody legume Leucaena leucocephala on Pb/Zn mine tailings diluted with varying amounts of mineral soil in pot experiments. L. leucocephala grew successfully on tailings with a 25% (w/w) soil amendment, but P. guillelmi only survived and actively burrowed with a 50% soil amendment. The presence of earthworms improved the yield of plants by 10-30%. Whilst earthworms marginally increased available N and P in soil, they increased uptake of phosphorus (by about 10%) to above-ground plant tissues. Six-month-old plants were more sensitive than 10-month plants to metal stress. P. guillelmi increased bioavailable metal concentrations in the amended spoils, accompanied by a direct increase of metal uptake by the plants. Increased metal uptake by plants was largely due to the higher dry matter production stimulated by earthworm activity, but this increased the rate of metal uptake into plants from spoil by at least 16% and as much as 53%. These results demonstrate that we should broaden the ecological context of phytoremediation by considering the plant-soil-animal interactions that influence metal mobility.  相似文献   

7.
In a greenhouse trial, rice (Oryza sativa L.) cultivar Pusa Basmati-1 was grown in a Zn-deficient Typic Ustochrept soil from IARI farm, New Delhi, India. The experimental design included two rates of inoculation with vesicular-arbuscular mycorrhizal fungi (VAMF), Glomus etunicatum (nil and inoculated) and different combinations of organic (farmyard manure, FYM) and inorganic (NPK, ZnSO4) fertilizers. The results revealed that a high intensity of root colonization in rice inoculated with G. etunicatum could be achieved by raising seedlings in P- and Zn-deficient soil in the nursery under aerobic conditions. Moreover, the VAMF that infected rice seedlings in the nursery also survived when the same seedlings were transplanted into pots under waterlogged conditions. The application of ZnSO4 significantly increased the inflow of Zn to rice roots at the panicle-initiation stage (40 days after transplanting) relative to NPK. The former treatment also increased root length, root weight, root volume and total uptake of Zn and thereby increased the grain and dry matter yields. Alternatively, these variables were substantially enhanced by inoculating rice with the VAMF, G. etunicatum. The VAMF-colonized rice plants were more active in acquiring Zn from either added or native sources than non-colonized plants, and consequently the available-Zn content in soil was lower after the harvest of rice.  相似文献   

8.
Despite growing concerns about the potential adverse effects of elevated mercury concentrations in the environment, only a few toxicity data are available for soil invertebrates. The chronic toxicity of mercury (II) was therefore assessed for Eisenia fetida, Enchytraeus albidus and Folsomia candida using standard test protocols. The 21-day EC50 (the concentration causing 50% effect) for the cocoon production of E. fetida was 9.16 mg Hg kg-1 dry wt. Based on the reproduction, a 42-day EC50 of 22.0 mg Hg kg-1 dry wt was observed for E. albidus while for F. candida the 28-day EC50 was 3.26 (2.45-4.05) mg Hg kg-1 dry wt. Although these data can be considered as a step forward in the assessment of the potential risks of mercury in terrestrial environments, further research is needed to evaluate the influence of soil parameters on the toxicity of mercury and to quantify the effect of ageing on the bioavailability.  相似文献   

9.
Little information is available on the roles of earthworms in N transformation and biological activities in heavy metal-contaminated soils. The purpose of the present paper is to examine the effects of earthworm on nitrifying and denitrifying enzyme activities of Zn-treated soils. ZnCl2 solution was added to soils at rates ranging from 0 to 400 mg Zn kg–1 and was allowed to fractionate and stabilize for 60 days. The Zn-tolerant earthworm Pheretima sp., which had been previously screened, was then introduced into Zn-treated soils and allowed to work for 40 days. Original soils without the addition of Zn and introduction of earthworms but incubated under the same conditions were used as controls. Zn-treated soils without the introduction of earthworms were also used as controls. Results showed that earthworm activity increased both nitrifying and denitrifying enzyme activities of the soils. These beneficial effects of earthworms were particularly evident in the treatments where Zn had an adverse effect. Zn added at a rate 200 mg Zn kg–1 generally had a stimulating effect on the enzyme activities measured. However, Zn added at a rate >200 mg Zn kg–1 had an adverse effect on nitrifying and denitrifying enzyme activities, which could be alleviated or even completely eliminated by earthworm activities.  相似文献   

10.
The use of earthworms in monitoring soil pollution by heavy metals Total heavy metal contents (HNO3-soluble) and exchangeable fractions (Ca(NO3)2-soluble) of Pb, Zn and Cd were measured in soils, litter layers and earthworms (dry masses) from forest, arable and pasture sites in a transect of the main wind direction and varying distances (1.5, 5.4, 11.4, 15.6 km) to a lead smelter near Bad Ems, Germany. Additionally, cast materials of Lumbricus terrestris-individuals were collected from the surface of the pasture sites. In the observed area total soil contents of Pb and Cd exceeded the C-level and total contents of Zn the B-level of the “Netherland-list”. Heavy metal contents in soils and earthworms decreased with increasing distance to the smelter. Pb showed the best correlation. Correlation between total contents of Pb and Cd in soils and earthworms were significant (rs = 0.66; p < 0.05 and rs = 0.67; p < 0.01, respectively). The uptake of heavy metals by Lumbricus rubellus, L. terrestris and Aporrectodea caliginosa was metal specific rather than species specific with factors of accumulation being <1 (Pb), 2.7–7.6 (Zn) and 19.5–85.5 (Cd). The heavy metal contents of the observed cast materials signified the different transfer of elements from soil material via earthworm individuals to the faeces. In the cast materials the amounts of Pb were high and the amounts of Zn and Cd were low. This indicates a high accumulation rate for Zn and especially for Cd in the tissues of the observed earthworm individuals. The present data support the necessity of ecotoxicological threshold levels.  相似文献   

11.
Cecil sandy loam soils (ultisol) from forest (coniferous and deciduous), pasture, and arable ecosystems were sampled (0-10 cm) in the vicinity of Athens, Georgia, USA. Soil from each site was subdivided into three portions, consisting of untreated soil (control) as well as live and sterile samples treated with the fungicide metalaxyl and the herbicide propachlor at 10 mg kg-1 soil. Pesticide transformation rate, basal respiration (basal) and substrate-induced respiration (SIR) rates, and microbial metabolic quotient (qCO2) were measured for the initial application of metalaxyl [methyl-N-(2,6-dimethylphenyl)-N-(metoxyacetyl)-DL-alaninate] or propachlor (2-chloro-N-isopropyl-acetanilide) at 22°C and 60% water holding capacity. Positive correlations were found for the following: metalaxyl transformation rate constant (Kmet) and basal (r=0.73); Kmet and SIR (r=0.83); propachlor transformation rate constant (Kpr) and basal (r=0.89); and Kpr and SIR (r=0.91). Regression analysis of pesticide transformation rate and soil respiration activity, coupled with specific soil properties (pH, Corg, and clay content), revealed a positive correlation between K and SIR for Corg (r=0.88 and 0.98, for metalaxyl and propachlor, respectively). qCO2s were not significantly different (P=0.05) in propachlor-amended and pesticide-free soils. Metalaxyl amendment resulted in a change in the ecophysiological status of the soil microbial community as expressed by qCO2. The qCO2 values in metalaxyl-amended soils were significantly greater (P=0.05) in pine forest (by 25%) and arable and pasture (by 20%) soils compared to unamended soils. Differences in qCO2 values may represent the magnitude of pesticide-induced disturbance. The duration of this disturbance was greater in the pine forest soil (48 days) compared to arable and pasture soils (21 and 15 days, respectively).  相似文献   

12.
Population-specific differences in the responses of earthworms to simultaneous exposure to Cu and Zn were studied in microcosm experiments. Two populations of Aporrectodea caliginosa tuberculata (Eisen) with different metal exposure histories were chosen for the studies. Microcosms were prepared containing either uncontaminated soil or soils with low or high combined Cu/Zn -concentrations (79/139 or 178/311 mg kg−1 dry mass of soil, respectively). Earthworms from each population were introduced to the microcosm treatments with some microcosms serving as controls without earthworms. One series of microcosms was destructively sampled after 16 weeks incubation in a climate chamber. Survival, growth, reproduction and decomposition by earthworms in each treatment were measured. An additional microcosm series was sampled for soil and earthworm measurements at four weeks intervals to determine temporal changes in the availability of metals in the soils and their accumulation into earthworms. Cu and Zn were sequentially extracted from the soil samples of both microcosm series to estimate mobility and availability of the metals in the soil. Earthworms with long-term exposure history to metal-contaminated soil seemed to tolerate higher soil metal concentrations than earthworms without earlier exposure. Both earthworms and metals affected soil respiration (CO2 production) and nitrogen mineralization. In addition, earthworms seemed to decrease the mobility and bioavailability of metals in the soil through their burrowing activity.  相似文献   

13.
The mineralisation of green manure from agroforestry trees was monitored with the objective to compare the temporal dynamics of mineralisation of litter from different species. Green manures from five agroforestry tree species were used on a fallow field during the long rainy season of 1997 (March-August) and from two species in the following short rainy season (September-January) in western Kenya. Different methods, i.e. measurements of isotopic ratios of C in respired CO2 and of soil organic matter (SOM) fractions, soil inorganic N and mass loss from litterbags, were used in the field to study decomposition and C and N mineralisation. Soil respiration, with the separation of added C from old soil C by using the isotopic ratio of 13C/12C in the respired CO2, correlated well with extractable NH4+ in the soil. Mineralisation was high and very rapid from residues of Sesbania sesban of high quality [e.g. low ratio of (polyphenol+lignin)/N] and low and slow from low quality residues of Grevillea robusta. Ten days after application, 37% and 8% of the added C had been respired from Sesbania and Grevillea, respectively. Apparently, as much as 70-90% of the added C was respired in 40 days from high quality green manure. Weight losses of around 80%, from high quality residues in litterbags, also indicate substantial C losses and that a build-up of SOM is unlikely. For immediate effects on soil fertility, application of high quality green manure may, however, be a viable management option. To achieve synchrony with crop demand, caution is needed in management as large amounts of N are mineralised within a few days after application.  相似文献   

14.
Aim of this study was to determine effects of heavy metals on litter consumption by the earthworm Lumbricus rubellus in National Park the “Brabantsche Biesbosch”, the Netherlands. Adult L. rubellus were collected from 12 polluted and from one unpolluted field site. Earthworms collected at the unpolluted site were kept in their native soil and in soil from each of the 12 Biesbosch sites. Earthworms collected in the Biesbosch were kept in their native soils. Non-polluted poplar (Populus sp.) litter was offered as a food source and litter consumption and earthworm biomass were determined after 54 days. Cd, Cu and Zn concentrations were determined in soil, pore water and 0.01 M CaCl2 extracts of the soil and in earthworms. In spite of low available metal concentrations in the polluted soils, Cd, Cu and Zn concentrations in L. rubellus were increased. The litter consumption rate per biomass was positively related to internal Cd and Zn concentrations of earthworms collected from the Biesbosch and kept in native soil. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of heavy metals. Litter consumption per biomass of earthworms from the reference site and kept in the polluted Biesbosch soils, was not related to any of the determined soil characteristics and metal concentrations.  相似文献   

15.
Heterotrophic N2-fixing bacteria are a potentially important source of N2 fixation in rice fields due to the moist soil conditions. This study was conducted at eight sites along a geographic gradient of the Yangtze River Plain in central China. A nitrogen-free solid malate-sucrose medium was used to isolate heterotrophic N2-fixing bacteria. Numbers of the culturable N2-fixing bacteria expressed as CFU (colony forming units) ranged between 1.41ǂ.42᎒6 and 1.24ǂ.23᎒8 in the sampled paddy field sites along the plain. Thirty strains with high ARA (acetylene reduction activity) were isolated and purified; ARA of the strains varied from 0.9 to 537.8 nmol C2H4 culture-1 h-1, and amounts of 15N fixed ranged between 0.008 and 0.4866 mg·culture-1·day-1. According to morphological and biochemical characteristics, 14 strains were identified as the genus Bacillus, 2 as Burkholderia, 1 as Agrobacterium, 4 as Pseudomonas, 2 as Derxia, 1 as Alcaligenes, 1 as Aeromonas, 2 as Citrobacter, and 3 strains belonged to the corynebacter-form group.  相似文献   

16.
《Applied soil ecology》2007,35(2):302-310
Most of the studies focusing on metal transfer from soil to biota ignore the possible non-trophic influence of an organism on pollutant transfer to other species. We hypothesised that an earthworm (Aporrectodea tuberculata) might modify the bioavailability of metals in soil and thus, their transfer to the snail Helix aspersa. Snails were exposed for 2 weeks to a multicontaminated field soil with or without earthworms, under controlled conditions. When exposed with earthworms, snails had higher concentrations of Cd, Cu and Zn than when they were exposed alone, while no difference was detected for Pb. For Cd only, the difference in snail bioaccumulation corresponded to an increase in its water-soluble fraction. Internal concentrations of metals in earthworms remained similar in the presence or absence of snails. Two non-exclusive possible mechanisms, including variations in bioavailable fractions and/or total accessible pools of metals, are proposed to explain how earthworms could modulate the transfer of metals from soil to snails. This work demonstrated that metal transfer from soil to one invertebrate species was influenced by another invertebrate. We conclude that the concept of intermediary species, usually used to describe interactions among species, should be extended to the interactions between biota and pollutants in non-biotic compartments.  相似文献   

17.
Bioavailability of triazine herbicides in a sandy soil profile   总被引:1,自引:0,他引:1  
The bioavailability of atrazine was evaluated in a Danish soil profile (Drengsted) using a combination of soil sorption, transport and mineralisation methods as well as inoculation using Pseudomonas ADP. Sorption of atrazine decreased markedly with depth as indicated by Kd values of 5.2 l kg-1 for the upper soil and 0.1 l kg-1 for the subsoils. The transport of atrazine was evaluated using soil TLC plates and the resulting Rf values were 0.1 for the upper soil and 0.9 for the subsoil. Only a relatively small amount of atrazine leached through undisturbed soil columns taken from the upper 60 cm. Inoculating with Pseudomonas strain ADP (1᎒6 CFU g-1 dry weight soil) revealed that the degradation of 0.01 ppm atrazine was fully completed (80% mineralisation) within 10 days in the subsoil, while it reached less than 15% in the upper soil. Over a period of 500 days, a total mineralisation of 37% of added atrazine in the upper soil was found (2 mg kg-1 incubated at 20° C). However, in the subsurface soil where 0.02 mg kg-1 of atrazine was incubated at 10°C, the degradation was slower, only reaching about 12%. Terbuthylazine mineralisation was found to be temperature-dependent and low (less than 5%) in the upper soil and very much lower in the subsoil. Desethylterbuthylazine was the most frequently found metabolite. Finally, Pseudomonas strain ADP inoculated into soils from different depths increased the mineralisation of terbuthylazine dramatically. Modelling using a "two-compartment model" indicated that desorption of terbuthylazine is the limiting step for its mineralisation.  相似文献   

18.
Nitrous oxide (N2O) emissions were monitored for a period of 60 days in a pot culture study, from two kharif (June-September) and two rabi (October-March) season legumes, which were grown on a Typic Ustochrept, alluvial sandy loam soil. Black gram (Vigna mungo L. Hepper), var. T-9, and soybean (Glycine max L. Merril), var. Punjab 1, were taken up in kharif season whereas lentil (Lens esculenta Moench), var. JLS-1, and Bengal gram (Cicer arietinum L.), var. BGD-86, were grown in rabi season. All the crops were grown with and without urea and one pot (containing soil but with no fertilizer or crop) was used as a control. Nitrous oxide emissions were significantly higher in unfertilized cropped soil than in the control, while the addition of urea to the crops further increased the emissions. Significant emissions occurred during third and seventh week after sowing for all the treatments in both kharif and rabi seasons. In kharif, soil cropped with soybean had higher total N2O-N emission than soil sown with black gram both under fertilized and unfertilized conditions; while in rabi, lentil had a higher total N2O-N emission than Bengal gram under both fertilized and unfertilized conditions. In kharif, total N2O-N emissions ranged from 0.53 (control) to 3.84 kg ha-1 (soybean+urea), while in rabi it ranged from 0.45 (control) to 3.06 kg ha-1 (lentil+urea). Higher N2O-N emissions in kharif than in rabi was probably due to the favorable effect of temperature on nitrification and denitrification in the former season. The results of the study indicated that legume crops may lead to an increase in N2O formation and emission from soils, the extent of which varies from crop to crop.  相似文献   

19.
A plant growth-promoting bacterial strain, GRC2, was isolated from potato rhizosphere and characterized as fluorescent Pseudomonas. It produced a hydroxamate-type siderophore in iron-deficient tryptic soy medium. The production of hydrocyanic acid and indole acetic acid was also recorded under normal growth conditions. The strain showed a strong antagonistic effect against Macrophomina phaseolina, a charcoal rot pathogen of peanut, when co-cultured on tryptic soy agar medium. The growth inhibition of M. phaseolina was 74% after 5 days of incubation. Bacterization of peanut seeds with fluorescent Pseudomonas GRC2 resulted in increased seed germination, early seedling growth, fresh nodule weight, grain yield and reduced charcoal rot disease of peanut in M. phaseolina-infested soil as compared with control. A streptomycin-resistant marker of the bacterium GRC2strep+ was used to monitor root colonization, which positively confirmed the efficient colonization of peanut root. Seed bacterization reduced charcoal rot disease in M. phaseolina-infested soil as compared with the control by 99%, making the organism a potential biocontrol agent against charcoal rot of peanut.  相似文献   

20.
This paper reports the results of a study focused on the metal (Cd, Co, Cr, Cu, Ni, Pb, Sb, U and Zn) distribution in soils and uptake and accumulation by earthworms Nicodrilus caliginosus (Savigny) from urban, peri-urban, green-urban and non-urban zones of Siena municipality (central Italy). The main goal was to define the influence of soil properties and metal soil contents on the uptake of these contaminants by earthworms. Data indicated that Cd, Cu, Pb, Sb and Zn soil contents increased in the following order: non-urban < green-urban < peri-urban < urban soils, suggesting that vehicular traffic affects the distribution of these metals. Pb and Sb were the main soil contaminants and their highest enrichments were found in urban sites where stop-and-go traffic occurs. Concentrations of these traffic-related metals in earthworms showed a distribution pattern similar to that in soil, suggesting that soil contamination influenced the uptake of Cd, Cu, Pb, Sb and Zn by N. caliginosus. There were significant positive correlations between Cd, Pb and Sb earthworm concentrations and their soil contents. The lack of correlation for Cu and Zn could be due to the physiological regulation of these elements by earthworms. Statistical analysis pointed out that the uptake and accumulation of Cd, Cu, Pb, Sb and Zn by earthworms were affected by some soil physicochemical properties such as the organic carbon and carbonate contents that are able to rule the bioavailability of metals in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号