首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of different inocula of the mycoparasite Coniothyrium minitans on carpogenic germination of sclerotia of Sclerotinia sclerotiorum at different times of year were assessed. A series of three glasshouse box bioassays was used to compare the effect of five spore-suspension inocula of C. minitans , including three different isolates (Conio, IVT1 and Contans), with a standard maizemeal–perlite inoculum. Apothecial production, as well as viability and C. minitans infection of S. sclerotiorum sclerotia buried in treated soil, were assessed. Maizemeal–perlite inoculum at 107 CFU per cm3 soil reduced sclerotial germination and apothecial production in all three box bioassays, decreasing sclerotial recovery and viability in the second bioassay and increasing C. minitans infection of sclerotia in the first bioassay. Spore-suspension inocula applied at a lower concentration (104 CFU per cm3 soil) were inconsistent in their effects on sclerotial germination in the three box bioassays. Temperature was an important factor influencing apothecial production. Sclerotial germination was delayed or inhibited when bioassays were made in the summer. High temperatures also inhibited infection of sclerotia by C. minitans . Coniothyrium minitans survived these high temperatures, however, and infected the sclerotia once the temperature decreased to a lower level. Inoculum level of C. minitans was an important factor in reducing apothecial production by sclerotia. The effects of temperature on both carpogenic germination of sclerotia and parasitism of sclerotia by C. minitans are discussed.  相似文献   

2.
盾壳霉对核盘菌的拮抗作用研究   总被引:5,自引:0,他引:5  
系统研究了菌核重寄生菌盾壳霉对核盘菌的拮抗作用,结果表明:盾壳霉可在核盘菌菌落上寄生,使核盘菌菌丝消解、原生质泄露,并抑制菌核的形成;而且盾壳霉提前6d接种,其分泌的抗生物质还可抑制核盘菌菌丝生长,并产生明显抑菌带。盾壳霉孢子液喷雾处理也证明:盾壳霉分生孢子即可在核盘菌子囊盘(柄)上萌发、寄生,使子囊盘(柄)萎缩枯死,而且还可以在核盘菌菌落上萌发、寄生,消解破坏菌丝体、抑制的菌核形成。  相似文献   

3.
The effects of the mycoparasites Coniothyrium minitans and Trichoderma atroviride on the suppression of alfalfa blossom blight caused by Sclerotinia sclerotiorum were evaluated under indoor and field conditions. When T. atroviride (9·0 × 104 conidia/floret) + S. sclerotiorum (6·0 × 103 ascospores/floret) or C. minitans (9·0 × 104 conidia/floret) + S. sclerotiorum (6·0 × 103 ascospores/floret) were applied to detached young alfalfa florets, T. atroviride effectively inhibited saprophytic growth of S. sclerotiorum, whereas C. minitans showed no inhibition under the same conditions. When T. atroviride (6·9 × 104 conidia/floret) + S. sclerotiorum (6·0 × 103 ascospores/floret) or C. minitans (6·9 × 104 conidia/floret) + S. sclerotiorum (6·0 × 103 ascospores/floret) was applied to young alfalfa petals in vivo just after pollination, the percentage of pod formation was higher for T. atroviride+S. sclerotiorum than that for C. minitans+S. sclerotiorum, and the percentage of pod rot was lower for T. atroviride+S. sclerotiorum than that for C. minitans+S. sclerotiorum. However, when they were applied to senescent petals attached to developing pods of alfalfa at 9·2 × 104 conidia/floret together with S. sclerotiorum at 4·5 × 103 ascospores/floret at 14 days after pollination, C. minitans was more effective than T. atroviride in suppressing sclerotinia pod rot and seed rot of alfalfa. Field experiments showed that three applications of C. minitans (5·4 × 106 conidia mL−1) or T. atroviride (5·4 × 106 conidia mL−1) at a 7-day interval to blossoms of alfalfa effectively suppressed sclerotinia pod rot in two out of three annual trials. Coniothyrium minitans effectively suppressed sclerotinia seed rot in all three years, whereas T. atroviride was not effective against seed rot in any of the trial years. The efficacy of C. minitans was not significantly different (P > 0·05) from benomyl (250 µg ai mL−1). This study suggests that C. minitans has potential as a biocontrol agent to control blossom blight of alfalfa caused by S. sclerotiorum.  相似文献   

4.
草酸对重寄生真菌盾壳霉分生孢子萌发和菌丝生长的影响   总被引:4,自引:0,他引:4  
 本文研究了草酸对核盘菌的重寄生真菌盾壳霉(Coniothyrium minitans)分生孢子萌发和菌丝生长的影响。结果表明:草酸对盾壳霉分生孢子萌发没有明显促进作用,在酸碱性非缓冲基质(水琼脂)和酸碱性缓冲基质中,抑制盾壳霉分生孢子萌发的最低浓度分别为150和700μg/mL。在马铃薯葡萄糖琼脂培养基中,当草酸浓度为100~2000μg/mL时,盾壳霉菌丝能够生长,且浓度为300~500μg/mL的草酸对盾壳霉的菌丝生长具有明显的促进作用。在以草酸为唯一碳源的合成培养基中,在酸碱性非缓冲的条件下,当草酸浓度为100~2000μg/mL时,盾壳霉菌丝能够生长,且草酸浓度为500μg/mL时对盾壳霉菌丝生长具有促进作用,而当草酸浓度为2500μg/mL时,盾壳霉菌丝则停止生长。在酸碱性缓冲的合成基质中,草酸浓度为100~4000μg/mL时,盾壳霉菌丝能够生长,且草酸浓度为1500~2500μg/mL时对盾壳霉菌丝生长具有促进作用。在含草酸钙的混浊培养基(以草酸为唯一碳源)上,盾壳霉菌落区域形成了透明圈。上述结果说明盾壳霉能忍耐一定浓度的草酸而进行分生孢子萌发及菌丝生长,且这种真菌可能对草酸分子具有分解作用。  相似文献   

5.
本文研究了油菜田间常用除草剂精禾草克和乙草胺对油菜菌核病生防菌盾壳霉Conio-thyrium minitans的影响。结果表明它们对盾壳霉菌丝生长和分生孢子萌发均有显著的抑制作用,其中精禾草克对盾壳霉菌丝生长和孢子萌发的抑制中浓度分别为2.95mg/L和7.80mg/L;乙草胺对菌丝生长和孢子萌发的抑制中浓度分别为137.45mg/L和120.90mg/L。精禾草克可以抑制盾壳霉寄生核盘菌Sclerotinia sclerotiorum菌核,当精禾草克的使用量达田间使用浓度时,盾壳霉不能寄生核盘菌菌核;而乙草胺对盾壳霉寄生菌核的影响较小,在田间使用浓度1250mg/L时,盾壳霉仍可寄生菌核;乙草胺和盾壳霉在田间使用浓度条件下混合使用,60d后菌核腐烂指数与单独使用盾壳霉没有显著差异,均大于75。上述结果表明在田间使用量条件下,乙草胺可以和盾壳霉生防制剂混用,而精禾草克不宜和盾壳霉混用。  相似文献   

6.
重寄生真菌盾壳霉Coniothyrium minitans是核盘菌Sclerotinia sclerotiorum的重要生防菌。为了探讨盾壳霉胞外蛋白酶在寄生核盘菌过程中的作用,采用明胶平板法对盾壳霉寄生核盘菌菌核产生的蛋白酶活性进行了检测,并进一步采用福林酚法定量测定蛋白酶活性,研究盾壳霉产生胞外蛋白酶的培养条件及影响蛋白酶活性的因子。试验结果表明,在被盾壳霉寄生的核盘菌菌核中检测到蛋白酶活性,表明蛋白酶可能参与盾壳霉重寄生作用。发现核盘菌菌核浸出液培养基适合盾壳霉产生胞外蛋白酶,摇培(20℃、200r/min)5d时蛋白酶活性最高,达到0.22U/mL。盾壳霉胞外蛋白酶酶促反应的最适温度为60℃,最适pH7.0。当温度不高于40℃时,蛋白酶酶活较稳定。5mmol/L的金属离子Mg2+、Zn2+、Ca2+、Cu2+、Mn2+、Li+和K+等对蛋白酶酶活没有显著影响(P>0.05),而Fe2+(5mmol/L)显著(P<0.05)提高了蛋白酶活性。盾壳霉蛋白酶对苯甲基磺酰氟(PMSF)敏感,说明盾壳霉产生的胞外蛋白酶可能主要是丝氨酸蛋白酶。这些结果为盾壳霉胞外蛋白酶的分离纯化和功能研究奠定了基础。  相似文献   

7.
The environmental factors that influence infection of lettuce by ascospores of Sclerotinia sclerotiorum , and subsequent disease development, were investigated in controlled environment and field conditions. When lettuce plants were inoculated with a suspension of ascospores in water or with dry ascospores and exposed to a range of wetness durations or relative humidities at different temperatures, all plants developed disease but there was no relationship between leaf wetness duration or humidity and percentage of diseased plants. Ascospores started to germinate on lettuce leaves after 2–4 h of continuous leaf wetness at optimum temperatures of 15–25°C. The rate of development of sclerotinia disease and the final percentage of plants affected after 50 days were greatest at 16–27°C, with disease symptoms first observed 7–9 days after inoculation, and maximum final disease levels of 96%. At lower temperatures, 8–11°C, disease was first observed 20–26 days after inoculation, with maximum final disease levels of 10%. Disease symptoms were always observed first at the stem base. In field-grown lettuce in Norfolk, 2000 and 2001, inoculated with ascospore suspensions, disease occurred only in lettuce planted in May and June, with a range of 20–49% of plants with disease by 8 weeks after inoculation. In naturally infected field-grown lettuce in Cheshire, 2000, disease occurred mainly in lettuce planted throughout May, with a maximum of 31% lettuce diseased within one planting, but subsequent plantings had little (≤ 4%) or no disease. Lack of disease in the later plantings in both Norfolk and Cheshire could not be attributed to differences in weather factors.  相似文献   

8.
BACKGROUND: Sclerotinia sclerotiorum (Lib.) de Bary is a major pathogen of witloof chicory. For lack of authorised field treatment, post‐harvest sprays with dicarboximide fungicides have been standard practice since the 1970s to prevent root rot and chicory heart decay during the forcing phase. However, the registration of procymidone and vinclozolin has been withdrawn in Europe. The development of organic agriculture and the necessity to reduce fungicide applications in conventional agriculture prompted an assessment of the efficacy of new fungicides and the use of the mycoparasite Coniothyrium minitans (Campbell). RESULTS: A mixture of the fungicides fludioxonil and cyprodinil (Switch®) applied on chicory roots achieved a very good control of S. sclerotiorum (up to 95%). The use of C. minitans limited root infection, both when applied in the field (50–65% efficacy) and before the forcing period (post‐harvest treatment up to 80%). CONCLUSION: In organic agriculture, two treatments with C. minitans (in field and later at the forcing period) could improve protection against S. sclerotiorum. In conventional agriculture, after the field biological treatment, a post‐harvest chemical treatment could be applied. The addition of other prophylactic methods could lead to a high level of performance in practice against decay caused by S. sclerotiorum. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
盾壳霉是一种重要的生防菌,其在土壤中的存活数量直接关系到防治病害的效果。然而目前没有对土壤中盾壳霉直接计数的方法,构建一种简单易行的土壤中盾壳霉计数方法对研究盾壳霉在土壤中的存活动态具有重要意义。本研究利用农杆菌转化法构建了潮霉素基因和绿色荧光蛋白基因标记的双标记盾壳霉菌株,并测定转化子的生长速度、产孢量和菌核致腐能力,初步分析了该方法计数土壤盾壳霉的有效性和可行性。结果显示,潮霉素基因和绿色荧光蛋白基因可以稳定地遗传和表达,并且部分转化子生长速度、产孢量和菌核致腐能力与出发盾壳霉菌株JNCM没有显著差异。加入土壤中的盾壳霉转化子可以在含潮霉素(50μg/mL)、氯霉素(100μg/mL)和链霉素(100μg/mL)的PDA平板培养,杂菌得到充分抑制,呈现绿色荧光的盾壳霉转化子被有效检出,检出限达到2×103个/g土。本研究所构建的计数方法能有效检出施入土壤中的盾壳霉并进行活菌计数,可以用于盾壳霉JN-CM产品在土壤中的定殖、生长、繁殖和存活情况的研究。应用双标记平板计数法研究了不同温度、湿度、接种量和添加菌核等条件下盾壳霉JN-CM在土壤中的存活规律。结果显示,在含有核盘菌菌核的土壤中,盾壳霉JN-CM可以通过重寄生维持一段时间(12周)的数量增长,在长达半年左右(24周)的时间里其存活率仍然可以维持在65%左右。在不含菌核的土壤中,在一般土壤温度(10~20℃)范围内,无论土壤水分含量高低,其半年存活率也可以维持在50%左右。因此,可以预测,连续施用盾壳霉JN-CM生防制剂,可以使其数量在土壤中长期维持在一定的水平范围,达到长效防治效果。  相似文献   

10.
Coniothyrium minitans isolate Conio grew on both maizemeal-perlite and ground maizemeal-perlite, producing high numbers (1.6×107 conidiag–1 inoculum) of germinable conidia. Coniothyrium minitans isolate Conio applied as a preplanting soil incorporation of maizemeal-perlite inoculum at full application rate (0.6lm–2; 1011 colony forming units (cfu)m–2) significantly reduced Sclerotinia disease in a sequence of three lettuce crops grown in a glasshouse. No reduction in disease was achieved with any of the reduced rate treatments (108cfum–2) of a range of C. minitans isolates (Conio ground maizemeal-perlite at reduced rate, Conio and IVT1 spore suspensions derived from maizemeal-perlite, IVT1 spore suspension derived from oats and Contans® WG spore suspension). After harvest of the second and third crops, C. minitans maizemeal-perlite at full rate reduced the number and viability of sclerotia recovered on the soil surface and increased infection by C. minitans compared with spore suspension and reduced rate maizemeal-perlite inocula. Coniothyrium minitans was recovered from the soil throughout the trial, between 105 and 107cfucm–3 in maizemeal-perlite inoculum full rate treated plots and 101–104cfu cm–3 in all other inoculum treated plots.Pot bioassays were set up corresponding to the inoculum used in the glasshouse, with the addition of Conio ground maizemeal-perlite at a rate corresponding to the full rate maizemeal-perlite. Coniothyrium minitans maizemeal-perlite and ground maizemeal-perlite at full rate significantly decreased carpogenic germination, recovery and viability of sclerotia and increased infection of sclerotia by C. minitans in comparison with spore suspension treatments, reflecting results of the glasshouse trials. Additionally, reduced maizemeal-perlite treatment also decreased apothecial production, recovery and viability of sclerotia compared with the spore suspension treatment, despite being applied at similar rates. Simultaneous infection of sclerotia by several isolates of C. minitans was demonstrated. Inoculum level in terms of colony forming unitscm–3 of soil appears to be a key factor in both control of Sclerotinia disease and in reducing apothecial production by sclerotia.  相似文献   

11.
核盘菌菌核围微生物群落分析及其对盾壳霉重寄生的影响   总被引:1,自引:0,他引:1  
重寄生真菌盾壳霉(Coniothyrium minitans)是核盘菌的一种生防菌,它通过寄生核盘菌菌核,减少初侵染来源,从而达到防病效果.但在田间自然土壤中,核盘菌菌核围微生物对盾壳霉寄生菌核的影响还不清楚.本研究对核盘菌菌核围微生物进行了分离鉴定,并评估了菌核围细菌对盾壳霉重寄生的影响.结果 表明,不同取样时间和不...  相似文献   

12.
枯草芽胞杆菌NJ-18对油菜菌核病的防治效果及其定殖动态   总被引:2,自引:0,他引:2  
 菌株NJ-18是从油菜田土壤中分离筛选到的一株具有抗真菌活性的枯草芽胞杆菌。试验结果表明菌株NJ-18与油菜菌核病菌对峙培养能形成3.4 cm的抑菌圈;能抑制油菜菌核病菌菌丝生长发育;强烈影响菌丝生长量,NJ-18发酵滤液稀释62.5倍时对菌丝生长量抑制率高达96.7 %,稀释1 000倍时抑制率16.7 %。油菜离体叶片试验表明,NJ-18发酵液原液对菌核病的防治效果高达100 %,原液稀释200倍后防效10 %。大田试验结果表明,NJ-18发酵液稀释500倍对油菜菌核病的防治效果高达57.4 %,明显高于用量为150 g a.i./hm2的醚菌酯48.1 %的防治效果。采用浸根法研究NJ-18在油菜上的定殖动态表明,菌株NJ-18能够在油菜体内定殖,并能从油菜的根部向叶子扩散。  相似文献   

13.
经调查甘肃省酒泉市肃州区制种生菜菌核病在各生育期均有不同程度发病,为了筛选出能有效防治生菜菌核病的杀菌剂,本试验以发病较重的绿叶散叶型生菜为试验材料,选用6种杀菌剂对生菜菌核病病菌进行了抑菌作用研究。室内抑菌试验表明,50%福美双可湿性粉剂、70%菌核净可湿性粉剂、72.2%霜霉威盐酸盐水剂抑菌效果较显著,抑菌圈分别为32.7、 32、30.7 mm,而20%乙酸铜抑菌圈最小,为19 mm。5种药剂进行田间药效试验结果表明,70%菌核净可湿性粉剂1 000倍和50%福美双可湿性粉剂1 000倍的防效明显高于其他3种药剂,防效分别达到了77.71%和73.44%,是防治制种生菜菌核病的首选药剂。  相似文献   

14.
15.
核盘菌Sclerotinia sclerotiorum可引起多种重要经济作物的菌核病,造成严重损失。降低土壤中菌核数量是防治该病害的关键。本研究分析了土壤类型、土壤温度、水分含量和氧气水平对核盘菌菌核萌发率的影响,并通过高通量测序分析了相应处理对土壤微生物组成及丰度的影响。研究发现湿润条件下,35℃低氧处理2~4周可导致土壤中核盘菌菌核100%死亡。测序结果表明,处理4周后土壤中微生物的群落结构发生了显著变化。其中15℃正常氧水平条件下,菌核周围木霉菌属Trichoderma的丰度显著增加,35℃正常氧水平芽孢杆菌属Bacillus和篮状菌属Talaromyces相对丰度显著提高,而低氧条件下狭义梭菌属Clostridiumsensu stricto 1、11、12丰度显著提高。这一发现为通过调控土壤微生态防控作物菌核病提供了依据。  相似文献   

16.
Coniothyrium minitans, Trichoderma harzianum (HH3) and Trichoderma sp. (B1) were tested for ability to control disease caused by Sclerotinia sclerotiorum in a sequence of a celery crop and two lettuce crops in the glasshouse. In control plots, over 80% of celery and 90 and 60% of lettuce in first and second crops, respectively, were infected at harvest. Only the C. minitaris treatment in the first lettuce crop decreased disease and increased marketable yield. Nevertheless, C. minitans reduced the number of sclerotia recovered at harvest in the celery and first lettuce crops and decreased sclerotial survival over the autumn fallow periods following the celery and second lettuce crop. C. minitans survived in soil for over 1 year and spread to infect sclerotia in virtually all other plots. C. minitans infected sclerotia at all times of the year but sclerotia still failed to degrade during the summer months when the soil was dry. The Trichoderma species tested had no effect on disease and almost no effect on the survival of the sclerotia. even though they could be recovered from soil for the duration of the experiments.  相似文献   

17.
为克隆和研究链孢粘帚霉Gliocladium catenulatum寄生核盘菌菌核的相关基因,应用抑制消减杂交技术构建了cDNA消减文库并进行了筛选。通过PCR技术从文库中共筛选到1315个阳性克隆,克隆中插入片段大小主要集中于300~600bp之间。随机挑取120个克隆,经测序和同源性分析,获得60条有效序列,其中部分序列所编码的血红素加氧酶、核糖体蛋白L11、细胞色素P450及热激蛋白等均参与机体对胁迫条件的应答反应。11条序列在NCBI数据库中未找到显著匹配的序列,可能为新基因片段。分别将寄生于核盘菌菌核上的粘帚霉cDNA和粘帚霉与核盘菌纯培养的cDNA混合物经RasⅠ酶切后进行标记作为探针,利用反向Northern杂交技术验证了所选取的25条序列全部为差异表达基因片段。  相似文献   

18.
Indoor and field experiments were conducted to evaluate the efficacy of applying the mycoparasite Coniothyrium minitans to the aerial parts of rapeseed plants at the flowering stage to control sclerotinia diseases caused by Sclerotinia sclerotiorum. Under controlled conditions, a petal inoculation technique was used to determine the effect of conidial suspensions of C. minitans on suppression of sclerotinia leaf blight. Results showed that C. minitans was effective in inhibiting infection initiated by ascospores of S. sclerotiorum on flower petals by restricting mycelial growth of the pathogen. Suppression of lesion development was related to the conidial concentration of C. minitans, with larger lesions at low concentration (5×103conidia ml−1), but smaller lesions at high concentration (5×104 conidia ml−1 or higher). When C. minitans-treated rapeseed leaves were inoculated with mycelia of S. sclerotiorum, C. minitans failed to prevent infection of leaves, but caused a significant reduction in number of sclerotia produced on the diseased leaves. No significant difference in efficacy was detected between the two isolates of C. minitans, LRC 2137 and Chy-1, on the two rapeseed cultivars, Westar (spring type) and Zhongyou 821 (winter type). Results of field trials showed a significant reduction of stem rot of rapeseed in four (1997, 1999, 2003 and 2004) out of five years by aerial application of C. minitans, compared with controls. No significant difference in suppressive efficacy was observed between the treatments of C. minitans (106 conidia ml−1), C. minitans (106 conidia ml−1) + benomyl (50 μg ml−1) and benomyl (100 μg ml−1) in 2003, and between the treatments of C. minitans (106 conidia ml−1), C. minitans (106 conidia ml−1) + vinclozolin (100 μg ml−1) and vinclozolin (500 μg ml−1) in 2004. Sclerotia of S. sclerotiorum collected from diseased plants in plots treated with C. minitans in 1999, 2000 and 2003, or with C. minitans + benomyl in 2003 were infected by C. minitans at frequencies ranging from 21.3 to 54.5%. This study concludes that aerial spraying of C. minitans is an effective method for controlling sclerotinia diseases of rapeseed.  相似文献   

19.
The soilborne fungus Sclerotinia sclerotiorum infects many important crop plants. Central to the success of this pathogen is the production of sclerotia, which enables survival in soil and constitutes the primary inoculum. This study aimed to determine how crop plant type and S. sclerotiorum isolate impact sclerotial production and germination and hence inoculum potential. Three S. sclerotiorum isolates (L6, L17, L44) were used to inoculate plants of bean, carrot, lettuce, oilseed rape (OSR) and potato, and the number and weight of sclerotia per plant quantified. Carpogenic germination of sclerotia collected from different hosts was also assessed for L6. Production of sclerotia was dependent on both crop plant type and S. sclerotiorum isolate, with OSR and lettuce supporting the greatest number (42–122) and weight (1.6–3.0 g) of sclerotia per plant. The largest sclerotia were produced on OSR (33–66 mg). The three S. sclerotiorum isolates exhibited a consistent pattern of sclerotial production irrespective of crop type; L6 produced large numbers of small sclerotia while L44 produced smaller numbers of large sclerotia, with L17 intermediate between the two. Germination rate and percentage was greatest for larger sclerotia (4.0–6.7 mm) and also varied between host plants. Combining sclerotial production data and typical field crop densities suggested that infected carrot and OSR could produce the greatest number (3944 m?2) and weight (73 g m?2) of S. sclerotiorum sclerotia, respectively, suggesting these crops potentially contribute a greater increase in inoculum. This information, once further validated in field trials, could be used to inform future crop rotation decisions.  相似文献   

20.
Potential enhancement of mycoparasitic efficacy of Coniothyrium minitans and Microsphaeropsis ochracea through concomitant colonization of Sclerotinia sclerotiorum sclerotia was investigated, following observation that the two mycoparasites did not exhibit any mutual antagonism in dual culture assays. Simultaneous application of both mycoparasites increased sclerotia mortality in a temperature range from 16 to 26°C compared to single application, indicating a predominantly additive interaction. With increasing temperature the efficacy of M. ochracea decreased, but C. minitans was unaffected. Degradation of sclerotia by C. minitans proceeded slightly faster than with M. ochracea. Simultaneous colonization of sclerotia was studied at the histopathological level with mycoparasite strains transformed via Agrobacterium tumefaciens‐mediated transformation (ATMT) with reporter genes encoding for DsRed and GFP. Sclerotia colonization followed by fluorescence microscopy revealed effective penetration of the sclerotial rind, growth and formation of pycnidia in the cortex and medulla by both antagonists, resulting in complete degradation of sclerotia within 25 days after single inoculation. Upon simultaneous inoculation, both antagonists concomitantly colonized the sclerotial tissue and independently formed pycnidia in the sclerotial medulla and on the sclerotial rind, demonstrating their ability to co‐colonize the same host fungus. Although the individual growth of the two mycoparasites in dual inoculations was slightly delayed, the sclerotia degrading effects were additive, suggesting a complementary antagonistic interaction. The combined application of two different species of mycoparasites cooperating on the same host fungus and differing in temperature requirements may be advantageous for making biocontrol applications in the field less sensitive to varying environmental and host conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号