首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
First‐year crops of diploid perennial ryegrass (cvs. Meridian, Bronsyn and Grasslands Impact) were sown on 1 April and 14 May 2008. Applications of trinexapac ethyl (TE) plant growth regulator at 0, 200 and 400 g a.i. ha?1 were used to shorten stems to examine the impact of seed growth. Seed filling followed a consistent sigmoidal growth pattern with a lag phase of 127°C days, and linear duration of 390°C days. Time to 95% of final seed weight was 517°C days. Seed yield increases from TE were from higher numbers of first‐grade seeds m?2, achieved by a higher rate of seed filling during the linear phase of 0·115 mg per °C day per spike. For all cultivars, the maximum stem dry weight occurred at 310–400°C days post‐anthesis, which suggest the stem was a strong sink. As seeds developed, their demand for assimilate increased and they drew more from the stem. At harvest, stem weights from TE treatments were 25% heavier than at anthesis, while untreated ‘Bronsyn’ and ‘Grasslands Impact’ stems were similar to those at anthesis. Thus, stems treated with TE contributed assimilates to increase seed yield but were still a net sink with assimilates in the stem at harvest. Trinexapac ethyl rate induced an inverse relationship between seed yield and stem height. This showed that competition for assimilate between stems and growing seeds limited the seed yield. Management or genetic factors that reduce stem height are likely to increase seed yields of perennial ryegrass.  相似文献   

2.
The objective of this study, which was part of a larger grazing‐systems experiment, was to investigate the cumulative impact of three levels of grazing intensity on sward production, utilization and structural characteristics. Pastures were grazed by rotational stocking with Holstein–Friesian dairy cows from 10 February to 18 November 2009. Target post‐grazing heights were 4·5 to 5 cm (high; H), 4 to 4·5 cm (intermediate; I) and 3·5 to 4 cm (low; L). Detailed sward measurement were undertaken on 0·08 of each farmlet area. There were no significant treatment differences in herbage accumulated or in herbage harvested [mean 11·3 and 11·2 t dry matter (DM) ha?1 respectively]. Above the 3·5 cm horizon, H, I and L swards had 0·56, 0·62 and 0·67 of DM as leaf and 0·30, 0·23 and 0·21 of DM as stem respectively. As grazing severity increased, tiller density of grass species other than perennial ryegrass (PRG) decreased (from 3,350 to 2,780 and to 1771 tillers m?2 for H, I and L paddocks respectively) and the rejected area decreased (from 0·27 to 0·20 and to 0·10 for H, I and L paddocks respectively). These results indicate the importance of grazing management practice on sward structure and quality and endorse the concept of increased grazing severity as a strategy to maintain high‐quality grass throughout the grazing season. The findings are presented in the context of the need for intensive dairy production systems to provide greater quantities of high‐quality pasture over an extended grazing season, in response to policy changes with the abolition of EU milk quotas.  相似文献   

3.
The effects of Lactobacillus plantarum (LP) and Chinese gallnut (Rhus chinensis Mill) tannin on the fermentation quality, nitrogen distribution, protein fractions and proteases activity of alfalfa (Medicago sativa) silage were studied. Additives added to alfalfa forage (approximately 40% DM) were LP (1 × 106 cfu/g FW) plus sucrose (4 g/kg FW) (LP + S), LP (1 × 106 cfu/g FW) plus commercial cellulase (0.1 g/kg FW) (LP + C) and Chinese gallnut tannin at two levels (20 and 50 g/kg DM) (TA 2% and TA 5%). The control was sprayed with the same volume of distilled water. Silage was sampled and analysed on days 1, 3, 5, 7, 14, 21, 28 and 35. The results showed that the degradation of protein to nonprotein nitrogen took place mainly during the first 3 days, while the degradation of peptides and free amino acids occurred throughout the ensiling process. All additives lowered nonprotein nitrogen and free amino acids nitrogen proportion during the ensiling. Additive TA 5% was the most effective to inhibit proteolysis among the four additives, followed by LP + S. They inhibited the activities of all three plant proteases and decreased production of nonprotein nitrogen, free amino acids and ammonia nitrogen during the ensiling process.  相似文献   

4.
Non‐systemic endophytes coexist with grasses and produce positive or negative effects for the host. In agricultural grasses, endophytes such as Epichloë spp. (formerly: Neotyphodium spp.) enhance the biometric parameters and agricultural value of grass biomass and seeds. Some endophytic fungi produce active substances that exert a negative influence on grass‐fed livestock. There is a general scarcity of studies investigating other endophytic fungi, the species composition of fungal communities, fungal species capable of colonizing different grasses and endophyte transfer between grass taxa. This study aims to fill in the existing knowledge gap by describing the relationships between fungal species and grass species. Timothy grass (Phleum pratense L.) is more readily colonized by endophytic fungi than perennial ryegrass (Lolium perenne L.), and the ratio of fungi isolated from the above species was determined at 3:1. Ecological indicators, especially diversity, were also higher in the fungal community colonizing timothy grass. The vast majority of the isolated fungi were ascomycetes. In addition, two Basidiomycota isolates and three Oomycota isolates (Phythium acanthicum) were also obtained from timothy grass. The most prevalent fungal species were Alternaria alternata, Microdochium bolleyi and Epicoccum nigrum. An analysis of minisatellite DNA regions revealed high levels of genetic polymorphism in A. alternata, whereas the remaining isolates were characterized by low levels of genetic variation or genetic homogeneity. The transfer of endophytic fungi between grass species was determined, which was one of the most important observations made in the study. The Sørensen–Dice coefficient reached 50%, which indicates that all fungal species isolated from perennial ryegrass are capable of colonizing timothy grass.  相似文献   

5.
Perennial ryegrass (Lolium perenne L.) evaluation trials are often conducted under simulated grazing to identify the most productive cultivars. It is unclear whether simulated grazing identifies the most productive cultivar for animal‐grazed swards. Ten cultivars were established as plots and managed concurrently under simulated grazing (SG), animal grazing (AG) and conservation (CON). The experiment lasted 3 years with dry‐matter (DM) off‐take, digestibility, tiller density and ground‐cover score recorded in all years. A good relationship existed between DM off‐take under SG and CON (R2 = 0·73). The relationship between SG and AG was strongest in year 2 and 3 (R2 = 0·53 and 0·55 respectively). High DM production was observed in SG swards in year 1; this was weakly related to the DM production of the AG sward. Across the 3 years, the CON treatment had higher yields than either of the other two treatments and was poorly correlated to DM yield under AG, confirming that cultivars should be evaluated under a similar defoliation frequency to their intended use. Tiller density declined quickest under CON and slowest under AG. Some reranking of cultivars occurred between defoliation managements. The results show that simulated grazing is a useful indicator of DM yield performance of animal‐grazed swards.  相似文献   

6.
In forage grasses, vegetative and reproductive investments are major determinants of yield and persistence. A survey of the diversity of vegetative and reproductive investment traits was carried out on 213 perennial ryegrass genotypes, representing 51 natural European accessions. Plants were phenotyped for traits related to leaf elongation, tillering, reproductive investment and heading date, at two locations with markedly different climates. Strong genetic effects for all traits were found. Interactions between genotype and location were moderate. Plants showed stronger spring leaf growth, lower numbers of tillers and higher reproductive investments at Lusignan (France) than at Melle (Belgium). Plant growth rate and tillering capacity were genetically nearly independent suggesting breeding for both traits simultaneously and independently should be possible. A high genetic diversity was observed for all traits. This diversity was structured in three main clusters. One cluster comprised early‐flowering genotypes with high reproductive investments and high spring growth rates. The remaining genotypes fell into two clusters based on differences in tillering capacity. Clear links were found between traits and the climatic conditions of the region of origin of the accessions. Autumn growth rate was positively correlated with solar radiation at the region of origin in October and February.  相似文献   

7.
Perennial ryegrass (Lolium perenne) is an important source of protein and energy for dairy cattle. To improve the protein/energy ratio of this forage, focus is now on improving its cell wall digestibility. The in vitro assessment of the digestible fraction of the neutral detergent fibre (NDFD) is a superior method for determining the cell wall digestibility, but requires the use of ruminal fluid, which has a highly variable composition and is often not readily available. As lignin is considered the main cell wall component that impedes NDFD, we investigated whether this “subtrait” could serve as alternative breeding selection criterion to improve NDFD. Therefore, we assessed the accuracy of two lignin quantification methods: van Soest (ADL) and Klason lignin (KL). We also considered KL estimates corrected for the solubilized lignin (total lignin or TL) and non‐solubilized protein (TL'). Although the latter is considered the truest possible lignin content, it was not always the most correlated to NDFD, due to the limited accuracy of protein quantification on lignin residue. TL is most correlated to NDFD and we therefore recommend it for use in conventional breeding if NDFD determination is not a possibility. However, NDFD is still a superior selection criterion, as it combines the effect of several subtraits and not just lignin. For marker–trait association studies, a more accurate estimate of lignin content is more important than a high correlation with NDFD, but also here, TL performs best.  相似文献   

8.
The effects of ensiling lucerne with graded inclusion of Cistus ladanifer condensed tannins (CT) on in silo fermentative parameters, in vitro organic matter digestibility (IVOMD) and on in situ rumen degradability of dry matter (DM) and crude protein (CP) were studied. Lucerne forage ( Medicago sativa subsp. sativa ) was sprayed with different solutions of C. ladanifer CT extract in 60 ml of water in order for dose 0 (control), 40 (L40), 80 (L80) and 120 (L120) g of CT per kg of lucerne DM and was ensiled in lab‐scale silos. After 35 days, the silages were analysed for chemical composition, and the in situ ruminal degradability was determined in rams. The inclusion of CT in the silages caused an important dose‐dependent reduction in soluble‐N, NH3‐N and a large increase in true protein content and N bound with neutral detergent fibre (NDF‐N), which indicates an effective proteolysis reduction during ensiling. Also, the rumen undegradable protein (RUP) increased linearly (< 0.01) with CT inclusion. However, a linear decrease (< 0.02) of 5%, 13% and 22% of IVOMD was observed for the silages L40, L80 and L120 respectively. The results obtained suggest that C. ladanifer CT can be used as silage additives to reduce proteolysis of high‐protein forages during ensiling. A level of CT of 40 g/kg DM seems to be the best compromise between the gains achieved by the protection of CP degradation in silo and in the rumen and the losses associated with the depression of the digestion and absorption.  相似文献   

9.
The objective of this experiment was to use diurnal and temporal changes in herbage composition to create two pasture diets with contrasting ratios of water‐soluble carbohydrate (WSC) and crude protein (CP) and compare milk production and nitrogen‐use efficiency (NUE) of dairy cows. A grazing experiment using thirty‐six mid‐lactation Friesian x Jersey cows was conducted in late spring in Canterbury, New Zealand. Cows were offered mixed perennial ryegrass and white clover pastures either in the morning after a short 19‐day regrowth interval (SR AM) or in the afternoon after a long 35‐day regrowth interval (LR PM). Pasture treatments resulted in lower pasture mass and greater herbage CP concentration (187 vs. 171 g kg?1 DM) in the SR AM compared with the LR PM but did not affect WSC (169 g kg?1 DM) or the ratio of WSC/CP (1·0 g g?1). Cows had similar apparent DM (17·5 kg DM cow?1 d?1) and N (501 g N cow?1 d?1) intake for both treatments. Compared with SR AM cows, LR PM cows had lower milk (18·5 vs. 21·2 kg cow?1 d?1), milk protein (0·69 vs. 0·81 kg cow?1 d?1) and milk solids (1·72 and 1·89 kg cow?1 d?1) yield. Urinary N concentration was increased in SR AM, but estimated N excretion and NUE for milk were similar for both treatments. Further studies are required to determine the effect of feeding times on diurnal variation in urine volume and N concentration under grazing to predict urination events with highest leaching risk.  相似文献   

10.
Potassium fertilization in intensive grassland systems is particularly important on sandy soils with limited K storage capacity. A 3‐year plot experiment was conducted in south‐western Australia to determine the critical K concentration in herbage dry matter (DM) of annual and Italian ryegrass required to achieve 0.95 of the maximum yield, under best‐practice grassland management. A factorial design was employed with eight fertilizer K rates (range 0–360 kg ha?1 year?1) and two ryegrass species replicated four times, on a sandy soil site managed over 7 years to deplete mean soil Colwell K concentration to 42 mg/kg. Herbage was defoliated six times per year at the 3‐leaf stage of regrowth. Herbage DM yield, macronutrient and micronutrient concentrations were measured at each defoliation. Dry‐matter yield increased significantly (< .001) with increasing levels of K fertilizer in all 3 years and the effect was curvilinear, while 0.95 of the maximum herbage DM yield was achieved at an annual K fertilizer application rate of 96, 96 and 79 kg/ha respectively. At these K fertilizer application levels, the mean K concentration of herbage DM over the 3 years was derived to be 11.4, 12.7 and 11.2 g/kg respectively. Sodium, magnesium and calcium concentrations of herbage DM all declined significantly (< .001) as the K concentration increased. Grassland producers on sandy soils should target a K concentration in herbage DM of 16 g/kg for annual ryegrass and Italian ryegrass‐dominant swards to ensure K availability is not limiting herbage production.  相似文献   

11.
Under Irish conditions, the digestibility in May of grass managed for silage production is sometimes lower than expected. In each of two successive years, replicate field plots were established to examine the effects of three defoliation heights (uncut or cut to a stubble height of 10 or 5 cm) applied in winter and/or spring on herbage yields harvested in May and again in July, and on chemical composition and conservation characteristics associated with first‐cut silage. Swards that were not defoliated in December or March had a dry‐matter (DM) yield and in vitro DM digestibility (DMD) in mid‐May of 6597 kg ha?1 and 736 g kg?1, respectively, in Year 1, and corresponding values of 7338 kg ha?1 and 771 g kg?1 in Year 2. Defoliating swards to 5 cm in December reduced (P < 0·001) May DM yields compared to swards that were not defoliated in both December and March, while herbage DMD in May increased (P < 0·001) when defoliated in December or March. There were no clear effects of defoliation height or its timing on herbage ensilability or resultant conservation efficiency characteristics. The effects of defoliation on July yield were the reverse of those observed for May, while the total yield of the December and March defoliations plus the two silage harvests increased as defoliation height was lowered in Year 2 only. It is concluded that defoliation in winter and/or spring can increase herbage digestibility but will likely reduce DM yields in May.  相似文献   

12.
Ryegrass (Lolium perenne L.) is a putative turf and forage plant characterized as mainly outcrossing in which the extent of self‐fertilization and its consequences has not been investigated. In this study, selfed and half‐sib family seeds were obtained from ten clonally propagated ryegrass plants among which two were endophyte‐free (EF) and eight were endophyte‐infected (EI). Then, 20 seed populations plus two commercial varieties of Speedy and Vigor were sown and evaluated in a biennial experiment for their turf and forage characteristics. Selfing caused significant inbreeding depression for plant fresh and dry weight and leaf length and width in the first year for both EI and EF genotypes. In the second year, only leaf length remained depressed among these characters. Also, for the most growth, turf and reproductive traits, EI populations showed less depression. The presence of endophyte in self‐pollinated populations made an increasing effect for the number of seed per spike and days to heading, although seed weight was reduced. Some of the populations derived from self‐pollination and infected with fungal endophyte including S9 and S10 were even superior to the two commercial varieties in terms of both seed production and turf characteristics. However, for seed‐related characteristics including number of spikes per plant, seed weight and seed yield, EF populations including Speedy and Vigor were more reproductive than EI populations. It is concluded that selfing may increase the discrimination between EI and EF ryegrass plants because endophyte infection may mitigate the negative consequences of inbreeding depression in prone populations.  相似文献   

13.
Breeding for enhanced quality in lucerne (Medicago sativa) frequently involves selection for higher leaf‐to‐stem ratio, multifoliolate leaves or short‐internode stems. Three populations selected for such alternative morphologies and a reference cultivar were evaluated for forage yield, leaf‐to‐stem ratio and protein and fibre concentrations in leaves, stems and whole plants. Four managed environments were obtained by combining two stress levels (moderate or nil) with two sowing times. The population selected for high leaf‐to‐stem ratio, as well as the short‐internode population, had highest leaf‐to‐stem ratio (1.27) across six harvests in two non‐stress environments. The latter population had higher stem protein (12.9%) and lower stem neutral‐detergent fibre (NDF) concentration (58.7%) than other populations. The multifoliolate population had intermediate quality, showing low expression of the multifoliolate trait (14.0% across four environments), particularly under stress (10.5%). The autumn‐sown, fully irrigated environment had, on average, highest dry‐matter yield (4.19 t ha?1) and lowest leaf‐to‐stem ratio (0.74). Drought‐stressed environments had lower plant NDF (?12.3% on average) and leaf protein (?9.7%), and higher stem protein (+8.6%) than fully irrigated environments. The results suggested that environmental effects might have greater impact on quality than genetic effects, even for a population set including material selected for quality‐driven morphology.  相似文献   

14.
Soil quality of tillage systems receives much attention worldwide, although few studies attempt to link soil quality to yield. Partial least‐squares regression analysis is a suitable method to construct predictive models around plural, highly collinear factors, such as soil quality and its effects on yield. This study aimed at identifying the soil quality properties which best model pasture herbage yield by relating soil quality indicators with variations in yield as a result of soil disturbance caused by tillage. The study was conducted on kikuyu (Pennisetum clandestinum) over‐sown with annual ryegrass (Lolium multiflorum) using different tillage methods. Tillage methods involved over‐sowing kikuyu with ryegrass using a minimum‐tillage seed drill, eradication of kikuyu with herbicide and ryegrass sown with a minimum‐tillage planter, shallow and deep disturbance, and a control. Most changes in soil quality indicators as a result of soil tillage were observed shortly after tillage and occurred mostly at the 0–100 mm soil layer. Few of these effects were still visible 420 d after tillage. Microbiological indicators changed most in response to the treatments, but unlike the chemical and physical indicators, microbiological indicators have no causal link to pasture production. The contribution of individual soil quality indicators to variance in pasture productivity could not be isolated and should thus be seen as complex processes which affect yield. Although mechanisms of how some soil quality indicators affect yield is clear, more research is required to determine mechanisms of how a combination of multiple soil quality indicators affects yield.  相似文献   

15.
Six dryland pastures were established at Lincoln University, Canterbury, New Zealand, in February 2002. Production and persistence of cocksfoot pastures established with subterranean, balansa, white or Caucasian clovers, and a perennial ryegrass‐white clover control and a lucerne monoculture were monitored for nine years. Total annual dry‐matter (10.0–18·5 t DM ha?1) and sown legume yields from the lucerne monoculture exceeded those from the grass‐based pastures in all but one year. The lowest lucerne yield (10 t ha?1 yr?1) occurred in Year 4, when spring snow caused ungrazed lucerne to lodge and senesce. Cocksfoot with subterranean clover was the most productive grass‐based pasture. Yields were 8·7–13·0 t DM ha?1 annually. Subterranean clover yields were 2·4–3·7 t ha?1 in six of the nine years which represented 26–32% of total annual production. In all cocksfoot‐based pastures, the contribution of sown pasture components decreased at a rate equivalent to 3·3 ± 0·05% per year (R= 0·83) and sown components accounted for 65% of total yield in Year 9. In contrast, sown components represented only 13% of total yield in the ryegrass‐white clover pastures in Year 9, and their contribution declined at 10·1 ± 0·9% per year (R= 0·94). By Year 9, 79% of the 6.6 t ha?1 produced from the ryegrass‐white clover pasture was from unsown species and 7% was dead material. For maximum production and persistence, dryland farmers on 450–780 mm yr?1 rainfall should grow lucerne or cocksfoot‐subterranean clover pastures in preference to ryegrass and white clover. Inclusion of white clover as a secondary legume component to sub clover would offer opportunities to respond to unpredictable summer rainfall after sub clover has set seed.  相似文献   

16.
Four‐species mixtures and pure stands of perennial ryegrass, tall fescue, white clover and red clover were grown in three‐cut and five‐cut systems at Ås, southern Norway, at a low fertilization rate (100 kg N ha?1 year?1). Over a three‐year experiment, we found strong positive effects of species diversity on annual dry‐matter yield and yield stability under both cutting frequencies. The overyielding in mixtures relative to pure stands was highest in the five‐cut system and in the second year. Among the possible pairwise species interaction effects contributing to the diversity effect, the grass–grass interaction was the strongest, being significant in both cutting systems and in all years. The grass–legume interactions were sometimes significant, but no significant legume–legume interaction could be detected. Competitive relationships between species varied from year to year and also between cutting systems. Estimations based on species identity effects and pair‐specific interactions suggested that the optimal proportions of red clover, white clover, perennial ryegrass and tall fescue in seed mixtures would have been around 0·1, 0·2, 0·4 and 0·3 in the three‐cut system, and 0·1, 0·3, 0·3 and 0·3 in the five‐cut system.  相似文献   

17.
Nitrate () leaching is an environmental and health concern. In grazed pasture systems, leaching primarily occurs beneath animal urine patch areas due to high nitrogen (N) loading and the inability of pasture plants to capture all of this N. This study investigated the relative importance of plant growth and root architecture to recover soil N. Herbage N recovery, dry matter (DM) yield and root architecture, following injections of 15N‐enriched urea at different soil depths (5, 25 and 45 cm), were measured for Italian ryegrass (Lolium multiflorum Lam.) and tall fescue (Festuca arundinacea Schreb.) grown in soil monolith lysimeters (18 cm diameter × 70 cm depth) under simulated South Island, New Zealand winter temperature and light levels. Total herbage N uptake and DM yield were on average 24 and 48% greater in L. multiflorum than F. arundinacea respectively. Root length density (cm cm?3 soil) in the 5‐ to 25‐cm‐depth horizon was similar between species. In the 25‐ to 45‐cm‐depth horizon, F. arundinacea roots were found at higher densities than L. multiflorum. In the 45‐ to 65‐cm‐depth horizon, root length density was fourfold to ninefold higher for F. arundinacea than L. multiflorum, but N uptake efficiency was greater in L. multiflorum (0·48 mg 15N m?1 root) than F. arundinacea (0·09 mg 15N m?1 root). The results suggest that deep F. arundinacea roots are relatively inactive during the winter period and confirm that plant growth is more important than root architecture (e.g. deep roots) to recover soil N and ultimately reduce nitrate leaching losses.  相似文献   

18.
Protein degradability in forage legumes is of global importance because utilization efficiency of forage has economic and environmental consequences. However, there are no published studies on the effect of legume stand structure on differences in crude protein (CP) fractions. The main objective of the present research was therefore to investigate differences in CP fractions in leaves and stems of lucerne (Medicago sativa L.) during the growing season. Stand traits were measured over 2 years, and forage was sampled at the early bud and early flower stages in the first, second and third cuts. Stems had significantly higher concentrations (in g kg?1 CP) of non‐protein (fraction A: 430 g kg?1 CP) and indigestible nitrogen (fraction C: 92 g kg?1 CP) than leaves and had lower relative content of true protein (fraction B: 478 g kg?1 CP). In the total forage (stems and leaves combined), about 80% of the variation in CP fractions was explained by year, cut and maturity. Year was the most important factor, particularly for the B fractions. Cut was the second‐most important factor; its main effect was that the relative abundance of fraction A declined from 394 g kg?1 CP in the first cut to 293 in g kg?1 CP the third cut. Maturity increased the amounts of indigestible fraction C and protein fractions B1 and B3. This was associated with the leaf weight ratio, which had an inverse relationship with maximal stem length and dry matter yield. Variation partitioning showed that 75% of CP fraction variability associated with cut, maturity and year could be explained by the evaluated stand traits. This research has highlighted the need to consider plant morphological traits when legume CP fractions are evaluated.  相似文献   

19.
Lucerne (Medicago sativa L.) can enhance the economic and environmental sustainability of crop-livestock systems in the western Mediterranean basin, but requires improved adaptation to stressful environments because of a predicted shortage of irrigation water and climate change. This study reports on three-year dry matter yields of five landraces from Morocco, Italy and Tunisia and seven varieties from France, Italy, Australia and USA assessed across 10 agricultural environments of Algeria, Tunisia, Morocco and Italy of which four were rainfed, one was continuously irrigated (oasis management), and five were irrigated but adopted a nine-week suspension of irrigation during summer. Our objectives were targeting cultivars to specific environments, and assisting regional breeding programmes in defining adaptation strategies, genetic resources and opportunities for international co-operation. The crop persisted well in all environments, but environment mean yield was strictly associated (P < 0.01) with annual and spring-summer (April–September) water available. Rainfed cropping implied 42% lower yield with 61% less spring-summer water available relative to irrigation with withheld summer water across three sites hosting both managements. All of these sites showed genotype × management interaction (at least P < 0.10). Cross-over genotype × environment (GE) interaction between top-yielding cultivars occurred across the 10 environments. Total number of harvests (range: 9–23), soil salinity as measured by electrical conductivity (range: 0.20–6.0 dS m−1), and average spring-summer water available (range: 102–932 mm) were selected as significant (P < 0.05) environmental covariates in a factorial regression model explaining 53% of GE interaction variation. This model was exploited for targeting cultivars as a function of site-specific levels of these factors. Its indications agreed largely with those of an additive main effects and multiplicative interaction model with two GE interaction principal components. An Italian landrace exhibited specific adaptation to severely drought-prone environments, whereas landraces from north Africa were not adapted to such environments. One Moroccan landrace was specifically adapted to high number of harvests (partly reflecting frequent mowing). One variety selected for salt tolerance, and one Moroccan landrace, were specifically adapted to salt-stress environments. Environment classification as a function of GE interaction effects indicated three groups which may be object of specific breeding: (i) rainfed or irrigated environments featuring limited spring-summer water available (<350 mm), nil or low soil salinity, and moderate to low number of harvests; (ii) salt-stress environments; and (iii) environments characterized by high number of harvests.  相似文献   

20.
Grasses on the Pakistani coast are moderately to highly salt tolerant and have potential for utilization as a cash crop. This study was designed to determine whether seed germination of three halophytic grasses (Phragmites karka, Dichanthium annulatum and Eragrostis ciliaris) could be improved by exogenous application of ascorbic acid (AsA) under saline conditions. Seeds of P. karka were germinated in varying concentrations of NaCl and AsA under different temperature regimes, and seeds of Dichanthium annulatum and Eragrostis ciliaris were germinated at optimal temperatures only. In P. karka, concentrations of AsA (5 and 10 mM) alleviated the salinity effects better at cooler and moderate thermo‐periods, whereas higher concentrations (20 mM of AsA) failed to improve germination under all temperature regimes. AsA was ineffective at a warmer thermo‐period (25/35°C). The rate of germination also increased at all thermo‐periods with the application of AsA except at 25/35°C under saline conditions. Application of AsA improved the germination of E. ciliaris seeds under saline conditions but was inhibitory for D. annulatum in comparison with the untreated control. The rate of germination followed the similar pattern as that of seed germination. Results indicate that AsA has the ability to partially alleviate the effect of salinity on seed germination of some grass species under optimal temperature regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号