首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electronic shift-register memory at the molecular level is described. The memory elements are based on a chain of electron-transfer molecules and the information is shifted by photoinduced electron-transfer reactions. This device integrates designed electronic molecules onto a very large scale integrated (silicon microelectronic) substrate, providing an example of a "molecular electronic device" that could actually be made. The design requirements for such a device and possible synthetic strategies are discussed. Devices along these lines should have lower energy usage and enhanced storage density.  相似文献   

2.
Long-range electron transfer in heme proteins   总被引:11,自引:0,他引:11  
Kinetic experiments have conclusively shown that electron transfer can take place over large distances (greater than 10 angstroms) through protein interiors. Current research focuses on the elucidation of the factors that determine the rates of long-range electron-transfer reactions in modified proteins and protein complexes. Factors receiving experimental and theoretical attention include the donor-acceptor distance, changes in geometry of the donor and acceptor upon electron transfer, and the thermodynamic driving force. Recent experimental work on heme proteins indicates that the electron-transfer rate falls off exponentially with donor-acceptor distance at long range. The rate is greatly enhanced in proteins in which the structural changes accompanying electron transfer are very small.  相似文献   

3.
Evidence for photoinduced electron transfer from the excited state of a conducting polymer onto buckminsterfullerene, C(60), is reported. After photo-excitation of the conjugated polymer with light of energy greater than the pi-pi* gap, an electron transfer to the C(60) molecule is initiated. Photoinduced optical absorption studies demonstrate a different excitation spectrum for the composite as compared to the separate components, consistent with photo-excited charge transfer. A photoinduced electron spin resonance signal exhibits signatures of both the conducting polymer cation and the C(60) anion. Because the photoluminescence in the conducting polymer is quenched by interaction with C(60), the data imply that charge transfer from the excited state occurs on a picosecond time scale. The charge-separated state in composite films is metastable at low temperatures.  相似文献   

4.
Li B  Zhao J  Onda K  Jordan KD  Yang J  Petek H 《Science (New York, N.Y.)》2006,311(5766):1436-1440
The coupling of electron and nuclear motions in ultrafast charge transfer at molecule-semiconductor interfaces is central to many phenomena, including catalysis, photocatalysis, and molecular electronics. By using femtosecond laser excitation, we transferred electrons from a rutile titanium dioxide (110) surface into a CH3OH overlayer state that is 2.3 +/- 0.2 electron volts above the Fermi level. The redistributed charge was stabilized within 30 femtoseconds by the inertial motion of substrate ions (polaron formation) and, more slowly, by adsorbate molecules (solvation). According to a pronounced deuterium isotope effect (CH3OD), this motion of heavy atoms transforms the reverse charge transfer from a purely electronic process (nonadiabatic) to a correlated response of electrons and protons.  相似文献   

5.
By using laser methods to prepare specific quantum states of gas-phase nitric oxide molecules, we examined the role of vibrational motion in electron transfer to a molecule from a metal surface free from the complicating influence of solvation effects. The signature of the electron transfer process is a highly efficient multiquantum vibrational relaxation event, where the nitrogen oxide loses hundreds of kilojoules per mole of energy on a subpicosecond time scale. These results cannot be explained simply on the basis of Franck-Condon factors. The large-amplitude vibrational motion associated with molecules in high vibrational states strongly modulates the energetic driving force of the electron transfer reaction. These results show the importance of molecular vibration in promoting electron transfer reactions, a class of chemistry important to molecular electronics devices, solar energy conversion, and many biological processes.  相似文献   

6.
Electronically excited molecules, being better electron donors and acceptors than their ground states, form charge-transfer complexes (exciplexes) which can lead to radical ions. Exciplex emission is widely used to probe polymers and organized media such as membranes and micelles. Exciplexes are also intermediates in photoreactions that lead to unique products. Photochemical electron-transfer processes, which are the basis of silver halide photography and electrophotography, are involved in many reactions of wide scope. Recent studies have led to the discovery of several electron-transfer photooxygenations with a diversity that will probably rival that of singlet oxygen. Both exciplex emission and photochemical electron transfer play important roles in organic photochemistry.  相似文献   

7.
Intramolecular long-distance electron transfer (EI) has been actively studied in recent years in order to test existing theories in a quantitative way and to provide the necessary constants for predicting ET rates from simple structural parameters. Theoretical predictions of an "inverted region," where increasing the driving force of the reaction will decrease its rate, have begun to be experimentally confirmed. A predicted nonlinear dependence of ET rates on the polarity of the solvent has also been confirmed. This work has implications for the design of efficient photochemical charge-separation devices. Other studies have been directed toward determining the distance dependence of ET reactions. Model studies on different series of compounds give similar distance dependences. When different stereochemical structures are compared, it becomes apparent that geometrical factors must be taken into account. Finally, the mechanism of coupling between donor and acceptor in weakly interacting systems has become of major importance. The theoretical and experimental evidence favors a model in which coupling is provided by the interaction with the orbitals of the intervening molecular fragments, although more experimental evidence is needed.  相似文献   

8.
We demonstrated how the subcycle evolution of the electric field of light can be used to control the motion of bound electrons. Results are presented for the dissociative ionization of deuterium molecules (D2 --> D+ + D), where asymmetric ejection of the ionic fragment reveals that light-driven intramolecular electronic motion before dissociation localizes the electron on one of the two D+ ions in a controlled way. The results extend subfemtosecond electron control to molecules and provide evidence of its usefulness in controlling reaction dynamics.  相似文献   

9.
We present experimental and theoretical evidence for an excited-state deactivation mechanism specific to hydrogen-bonded aromatic dimers, which may account, in part, for the photostability of the Watson-Crick base pairs in DNA. Femtosecond time-resolved mass spectroscopy of 2-aminopyridine clusters reveals an excited-state lifetime of 65 +/- 10 picoseconds for the near-planar hydrogen-bonded dimer, which is significantly shorter than the lifetime of either the monomer or the 3- and 4-membered nonplanar clusters. Ab initio calculations of reaction pathways and potential-energy profiles identify the mechanism of the enhanced excited-state decay of the dimer: Conical intersections connect the locally excited 1pipi* state and the electronic ground state with a 1pipi* charge-transfer state that is strongly stabilized by the transfer of a proton.  相似文献   

10.
Cytochrome c and cytochrome b5 form an electrostatically associated electron transfer complex. Computer models of this and related complexes that were generated by docking the x-ray structures of the individual proteins have provided insight into the specificity and mechanism of electron transfer reactions. Previous static modeling studies were extended by molecular dynamics simulations of a cytochrome c-cytochrome b5 intermolecular complex. The simulations indicate that electrostatic interactions at the molecular interface results in a flexible association complex that samples alternative interheme geometries and molecular conformations. Many of these transient geometries appear to be more favorable for electron transfer than those formed in the initial model complex. Of particular interest is a conformational change that occurred in phenylalanine 82 of cytochrome c that allowed the phenyl side chain to bridge the two cytochrome heme groups.  相似文献   

11.
The recombination dynamics of a transition metal redox system monitored by femtosecond pump-probe spectroscopy are shown to be sensitive to high magnetic fields at times shorter than 10 picoseconds. The effect, based on coherent population beats of different spin states, is quantitatively accounted for and allows direct access to spin relaxation rates far beyond the time resolution of the fastest electron paramagnetic resonance technique. The presence of this ultrafast magnetic field effect helps in understanding complex reaction schemes in transition metal chemistry, which occur in a wide range of fields, such as bioinorganic chemistry and catalysis.  相似文献   

12.
13.
Intermolecular electron transfer by quantum mechanical tunneling   总被引:1,自引:0,他引:1  
The transfer of electrons from one molecule to another by quantum mechanical tunneling has recently been implicated in biological electron transport. This report describes observations of electron transfer between aromatic molecules in a rigid matrix, in which electrons apparently tunnel through tens of angstroms of inert solvent. The kinetics tend to confirm the tunneling process, which is likely to be an important means of electron transfer when diffusion is blocked by steric factors or immobilization of the reactants.  相似文献   

14.
A method is described for determining heats of heterolysis, DeltaH(het), from the heats of reaction of resonancestabilized carbenium ions with carbanions in solution. These results can be converted into heats of homolysis, DeltaH(homo), for the same bonds by combining DeltaH(het) values with electron transfer energies, deltaG(ET) (deltaG(ET) approximately deltaH(ET)), obtained from redox potentials of the reacting ions. The results provide a comprehensive tabulation of DeltaH(het), DeltaH(homo), and DeltaG(ET) values for an extended series of organic compounds and are examined in terms of their interrelationships and a number of related properties of the ions and radicals.  相似文献   

15.
A microscopic method for simulating quantum mechanical, nuclear tunneling effects in biological electron transfer reactions is presented and applied to several electron transfer steps in photosynthetic bacterial reaction centers. In this "dispersed polaron" method the fluctuations of the protein and the electron carriers are projected as effective normal modes onto an appropriate reaction coordinate and used to evaluate the quantum mechanical rate constant. The simulations, based on the crystallographic structure of the reaction center from Rhodopseudomonas viridis, focus on electron transfer from a bacteriopheophytin to a quinone and the subsequent back-reaction. The rates of both of these reactions are almost independent of temperature or even increase with decreasing temperature. The simulations reproduce this unusual temperature dependence in a qualitative way, without the use of adjustable parameters for the protein's Franck-Condon factors. The observed dependence of the back-reaction on the free energy of the reaction also is reproduced, including the special behavior in the "inverted region."  相似文献   

16.
Molecular dynamics occurring in the earliest stages following photo-induced charge transfer were investigated. Femtosecond time-resolved absorption anisotropy measurements on [Ru(bpy)(3)](2+), where bpy is 2,2'-bipyridine, reveal a time dependence in nitrile solutions attributed to initial delocalization of the excited state over all three ligands followed by charge localization onto a single ligand. The localization process is proposed to be coupled to nondiffusive solvation dynamics. In contrast, measurements sampling population dynamics show spectral evolution associated with wave packet motion on the excited state surface that is independent of solvent. The results therefore reveal two important contributions to the evolution of charge transfer states in condensed phase, one that is strongly coupled to the surrounding environment and another that follows a potential internal to the molecule.  相似文献   

17.
Electron transfer is used as a probe for angstrom-scale structural changes in single protein molecules. In a flavin reductase, the fluorescence of flavin is quenched by a nearby tyrosine residue by means of photo-induced electron transfer. By probing the fluorescence lifetime of the single flavin on a photon-by-photon basis, we were able to observe the variation of flavin-tyrosine distance over time. We could then determine the potential of mean force between the flavin and the tyrosine, and a correlation analysis revealed conformational fluctuation at multiple time scales spanning from hundreds of microseconds to seconds. This phenomenon suggests the existence of multiple interconverting conformers related to the fluctuating catalytic reactivity.  相似文献   

18.
The chemisorption of specific optically active compounds on metal surfaces can create catalytically active chirality transfer sites. However, the mechanism through which these sites bias the stereoselectivity of reactions (typically hydrogenations) is generally assumed to be so complex that continued progress in the area is uncertain. We show that the investigation of heterogeneous asymmetric induction with single-site resolution sufficient to distinguish stereochemical conformations at the submolecular level is finally accessible. A combination of scanning tunneling microscopy and density functional theory calculations reveals the stereodirecting forces governing preorganization into precise chiral modifier-substrate bimolecular surface complexes. The study shows that the chiral modifier induces prochiral switching on the surface and that different prochiral ratios prevail at different submolecular binding sites on the modifier at the reaction temperature.  相似文献   

19.
Phenylalanine transfer RNA: molecular dynamics simulation   总被引:4,自引:0,他引:4  
Yeast phenylalanine transfer RNA was subjected to a 12-picosecond molecular dynamics simulation. The principal features of the x-ray crystallographic analysis are reproduced, and the amplitudes of atomic displacements appear to be determined by the degree of exposure of the atoms. An analysis of the hydrogen bonds shows a correlation between the average length of a bond and the fluctuation in that length and reveals a rocking motion of bases in Watson-Crick guanine X cytosine base pairs. The in-plane motions of the bases are generally of larger amplitude than the out-of-plane motions, and there are correlations in the motions of adjacent bases.  相似文献   

20.
The initial electron transfer dynamics during photosynthesis have been studied in Rhodobacter sphaeroides reaction centers from wild type and 14 mutants in which the driving force and the kinetics of charge separation vary over a broad range. Surprisingly, the protein relaxation kinetics, as measured by tryptophan absorbance changes, are invariant in these mutants. By applying a reaction-diffusion model, we can fit the complex electron transfer kinetics of each mutant quantitatively, varying only the driving force. These results indicate that initial photosynthetic charge separation is limited by protein dynamics rather than by a static electron transfer barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号