首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
Selection for high (H) and low (L) oxygen consumption (OC) as an indirect estimation of maintenance energy requirement was determined. Feed intake and body weight were measured and feed conversion ratio (FCR) of 4–8‐week‐old mice was calculated. Respiratory activity of hepatic mitochondria was measured at 12 weeks. Total feed intake (H: 103.74 g, L: 97.92 g, P < 0.01), daily feed intake (H: 3.70 g/day, L: 3.50 g/day, P < 0.01) and FCR (H: 18.79, L: 15.50, P < 0.01) were significantly different between lines. The line by sex interaction was significant for FCR. No line differences were observed in males; and the FCR of the H line was greater than in the L line in females. H line mice had the highest hepatic mitochondrial respiratory activity in state 2 (P < 0.01), the highest uncoupled respiratory rate of mitochondria in the presence of an uncoupling agent (P < 0.001), and the mitochondrial proton leak. The adenosine diphosphate/ O ratio was highest in the L line (P < 0.05). This suggests that the selection for high and low OC induced differences in basal mitochondrial respiration and basal metabolism, resulting in difference in FCR between H and L lines.  相似文献   

2.
Maintenance energy requirements (MER) of mice selected for high (H) or low (L) oxygen consumption (OC) were compared. Forty‐four mice from H and L OC lines were weaned at 3 weeks and divided into four experimental groups: group A were sacrificed at 4 weeks; group B were fed ad libitum, and groups C and D were fed 2.8 and 2.4 g/day, respectively, from 4 to 8 weeks of age. Groups B–D were sacrificed at 8 weeks. Chemical components were estimated for all groups. MER was estimated using a model that partitioned metabolizable energy intake into that used for maintenance, and protein and fat deposition. The feed conversion ratio for the B group was significantly higher in the H than in the L line. Feed intake for metabolic energy content per metabolic body size was significantly also higher in the H line, whereas accumulated energy content per metabolic body size was significantly higher in the L line. MER of the H line was greater than that of the L line (P < 0.10). These results suggest that selection for H or L OC produced differences in chemical components, feed efficiency, and MER between the H and L lines.  相似文献   

3.
Mice selected for weight gain from 3 to 9 weeks of age on a normal (N) protein diet containing 19.3% protein and a reduced (R) protein diet with 5.1% protein were reared on both diets in generations 7 and 9. The lines NH, NC, NL, RH, RC and RL (H, high; C, control; L, low) were tested for weight gain on diet N and R and for feed intake and feed efficiency on diet N in generation 7. In generation 9, the lines were tested for body composition traits (fat, protein and water percentage) at 3, 6, 9 and 12 weeks of age on both diets. A significant (p < 0.0001) genotype × environment interaction for growth rate was observed in generation 7. Weight gain at both the protein levels was best improved by selection at the protein level itself. Furthermore, the ranking of the lines on diet N was similar for weight gain, feed intake and feed efficiency. In generation 9 at 9 weeks of age, the ranking of the lines for fat percentage was equal to the ranking for weight gain in generation 7 on both test‐diets. The association between weight gain and protein or water percentage was less pronounced, particularly on diet R. These results suggest that the largest genetic improvement in growth rate is obtained when the protein content of the feed is the same in selection and production. However, when selection is carried out in one environment while the animals have to perform under conditions with varying nutrient protein contents, selection in an inferior environment may be advantageous.  相似文献   

4.
Rates of gain and feed efficiency are important traits in most breeding programs for growing farm animals. The rate of gain (GAIN) is usually expressed over a certain age period and feed efficiency is often expressed as residual feed intake (RFI), defined as observed feed intake (FI) minus expected feed intake based on live weight (WGT) and GAIN. However, the basic traits recorded are always WGT and FI and other traits are derived from these basic records. The aim of this study was to develop a procedure for simultaneous analysis of the basic records and then derive linear traits related to feed efficiency without retorting to any approximation. A bivariate longitudinal random regression model was employed on 13,791 individual longitudinal records of WGT and FI from 2,827 bulls of six different beef breeds tested for their own performance in the period from 7 to 13 mo of age. Genetic and permanent environmental covariance functions for curves of WGT and FI were estimated using Gibbs sampling. Genetic and permanent covariance functions for curves of GAIN were estimated from the first derivative of the function for WGT and finally the covariance functions were extended to curves for RFI, based on the conditional distribution of FI given WGT and GAIN. Furthermore, the covariance functions were extended to include GAIN and RFI defined over different periods of the performance test. These periods included the whole test period as normally used when predicting breeding values for GAIN and RFI for beef bulls. Based on the presented method, breeding values and genetic parameters for derived traits such as GAIN and RFI defined longitudinally or integrated over (parts of) of the test period can be obtained from a joint analysis of the basic records. The resulting covariance functions for WGT, FI, GAIN, and RFI are usually singular but the method presented here does not suffer from the estimation problems associated with defining these traits individually before the genetic analysis. All the results are thus estimated simultaneously, and the set of parameters is consistent.  相似文献   

5.
Residual feed intake (RFI) has been explored as an alternative selection criterion to feed conversion ratio to capture the fraction of feed intake not explained by expected production and maintenance requirements. Selection experiments have found that low RFI in the growing pig is genetically correlated with reduced fatness and feed intake. Selection for feed conversion ratio also reduces sow appetite and fatness, which, together with increased prolificacy, has been seen as a hindrance for sow lifetime performance. The aims of our study were to derive equations for sow RFI during lactation (SRFI) and to evaluate the effect of selection for RFI during growth on sow traits during lactation. Data were obtained on 2 divergent lines selected for 7 generations for low and high RFI during growth in purebred Large Whites. The RFI was measured on candidates for selection (1,065 pigs), and sow performance data were available for 480 sows having from 1 to 3 parities (1,071 parities). Traits measured were sow daily feed intake (SDFI); sow BW and body composition before farrowing and at weaning (28.4 ± 1.7d); number of piglets born total, born alive, and surviving at weaning; and litter weight, average piglet BW, and within-litter SD of piglet BW at birth, 21 d of age (when creep feeding was available), and weaning. Sow RFI was defined as the difference between observed SDFI and SDFI predicted for sow maintenance and production. Daily production requirements were quantified by litter size and daily litter BW gain as well as daily changes in sow body reserves. The SRFI represented 24% of the phenotypic variability of SDFI. Heritability estimates for RFI and SRFI were both 0.14. The genetic correlation between RFI and SRFI was 0.29 ± 0.23. Genetic correlations of RFI with sow traits were low to moderate, consistent with responses to selection; selection for low RFI during growth reduced SDFI and increased number of piglets and litter growth, but also increased mobilization of body reserves. No effect on rebreeding performance was found. Metabolic changes previously observed during growth in response to selection might explain part of the better efficiency of the low-RFI sows, decreasing basal metabolism and favoring rapid allocation of resources to lactation. We propose to consider SRFI as an alternative to SDFI to select for efficient sows with reduced input demands during lactation.  相似文献   

6.
Low‐oxygen conditions (hypoxia; <21% O2) are considered unfavorable for growth; yet, embryos of many vertebrate taxa develop successfully in hypoxic subterranean environments. Although enhanced tolerance to hypoxia has been demonstrated in adult reptiles, such as in the painted turtle (Chrysemys picta), its effects on sensitive embryo life stages warrant attention. We tested the hypothesis that short‐term hypoxia negatively affects growth during day 40 of development in C. picta, when O2 demands are highest in embryos. A brief, but severe, hypoxic event (5% O2 for 0.5 h) moderately affected embryo growth, causing a 13% reduction in mass (relative to a normoxic control). The same condition had no effect during day 27; instead, a nearly anoxic event (1% O2 for 72 h) caused a 5% mass reduction. All embryos survived the egg incubation period. Our study supports the assumption that reptilian embryos are resilient to intermittently low O2 in subterranean nests. Further work is needed to ascertain responses to suboptimal O2 levels while undergoing dynamic changes in developmental physiology.  相似文献   

7.
Data were collected in the course of a divergent selection experiment for residual feed intake (RFI) of Large White growing pigs. This data set was used to estimate (i) heritability for RFI and genetic correlations of RFI with growth and carcass traits within the three sexes (male, castrate and female) and (ii) genetic correlations between sexes for these traits. Individual feed intake of animals raised in collective pens was measured by single-place electronic feeders on 1121 males (candidates for selection), 508 females and 535 castrates (sibs of candidates). Variance components were estimated using the REML methodology applied to a multitrait animal model. Estimates of heritability for RFI were 0.16 ± 0.04, 0.16 ± 0.08 and 0.23 ± 0.10 for males, females and castrates, respectively. Estimates of genetic correlations between sexes for homologous traits were not significantly different from 1 (0.88 to 0.99 for RFI, 0.79 to 0.99 for growth traits and 0.65 to 0.99 for carcass composition traits). The relatively low genetic correlations between castrates and males or females for backfat thickness (0.65 and 0.69, respectively) suggest the presence of genotype by sex interactions for this trait.  相似文献   

8.
Chronic systemic lipopolysaccharide‐induced inflammation can cause obesity. In animal experiments, lactobacilli have been shown to inhibit obesity by modifying the gut microbiota, controlling inflammation and influencing the associated gene expression. A previous study found that high‐fat‐diet‐induced (HFD) obesity was suppressed by lactobacilli ingestion in rats via the inhibition of parasympathetic nerve activity. This study explored the combined use of lactobacilli ingestion and ultrasound (US) to control body weight and body fat deposition in HFD mice over an 8‐week experimental period. Male C57BL/6J mice received an HFD during treatment and were randomly divided into four groups: (i) control group (H), (ii) lactobacilli alone (HB), (iii) US alone (HU) and (iv) lactobacilli combined with US (HUB). The US was targeted at the inguinal portion of the epididymal fat pad on the right side. At the 8th week, body weight had decreased significantly in the HUB group (15.56 ± 1.18%, mean ± SD) group compared with the HU (26.63 ± 0.96%) and H (32.62 ± 5.03%) groups (p < 0.05). High‐resolution microcomputed tomography (micro‐CT) scans revealed that the reduction in total body fat volume was significantly greater in the HUB group (69%) than in the other two experimental groups (HB, 52%; HU, 37%; p < 0.05). The reductions in the thickness of the subcutaneous epididymal fat pads were significantly greater in the HUB group (final thickness: 340 ± 7 μm) than in the H (final thickness: 1150 ± 21 μm), HB (final thickness: 1060 ± 18 μm) and HU (final thickness: 370 ± 5 μm) groups (all p < 0.05). Combination therapy with lactobacilli and US appears to enhance the reduction in body weight, total and local body fat deposition, adipocyte size and plasma lipid levels over an 8‐week period over that achieved with lactobacilli or US alone in HFD mice. These results indicate that US treatment alone can reduce hyperlipidemia in HFD mice.  相似文献   

9.
A data set based on 50 studies including feed intake and utilization traits was used to perform a meta‐analysis to obtain pooled estimates using the variance between studies of genetic parameters for average daily gain (ADG); residual feed intake (RFI); metabolic body weight (MBW); feed conversion ratio (FCR); and daily dry matter intake (DMI) in beef cattle. The total data set included 128 heritability and 122 genetic correlation estimates published in the literature from 1961 to 2012. The meta‐analysis was performed using a random effects model where the restricted maximum likelihood estimator was used to evaluate variances among clusters. Also, a meta‐analysis using the method of cluster analysis was used to group the heritability estimates. Two clusters were obtained for each trait by different variables. It was observed, for all traits, that the heterogeneity of variance was significant between clusters and studies for genetic correlation estimates. The pooled estimates, adding the variance between clusters, for direct heritability estimates for ADG, DMI, RFI, MBW and FCR were 0.32 ± 0.04, 0.39 ± 0.03, 0.31 ± 0.02, 0.31 ± 0.03 and 0.26 ± 0.03, respectively. Pooled genetic correlation estimates ranged from ?0.15 to 0.67 among ADG, DMI, RFI, MBW and FCR. These pooled estimates of genetic parameters could be used to solve genetic prediction equations in populations where data is insufficient for variance component estimation. Cluster analysis is recommended as a statistical procedure to combine results from different studies to account for heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号