首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Re‐ensiling of previously ensiled forage has been a common practice in Brazil, and the use of inoculants may provide a means of reducing dry‐matter (DM) loss. This study aimed to determine the effect of re‐ensiling and the use of microbial inoculants on the quality of sorghum silage. Treatments were presence/absence of an inoculant (Lactobacillus plantarum and Propionibacterium acidipropionici) in the silage, and the re‐ensiling, or not, of the material after 24 h of exposure to air, and these were tested in a factorial 2 × 2 design. Losses due to gas, effluent and total DM were assessed, as were the fermentation characteristics, chemical composition, aerobic stability, and aerobic counts of microorganisms. Effluent loss was higher in re‐ensiled silage, and these silages had lower lactic acid content and higher levels of acetic and propionic acids. The in vitro DM digestibility was lower in the re‐ensiled sorghum silages. The re‐ensiled silage had higher aerobic stability. The inoculant only increased the acetic acid content of the silage. The re‐ensiling of sorghum silage increased effluent loss by 71·2%, and reduced DM digestibility by 5·35%. The use of inoculant did not influence the quality of sorghum silage.  相似文献   

2.
Lucerne (Medicago sativa L.) requires four or more cuttings at early bud stage per growing season to optimize the amount of crude protein and digestible fibre for feeding high‐producing dairy cows. However, there is potential to generate a nutrient‐dense feed from lucerne regardless of developmental stage by harvesting its protein‐rich leaves separate from its fibrous stems. In order to determine whether fractionated lucerne can be effectively ensiled under high‐moisture conditions and be nutritionally competitive with wilted whole‐plant silage, leaf and stem fractions, harvested at three developmental stages (early bud, 10%–20% bloom and >50% bloom), were directly ensiled in mini‐silos. At day 0, 1, 3, 21 and 140 of ensiling, silages were analysed for protein and non‐protein nitrogen fractions as well as their fermentation products and carbohydrate composition. Silages from unwilted leaves and stems were more heterofermentative than wilted whole‐plant silages; their fermentation shifted from primarily lactic acid to acetic acid production after 21 days. In leaf silages, the high degree of protein degradation into non‐protein nitrogen (~55%) was most likely due to fermentation quality. Nevertheless, at 140 days of ensiling, leaf silages had 21%–25% higher (p < 0.01) available protein (peptide amino acids, soluble and insoluble protein) content than wilted whole‐plant silages, regardless of developmental stage. Achievement of a more rapid pH decline and improved fractionation may further increase the nutritional value of leaf silages.  相似文献   

3.
This study aimed to evaluate the silage quality, ingestive behaviour, and sheep energy partition fed corn and sorghum silages, with or without inoculation with Lactiplantibacillus plantarum and Lentilactobacillus buchneri. Whole plants of one dent corn hybrid (DCS), one flint corn hybrid (FCS), and one forage sorghum hybrid (SS) were ensiled with or without an inoculant containing L. plantarum and L. buchneri (4 × 105 CFU g−1), totalling six treatments (3 × 2 factorial scheme). The treatments were ensiled in metal drums with 200 L capacity. The lactic acid concentrations in the inoculated FCS and DCS were higher by 13.4% and 12.8%, respectively, than those in the non-inoculated plants. In contrast, the lactic acid concentration in the inoculated SS was 23.1% lower than that in the non-inoculated SS. Furthermore, there were differences in pH and acetic acid concentrations only in SS, which were 2.3% and 45.2% higher, respectively, in inoculated silage than in non-inoculated silage. In inoculated DCS and SS, propionic acid concentrations were 1.7 times higher (for both silages), and 1-propanol was 3.7 and 1.8 times higher compared than those in non-inoculated silages. There was a main effect of the inoculant on 1,2-propanediol concentrations, which were 37.5% higher in inoculated silages than in non-inoculated silages. However, ingestive behaviour, heat and methane production, and silage net energy concentrations were not affected by inoculant use. Fermentative modifications caused by inoculation with L. plantarum and L. buchneri in whole plant corn or sorghum silage did not modify sheep energy partition.  相似文献   

4.
Chemical‐compositional characteristics of crops are crucial factors affecting the fermentation profile and aerobic stability of silages. To evaluate the effects of starch content and buffering capacity, fresh smooth bromegrass was ensiled alone (control), with 9% maize meal (MM), or with a mixture of 9% maize meal and 1.5% limestone (MX) on a fresh matter basis in sealed plastic bags. After 1, 3, 14 and 56 days of ensiling, triplicate bags of each treatment were opened for chemical and microorganism analyses, and then the samples ensiled for 56 days were placed in polyethylene containers to evaluate their aerobic stability. During the early days of ensiling, the mixtures of maize meal and limestone favoured lactic acid bacteria growth, lactic acid production and decrease in pH values. After 56 days of ensiling, the MX‐treated silages had significantly higher (< .05) lactic acid, ammonia‐N and buffering capacity compared with the silages treated with other additives. The aerobic stability of MM‐treated silages was significantly lower (< .05) than that of the control silages, but the MX‐treated silages showed higher (< .05) aerobic stability than the other groups. The changes of organic acids and pH in the MX‐treated silages were also delayed, which inhibited the growth of aerobic bacteria and yeasts. These results indicate that maize meal improved the fermentation profile of smooth bromegrass silage but had a negative effect on its aerobic stability; however, limestone played important roles in both accelerating fermentation and the improvement of aerobic stability.  相似文献   

5.
The effects of shredding forages on the density and fermentation quality of the resulting silages were studied. Lucerne (Medicago sativa L.), red clover (Trifolium pratense L.), perennial ryegrass (Lolium perenne L.) and a grass–clover mixture were harvested and wilted indoors for 1–2 days. The dry‐matter content of the forages after wilting was 192 g/kg, 192 g/kg, 237 g/kg and 214 g/kg respectively. The forages were then either unprocessed or shredded once (1×) or four (4×) times using a novel laboratory shredder and were ensiled in laboratory‐scale silos. Fermentation was terminated after either 50 or 113 days of ensiling. Density and the fermentation weight losses of the silages were recorded. Initial density of the silages was considerably increased with increased intensity of shredding (p < 0.01). The initial density (DM basis) of the 4× shredded silages ranged from 177 to 236 kg DM/m3 whereas it was 124–163 kg DM/m3 in non‐shredded silages. The 4× shredded silages had the greatest fermentation weight loss at day 1 of ensiling (p < 0.01). Overall fermentation weight loss after 113 days of ensiling was reduced in the 4× shredded silages (p < 0.01). Shredding increased L‐lactate concentration and reduced pH of the silages (p < 0.01). The NH3 concentrations were reduced by 25%–46% in 4× shredded silages and butyrate concentrations were reduced by 76%–97% in shredded silages in comparison to non‐shredded silages (p < 0.01). Shredding improved initial density and fermentation quality of silages while reducing overall fermentation weight losses.  相似文献   

6.
To enlarge the feed resources and enhance the utilization efficiency of straws as ruminant feed in Tibet, four kinds of local crop straws with tall fescue (Festuca arundinacea Schreb.) based on the ratio of 40/60 (fresh weight) were ensiled with four levels (0, 10%, 20% and 30% of fresh weight) of alfalfa (Medicago sativa L.), respectively. The laboratory silos (1L) were opened after 45 days of ensiling, and the fermentation characteristics, nutritive value and in vitro digestibility of the mixed silages were analysed. The silages including alfalfa had significantly (< 0.05) or numerically (> 0.05) higher lactic acid and crude protein contents, lactic acid bacteria counts, in vitro digestibility of dry matter, neutral detergent fibre (NDF) and acid detergent fibre (ADF), and lower NDF and ADF contents than controls. The results suggest that inclusion of alfalfa to mixtures of straws and tall fescue had favourable effects on fermentation quality and obviously improved the nutritive value and in vitro digestibility of mixed silages. This effect was most evident when the inclusion proportion of alfalfa was 30% in oat straw mixed silage.  相似文献   

7.
This study evaluated the effects of a ferulic acid esterase (FAE) and a non‐FAE‐producing inoculant applied alone or in combination with exogenous fibrolytic enzymes (EFE) on the fermentation and nutritive value of mixed grain (barley, oats and spring triticale) silage. The mixed crop was ensiled in laboratory mini‐silos either untreated (CON), or treated with a FAE inoculant (FAE), a non‐FAE inoculant (NFAE) or NFAE + EFE. Inoculated silages were lower (< 0·01) in water‐soluble carbohydrate, whereas NFAE and NFAE + EFE silages had higher (< 0·001) DM loss than other silages. FAE and NFAE silage had higher neutral detergent fibre (NDF), but were lower in NFAE + EFE than other silages (< 0·001). Copy numbers of 16S rRNA associated with Lactobacillus buchneri were higher (< 0·001) in NFAE and NFAE + EFE silages than in others, resulting in higher (< 0·001) acetic acid in these silages. NFAE + EFE silage had lower (< 0·001) in vitro gas production and NDF digestibility (NDFD) than other silages. FAE silage had higher (< 0·01) in situNDFD than CON and NFAE + EFE silages. Inoculation of mixed small‐grain silage with NFAE‐producing inoculants combining EFE reduced NDFD.  相似文献   

8.
A meta‐analysis of feeding trials using grass silages was conducted to predict production responses for dairy cows fed grass silage. They were divided into two subsets: 69 diets from 11 studies were used for comparison of silages made from primary growth and regrowth grass (harvesting subset), and another 157 diets from 24 studies were used for comparison of digestibility influenced by the maturity of grass ensiled (D‐value, digestible organic matter in dry matter) (maturity subset). The minimum prerequisite for an experiment to be included in the data set was that milk production, feed intake, silage characteristics and concentrate ingredients were reported. Both subsets were analysed using the mixed model procedures of SAS. The mean response in dry‐matter intake (DMI) and silage DMI to improved silage D‐value was 0.0175 and 0.0161 kg per unit D‐value (g/kg DM) respectively. The average increase in milk and energy‐corrected milk yield was 0.30 and 0.37 kg per 10‐unit increase in silage D‐value respectively. Milk protein concentration increased, and fat concentration tended to increase with enhanced silage D‐value. Each 10‐unit increase in D‐value reduced milk yield by 0.092 kg at a given dietary metabolizable energy intake (MEI), suggesting that the ME concentration of high D‐value silages was overestimated. Cows fed regrowth silage produced 0.55 kg/day more energy‐corrected milk than those fed primary growth silage at a given dietary MEI. The prediction models can be used to improve ration formulation systems or incorporated into economic models for optimizing milk production in various farming systems.  相似文献   

9.
Pure perennial ryegrass or perennial ryegrass/white clover mixtures (70:30 and 40:60 on a fresh-matter basis) were ensiled in laboratory silos either untreated or alter treatment with freshly cultured Lactobacillus (Lb.) plantarun or freshly cultured Lb. plantarum plus Lactococcus (Lc.) lactis. freeze-dried Lb. plantarum or freeze-dried Lb. Plantarum plus sodium formate, sodium formate or formic acid. The effect of these additives on silage fermentation characteristics and quality of the resultant silages was examined. There were significant interactions between treatments and herbages for all silage quality parameters measured, except for acetic acid concentration. The influence of additives on the final pH of all silages was small but statistically significant. Lactic acid concentration was not directly related to herbage mixture, overall mean values ranging from 118 to 120 ± 1.5 g kg?1 dry matter (DM), but wider variation was seen between treatments for individual herbage mixtures. Acetic acid concentrations were significantly (P<0·001) affected by herbage mixture ensiled, increasing linearly as clover content increased from zero to 60%. Untreated control and formic acid-treated silages contained significantly (p<0·001) higher acetic acid concentrations than those treated with other additives. Silage ammonia N concentrations were significantly (p<0 001) influenced by herbage mixture. Lowest ammonia N concentrations (< 50 g kg?1 DM) were observed in silages that had been treated with formic acid, freshly cultured Lb. plantarum or Lb. plantarum plus Lc. lactis. The fraction 1 leaf protein (FILP) contents of silages were significantly (P <0·001) affected by both treatment and herbage mixture, with consistently and significantly higher values found in freshly cultured inoculant-treated silages. A poor correlation (r2= 0·12) existed between ammonia N and FILP in all silages. The inclusion of up to 60% white clover in the ensiled herbage did not adversely affect final silage quality. However, additive treatment markedly influenced the residual FILP content of silages, those treated with freshly cultured inoculants having the highest values.  相似文献   

10.
Barley varieties of differing fungal disease resistance were grown in triplicate plots at Lacombe and Lethbridge, Alberta with the disease resistant variety (FR) sprayed with a foliar fungicide to maximize differences in field fungal disease. Both varieties were harvested at soft dough and ensiled in minisilos to assess differences in fungal contamination on ensiling properties, nutritional quality, aerobic stability and associated bacterial and fungal microbiomes. Data were analysed as repeated measures with the effect of treatment × time (duration of ensiling or aerobic exposure) included in the model. The percentage leaf area diseased by net form net blotch was higher (p < 0.05) in the untreated barley cv. Sundre (UN, 59.1% leaf area affected at Lacombe and 25.2% at Lethbridge) than in the FR barley cv. Chigwell (0.7% leaf area affected at Lacombe and 0.1% at Lethbridge). Fungal resistant barley had a lower (p < 0.01) acid and neutral detergent fibre content. Relative abundance of Xanthomonadales was higher (p = 0.02) for FR than UN, while Lactobacillales dominated the bacterial microbiome after 60 day of ensiling in both silages. Bacillales dominated both FR and UN after 21 day of aerobic exposure. Fungal resistant fresh barley forage had a tendency (p = 0.10) for a greater relative abundance of Pleosporales, while UN had higher (p < 0.01) Hypocreales. Mould counts were lower (p = 0.01) for FR than UN after 7 day of ensiling. Fungal resistant barley had minimal influence on the fungal community that contributed to the aerobic deterioration of barley silage.  相似文献   

11.
This study was conducted to evaluate the effects of Lactobacillus plantarum, molasses and/or ethanol on fermentation quality and aerobic stability of total mixed ration (TMR) silage, which is widely used in dairy cow diets at mid‐to‐late lactation in Tibet. TMR was treated with ethanol (E), molasses (M), Lactobacillus plantarum(L), ethanol+molasses (EM), ethanol+Lactobacillus plantarum (EL) plus control. After 45 d of ensiling, inoculant significantly (< 0·05) increased lactic acid (LA) concentration and decreased pH, ammonia nitrogen (AN) concentration, and aerobic bacterial and yeast counts, compared to control. After the first 3 d of aerobic exposure, LA for silages without ethanol started to decrease, while LA for E silages almost remained unchanged till the end of the aerobic exposure period. The pH in TMR silages without ethanol gradually increased, while that for E and EL remained about 4·60 and 4·00, respectively, and EL showed the lowest pH among six silages over the course of aerobic exposure. Aerobic bacterial counts in control, M and EM silages were significantly higher (< 0·05) than those in E, L and EL, and yeast counts in E and EL silages were significantly lower (< 0·05) than those in other silages after 9 d of aerobic exposure. The results suggest that inoculation with L. plantarum was more effective in altering fermentation characteristics than adding molasses, while ethanol showed a potential to protect TMR silages from pH increase and delayed the growth of aerobic bacteria and yeast either alone or in combination with L. plantarum.  相似文献   

12.
Two experiments were carried out with grass silages cut at a leafy (Experiment 1) and a more mature (Experiment 2) stage of growth to evaluate the effect of wilting and chop length on silage intake and performance of store lambs. In each experiment, the herbage was cut with a rotary mower and was either ensiled within 24 h as unwilled silage (U) or wilted for 1–3 d (W). Each silage type was harvested with either a double-chop harvester (D) or a precision-chop harvester (P). All silages were treated with formic acid at 3 1 t?1 and were well preserved. The silages were fed ad libitum to Suffolk crossbred store lambs (twenty-four lambs per treatment) without any supplement over a period of 8 or 9 weeks. Wilting of the silages had little effect on silage intake (797 vs. 809g dry matter (DM) d?1) or on lamb performance in Experiment 1. In Experiment 2, wilting of the D silage increased silage DM intake (589 vs. 534 g DM d?1; +10%) and reduced the extent of liveweight losses. Wilting of the P silage reduced silage intake (770 vs. 791g DM d?1; -3%) and reduced liveweight gains. In Experiment 1 intakes of the D silages were 650–667g DM d?1 and just maintained lamb live weights. Intakes of the P silages were 39–49% higher than the D silages (927–968 g DM d?1) and increased liveweight gains. In Experiment 2 intakes of the D silages were 534–589 g DM d?1 and resulted in a loss in lamb live weight. Precision-chopping increased silage intakes by 31–48% (770–791 DM d?1)in Experiment 2 and improved lamb liveweight gains. Lamb performance was higher on the UP silage than on the WP silage. The rumen retention lime (RRT), estimated from the rumen contents of the lambs at slaughter and their silage intake before slaughter, was much shorter for the lambs fed on the P silages (12.6–20.6 h) than those fed on the D silages (21.4–29.3 h) in each experiment. Silage intake and liveweight gain were positively related to silage in vivo DM digestibility (DMD), whereas RRT was negatively related to DMD. However, there were distinct differences between the P and D silages in the elevation and, to a lesser extent, in the slope of the regression lines, indicating that intake of D silage was limited by factors other than the digestibility of the silage The results of this study show that the chop length of grass silage had a far greater effect on intake and on lamb performance than silage digestibility, whereas wilting had little or no effect.  相似文献   

13.
The effects of offering a range of grass silages and mixtures of grass and maize silages on the intake of beef cattle were studied. Four grass silages (GS1, GS2, GS3 and GS4) were used. Grass silage 1 was ensiled from a second regrowth in mid‐late September and treated with an inoculant additive. Grass silages 2, 3 and 4 were ensiled, without additive, from a primary regrowth harvested in early July, late May and mid‐June respectively. Wilting periods were 8, 30, 36 and 36 h for GS1, GS2, GS3 and GS4 respectively. Grass silages 1, 2 and 3 were precision chopped and ensiled in bunker silos, while GS4 was ensiled in round bales. The DM content (g kg?1) and starch concentration (g kg?1 DM) of the three maize silages (MS1, MS2 and MS3) used were 256 and 128, 256 and 184, and 402 and 328 for MS1, MS2 and MS3 respectively. Seventy‐two Charolais and Limousin cross‐bred steers were used in a changeover design with two 4‐week periods. The study consisted of sixteen treatments incorporating the four grass silages fed alone and with the three maize silages arranged as a 4 × 4 factorial design. The grass silage and maize silage mixtures were offered in a ratio of 0·60:0·40 (DM basis) once daily using individual Calan gates. All silages were offered ad libitum with 3 kg per head per day of a concentrate supplement. Dry matter and metabolizable energy (ME) intakes were highest with diets based on grass silage GS4 compared with diets containing the other grass silages. Metabolizable energy intakes of diets containing no maize silage, and those based on MS1 and MS2, were similar (P > 0·05) but lower than that of diets containing MS3. Only limited increases were found in DM and ME intakes with the inclusion of maize silage in grass silage‐based diets while offering high‐quality grass silage (assessed in terms of DM content, and fibre and N concentrations) promoted high voluntary intakes.  相似文献   

14.
Lactobacillus buchneri was investigated as a silage inoculant and as a probiotic on feed intake, apparent digestibility, and ruminal fermentation and microbiology in wethers fed low‐dry‐matter (DM) whole‐crop maize silage. Maize forage (279 g/kg DM) was ensiled without inoculant (untreated) and with L. buchneri CNCM I‐4323 at 1 × 10cfu/g fresh forage (inoculated). Six cannulated wethers were arranged in a double 3 × 3 Latin square and assigned to one of three diets: (i) untreated maize silage (untreated), (ii) inoculated maize silage (inoculated), and (iii) untreated maize silage with a daily dose of L. buchneri (1 × 10cfu/g supplied silage) injected directly into the rumen (LB‐probiotic). Wethers fed the inoculated diet had a higher (= .050) DM intake (1.30% body weight [BW]) than wethers fed untreated and LB‐probiotic diets (1.17% and 1.18% BW respectively). The relative proportion of Ruminococcus flavefaciens (proportion of total estimated rumen bacterial 16S rDNA) in the rumen of wethers fed inoculated and LB‐probiotic diets (both 0.42%) tended (= .098) to be lower than in the untreated diet (0.83%). Lactobacillus buchneri as a silage inoculant or as a probiotic had little effect on the variables measured in wethers.  相似文献   

15.
Data from twenty experiments, conducted at ADAS Research Centres in England and Wales during 1986–92, were used to determine effluent production from additive-treated grass silages made in large-scale bunker silos. The additives compared were formic acid at 4·0 l t–1, rolled barley at 44·0 kg t–1, dried molassed sugar beet feed at 40·0 kg t–1 and liquid inoculants at 2·2 l t–1 together with a non-additive-treated control. The silages were made from herbage with an average dry-matter (DM) content of 177 (s.e. 3·8) g kg–1 and water-soluble carbohydrate content of 140 g kg–1 DM. Average silage toluene DM content was 213 (s.e. 3·8) g kg–1. The formic acid and sugar beet feed silages were both well fermented, whereas the other silages were less well fermented. Effluent produced was determined as either effluent production (l t–1 grass ensiled) during the 52-d period in which it was measured or peak flow (l h–1) during the first 2 d of ensilage. Compared with non-additive-treated silage, dried molassed sugar beet feed significantly reduced both effluent production (27%) and peak flow (36%). Formic acid significantly increased peak flow (51%), but had little effect upon effluent production, and significantly reduced effluent N and lactic acid content. Barley and inoculant treatment had no significant effect upon effluent production. In general, poor relationships were found between DM content and effluent production. Nevertheless for silages, except those treated with absorbents or formic acid, a significant (P < 0·001) negative relationship between silage effluent production (l t–1 grass ensiled) and the DM (g kg–1) content of the ensiled grass was found.  相似文献   

16.
Toxicogenic fungal moulds have been previously identified in Irish farm silages and are known to be capable of producing mycotoxins. Mycotoxins are detrimental to animal health and performance and can be transferred through feed to animal produce. The objectives of this study were to identify and quantify the challenge posed to livestock from mycotoxins in Irish silages and determine whether conventional chemical characteristics could be used as indicators of mycotoxin occurrence. Over the 2‐year period, 300 silages were sampled on 150 farms and these consisted of round‐baled grass silages (n = 115) and pit silages of either grass (n = 175) or maize (n = 10). There was no significant difference in mycotoxin concentrations across silage types in either year, except for baled silage containing higher concentrations of enniatin B compared with pit silage in Year 1. Conventional chemical characteristics of silages were generally not reliable predictors for mycotoxin incidences; however, dry‐matter digestibility, crude protein, fermentation products and ash did predict the incidence of enniatins and beauvericin. The incidence and concentration of the twenty measured mycotoxins were generally low and individual mycotoxin concentrations recorded were considerably lower than current EU directive or guidance thresholds. Non‐regulated mycotoxins measured were similar to or lower than concentrations reported in the literature. Based on current knowledge and the concentrations of individual mycotoxins detected in this study, the challenge to Irish livestock and livestock products from animal consuming silage is generally low. However, the additive or synergistic effects of multiple mycotoxins in silage are unknown.  相似文献   

17.
Aerobic stability is an important feature in the evaluation of silages. The aims were to investigate the chemical and microbiological changes that occur in sugar-cane (Saccharum spp.) silage after aerobic exposure, to identify the major species of yeasts associated with the aerobic deterioration process and to select lactic acid bacteria (LAB) strains that can improve the aerobic stability of this silage. Fourteen wild LAB strains belonging to Lactobacillus plantarum, L. brevis and L. hilgardii were evaluated using experimental silos. Silage samples were collected at 0, 96 and 216 h after aerobic exposure to determinate the DM, WSC, pH, products of fermentation, to evaluate the silage temperatures and to identify yeast species associated with the aerobic deterioration of silage. The strains tested were able to modify the fermentative and chemical parameters and the diversity of yeasts species of silage after aerobic exposure. There was no association between the facultative or obligatory heterofermentative fermentation patterns and the increased aerobic stability of silage. Aerobic stability of sugar-cane silages was associated with high acetic acid and 1,2-propanediol concentrations. L. hilgardii UFLA SIL51 and UFLA SIL52 strains promoted an increase in aerobic stability of silage.  相似文献   

18.
Various management practices (e.g. wilting, application of silage additives or adding a grass component) can be used to improve silage fermentation of pure red clover (Trifolium pratense L.). Therefore, the aim of this laboratory ensiling study was to investigate the effects of varying proportions of red clover and perennial ryegrass (100/0, 66/33, 33/66, 0/100) on silage quality during two consecutive years. In addition, two wilting levels [target dry matter (DM): 300 vs. 400 g kg?1] in combination with lactic acid bacteria (LAB) additives were tested. Herbage was ensiled, either untreated or inoculated with homofermentative LAB (low wilted) or homo‐ and heterofermentative LAB (high wilted). In most cases, lactic and acetic acid decreased as the proportions of ryegrass were increased. Data concerning ammonia‐N concentrations showed considerable differences between cuts and years. Silages treated with homofermentative LAB generally had high lactic acid and low final pH, whereas acetic acid and 1,2‐propanediol tended to be higher when homo‐ and heterofermentative LAB were applied. Inoculants had a positive effect on DM losses and ammonia‐N in only a few silages. Wilting decreased DM losses and fermentation acids at most cuts, irrespective of the grass/clover ratio in the herbage mixture. There was a strong year effect on the organic matter digestibility (DOM) of the silages. In conclusion, the optimal strategy for successful silage fermentation of red clover is the ensiling in mixtures with ryegrass. Furthermore, herbage should be wilted to a DM content of about 300–350 g kg?1. The application of LAB inoculants did not alter the DOM but did improve silage fermentation.  相似文献   

19.
The effects of offering ensiled red clover (Trifolium pratense), lucerne (Medicago sativa), pea (Pisum sativum), kale (Brassica oleracea) and hybrid ryegrass (Lolium hybridicum) on the productivity and nutrient‐use efficiency of lambs were investigated. Forages were cut, wilted for 24 h and ensiled as round bales. A hundred Suffolk‐cross lambs, aged 8 months, were offered grass silage during a 5‐week standardization period and then group‐housed for 14 d and offered ad libitum access to a treatment silage. For the measurement period, lambs were split into four replicate groups of five lambs per treatment. Dry matter intake and live weight were recorded every 7 d over 56 d. The chemical composition of the silages differed for all the variables measured. Lambs offered pea silage had a very low liveweight gain and this treatment was discontinued after 21 d. Lambs offered the other forages had a higher liveweight gain than lambs offered ryegrass silage (P < 0·001). Food conversion and nitrogen‐use efficiency were higher in lambs offered the red clover, lucerne and kale silages compared with those offered ensiled ryegrass (P < 0·001). These findings demonstrate the potential for using ensiled alternative forages rather than ryegrass to increase the productivity and nutrient use efficiency of livestock systems.  相似文献   

20.
This study aimed to determine whether using inoculants and re-ensiling in sorghum silages affect the intake and feeding behaviour, apparent digestibility, digestible energy, and nitrogen balance of sheep in maintenance. Half the sorghum was inoculated on the day of harvest, and the other half received the same inoculation volume but with water. Sorghum was ensiled in 100 experimental metal drum silos of 200 L covered with plastic: 50 silos with inoculants and 50 without them. After 56 days, 25 drums with inoculants and 25 without were exposed to air for 48 h. The other silos remained closed. The treatments were arranged in a 2 × 2 factorial scheme with inoculation and re-ensiling. The sheep received the silages after 211 days of ensiling and 155 days of re-ensiling to determine the intake, apparent digestibility, and feeding behaviour of animals. The experimental design was a simultaneous double 4 × 4 Latin square. The re-ensiling process increased silage pH, N-NH3.TN−1, butyric acid, and propionic acid. The inoculant increased propionic acid in ensiled and re-ensiled silages. Lactic acid concentration presented a statistical interaction with the inoculated and ensiled silage, 58% higher than the other treatment averages. The ADFap digestibility showed a complex interaction, in which the control ensiled and the inoculated and re-ensiled silages were about 35% lower than the inoculated ensiled silage. The Nbal:Nint ratio (g.g−1) in the inoculated and re-ensiled silage had lower nitrogen retention than intake compared with the other treatments. These results indicate that exposing inoculated silages to air does not compromise their use in sheep feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号