首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to investigate effects of dietary Chlorella meal (CM) additive on growth performance, immune responses and appetite regulation of juvenile crucian carp Carassius auratus (initial body weight: 1.27 ± 0.03 g). Four experimental diets were formulated to contain 0% (CM0), 1% (CM1), 2% (CM2) and 4% Chlorella meal (CM4), respectively. Each diet was randomly assigned to triplicate groups with 40 juvenile fish per fibreglass tank for 8 weeks. Weight gain rate, specific growth rate and feed intake increased with increasing dietary CM levels. In contrast, FCR (feed conversion rate) declined with dietary CM levels. No significant differences were observed in moisture, crude protein, crude lipid and ash contents of muscle and liver tissues. Dietary CM addition increased activities of acid and alkaline phosphatase in liver and kidney. Dietary CM up‐regulated the mRNA expression levels of NKEF‐B, MCHII and IgM in kidney, and increased the mRNA levels of NPY and agouti gene‐related protein in the brain, but down‐regulated mRNA levels of MC4R, LEP, LEPR, CART1, CART2 and CCK8 genes. Based on these observations above, this study indicated that dietary CM additive increased growth performance, immune responses and appetite of crucian carp. The results, for the first time, demonstrate a role for the central nervous system in the control of food intake in fish fed dietary Chlorella meal.  相似文献   

2.
This study was conducted to determine the effects of dietary cellulase addition on improving the nutritive value of Chlorella for juvenile crucian carp Carassius auratus (initial body weight: 2.99 ± 0.02 g, mean ± SEM). Five isonitrogenous and isoenergetic experimental diets were formulated to contain 0.0 (control), 0.5, 1.0, 1.5 and 2.0 g kg?1 cellulase, respectively. Each experimental diet was randomly assigned to triplicate groups with 25 juvenile fish per fibreglass tank for 8 weeks. The results showed that weight gain, specific growth rate, feed intake and the trypsin activity in the anterior intestine increased with increasing dietary cellulase to 1.5 g kg?1 and then declined with further addition. However, the mRNA expression levels of Mrf4 and Myf5, the apparent digestibility coefficients for dry matter, protein, energy and the majority of amino acids, and the activity of lipase in the anterior intestine were highest in fish fed the 1.0 g kg?1 cellulase diet, and then tended to decline with further cellulase supplementation. In conclusion, the optimal dietary cellulase supplementation level was 1.0–1.5 g kg?1, which can improve growth performance, digestive activities and nutrient digestibility in crucian carp.  相似文献   

3.
The current study aimed to investigate the effects of dietary soybean β‐conglycinin on growth performance and intestine apoptosis in juvenile grass carp (Ctenopharyngodon idella). For fish fed with the 80 g β‐conglycinin/kg diet for 7 weeks, the specific growth rate and feed intake were decreased. In the proximal intestine, dietary β‐conglycinin did not induce DNA fragmentation, tended to decrease the reactive oxygen species (ROS) content, and decreased ROS‐generating enzyme (NADPH oxidase [NOX]) activity. Subsequently, in the mid‐intestine, dietary β‐conglycinin caused DNA fragmentation, tended to increase the ROS content, increased caspase‐3, caspase‐8 and caspase‐9 activities, upregulated the mRNA levels of proapoptotic molecules (apoptotic protease‐activating factor‐1 [Apaf1] and Bcl‐2‐associated X protein [BAX]) and mitogen‐activated protein kinase (MAPK)‐related signal molecules (Jun N‐terminal kinase (JNK) and p38 MAPK) and increased the protein levels of p38 MAPK and phospho‐p38 MAPK. Moreover, in the distal intestine, dietary β‐conglycinin induced DNA fragmentation, elevated NOX activity and the ROS content and increased caspase‐3, caspase‐8 and caspase‐9 activities, death ligand (TNF‐α) mRNA expression level, and p38 MAPK and phospho‐p38 MAPK protein levels. In summary, dietary soybean β‐conglycinin suppressed fish growth and inconsistently caused apoptosis among the different intestinal segments which was partially associated with ROS‐mediated MAPK signalling.  相似文献   

4.
This study was designed to examine the effects of glycinin on growth, digestive ability, immune responses, antioxidant capacity and gene expression levels of golden crucian carp. Golden crucian carp were fed diets containing glycinin at 0, 30, 60, 90 and 120 g/kg, respectively, for 8 weeks. Body weight, weight gain percentage, specific growth rate and feed efficiency ratio were negatively related to the content of glycinin in diet. Activities of protease, acid phosphatase, alkaline phosphatase, lysozyme in hepatopancreas, and activities of catalase, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity in the proximal intestine, mid intestine, distal intestine and hepatopancreas were negatively related to the content of glycinin in diet, whereas malondialdehyde in proximal intestine, mid intestine, distal intestine and hepatopancreas increased directly with the content of glycinin in diet. Furthermore, the relative expressions of TNF‐α and IL‐1β in proximal intestine, mid intestine and distal intestine increased directly with the content of glycinin in diet, whereas the relative expressions of TNF‐α and IL‐1β in hepatopancreas were negatively related to the content of glycinin in diets. The relative expressions of IL‐10 in proximal intestine, mid intestine, distal intestine and hepatopancreas all were negatively related to the content of glycinin in diets. In conclusion, reductions in growth, immunity and antioxidant capacity, intestine inflammation with dysfunction of digestive system occurred in golden crucian carp that fed a diet containing glycinin at 30 g/kg or higher after 8 weeks.  相似文献   

5.
This study was carried out to evaluate the dietary available phosphorus (AP) requirement for crucian carp (Carassius auratus). Triplicate groups were fed diets containing five graded levels of AP in 15 recirculating tanks. After a 9‐week feeding experiment, weight gain (WG), specific growth rate (SGR), feed efficiency (FE) and whole‐body and vertebrae P contents were significantly increased as dietary AP increased from 1.1 to 7.6 g/kg (< .05) and then levelled off. N and P retention was also significantly increased as dietary AP increased to 5.5 g/kg (< .05). Condition factor, viscerosomatic index, hepatosomatic index, whole‐body moisture, muscle P content and plasma total cholesterol were not affected by dietary P levels (> .05). Protein and ash contents of the whole body increased linearly as the dietary P level increased, but the lipid content, plasma alkaline phosphatase activities and triacylglycerol contents showed an inverse relationship. Based on WG, FE, whole‐body P content and vertebrae P content, the optimum requirement of dietary AP for crucian carp was estimated to be 8.3, 8.3, 8.0 and 7.8 g/Kg, respectively.  相似文献   

6.
During October 2016, a mass mortality of colour crucian carp (Carassius auratus), which the affected fish were lethargic, inappetence and anoxic, was occurred in a fish farm located in Chengdu, Sichuan province, China. To elucidate the aetiology of this outbreak, histological and electron microscope examination, molecular investigation were conducted. Pathologic examination revealed multi foci necrosis on haematopoietic organs, gills, hearts and pancreas. Transmission electron microscopy observations exhibited sphere herpesvirus‐like particles distributed amongst the tissues of gill, spleen and kidney. Molecular analysis is verified that the causative agent of this outbreak was Cyprinid herpesvirus 2 (CyHV‐2). This report first report CyHV‐2 in colour crucian carp, which increases the concern about damage of CyHV‐2 and its potential role in species.  相似文献   

7.
This study evaluated the effects of dietary γ‐aminobutyric acid (GABA) on the growth performance, serum biochemical indices and antioxidant status of pharaoh cuttlefish, Sepia pharaonis. Cuttlefish were cultured in open‐culturing cement pool systems for 8 weeks. Six practical diets supplemented with graded levels of GABA (0, 20, 40, 60, 80 and 100 mg/kg) were formulated. Each diet was randomly assigned to triplicate groups of 60 cuttlefish (mean weight: 10.33 g), the cuttlefish were fed two times per day to apparent satiation. The results showed that the specific growth rate (SGR), weight gain (WG) and feed efficiency (FE) significantly increased with dietary GABA supplementation (p < .05). The survival rate (SR) and protein content in muscle significantly increased when 58.9 mg/kg GABA supplied. Moreover, the nitric oxide (NO) content and acid phosphatase (ACP) activity in serum were significantly increased with dietary GABA supplementation (p < .05), while the activity of aspartate aminotransferase (AST) in serum decreased significantly when supplied with GABA at 58.9 mg/kg (p < .05). In addition, dietary GABA improved antioxidation activity by significantly increasing the activities of superoxide dismutase (SOD) and catalase (CAT) but decreasing malondialdehyde (MDA) levels in the liver and gill (p < .05). On the basis of the quadratic regression analysis of FE, the optimum content of dietary GABA in S. pharaonis was estimated to be 55.3 mg/kg. The findings of this study demonstrated that dietary GABA had a positive effect on the growth performance, serum biochemical indices and antioxidant status of S. pharaonis.  相似文献   

8.
This study was conducted to investigate the effects of fish meal (FM) replacement by Chlorella meal (CM) with dietary cellulase supplementation on growth performance, digestive enzymatic activities, histology and myogenic genes’ expression in crucian carp Carassius auratus (initial body weight: 2.90 ± 0.02 g, mean ± SEM). Six isonitrogenous diets were formulated at two cellulase levels (0 and 2 g kg?1). At each cellulase level, CM was added at three levels of 0, 533.1 and 710.8 g kg?1 to substitute 0, 75 and 100% of dietary FM respectively. Each experimental diet was randomly assigned to triplicate groups with 25 juvenile fish per fibreglass tank for 8 weeks. Dietary CM substitution significantly increased growth, feed utilization, amylase activity and the expression of Myod, Mrf4 and Myf5, but reduced the Myog expression. Dietary cellulase addition increased hepatosomatic and viscerosomatic index, lipase activity and the expression of Mrf4, but reduced trypsin activity and the expression of Myog and Myf5. Dietary CM substitution enlarged the cell size and also caused some karyopyknosis in liver. Our results showed that CM could totally replace FM in diets; dietary cellulase supplementation at the level of 2 g kg?1 played a subtle role in improving growth and feed utilization for crucian carp.  相似文献   

9.
This study was conducted to investigate the effects of dietary β‐conglycinin on the growth performance, digestion, gut morphology and immune responses of juvenile turbot (Scophthalmus maximus L.). Four diets were formulated to contain 0%, 2%, 4% and 8% purified β‐conglycinin. Triplicate groups of 30 fish were fed to apparent satiation twice daily for 12 weeks. Fish fed 4% and 8% dietary β‐conglycinin showed significantly reduced specific growth rate, feed efficiency ratio, apparent digestibility coefficient of nutrients and whole‐body lipid contents, as well as a profound infiltration of mixed leucocytes in the lamina propria and a significant decrease in the absorptive surface of distal intestine. The expression of pro‐inflammatory cytokines, TNF‐α and IL‐1β, in the distal intestine was significantly upregulated by 4% dietary β‐conglycinin, whereas a significantly lower expression level of IgM and anti‐inflammatory cytokine TGF‐β1 was observed in fish fed 8% dietary β‐conglycinin. Serum lysozyme and alternative complement pathway activity were first significantly enhanced by 2% dietary β‐conglycinin and then rapidly declined by 4% and 8% dietary β‐conglycinin. Respiratory burst activity of head kidney macrophages and serum superoxide dismutase activity were significantly suppressed by 4% and 8% dietary β‐conglycinin. Dietary β‐conglycinin (2–8%) significantly increased the level of specific antibody against β‐conglycinin in serum. Collectively, these results suggested that higher levels of dietary β‐conglycinin (4–8%) induced a variety of non‐specific and specific immune responses and intestinal mucosal lesions in turbot, resulting in inferior feed utilization and poor growth performance.  相似文献   

10.
Herpesviral haematopoietic necrosis (HVHN), caused by cyprinid herpesvirus‐2 (CyHV‐2), has affected the commercial production of the goldfish Carassius auratus and gibelio carp Carassius auratus gibelio. High water temperature treatments are reported to reduce the mortality rate of infected goldfish and elicit immunity in the survivors. To define the mechanism by which this intervention induces resistance, clonal ginbuna Carassius auratus langsdorfii, which is closely related to both species and has been used in fish immunology, may represent a promising model species. In this study, we investigated the susceptibility of clonal ginbuna strains to CyHV‐2 and the effect of high water temperature treatment on infected ginbuna and goldfish. Experimental intraperitoneal infection with CyHV‐2 at 25 °C caused 100% mortality in ginbuna strains, which was accompanied by histopathological changes typical of HVHN. Both infected ginbuna S3n strain and goldfish, exposed to high temperature for 6 days [shifting from 25 °C (permissive) to 34 °C (non‐permissive)], showed reduced mortalities after the 1st inoculation, and subsequent 2nd virus challenge to 0%, indicating induction of immunity. It was concluded that ginbuna showed a similar susceptibility and disease development in CyHV‐2 infection compared to goldfish, suggesting that ginbuna can be a useful fish model for the study of CyHV‐2 infection and immunity.  相似文献   

11.
Gibel carp (Carassius auratus gibelio) of mean initial weight 3.1 g were fed one of seven casein‐dextrin‐based diets containing graded levels of magnesium (Mg) (39, 120, 220, 380, 700, 1600 and 2900 mg kg?1) for 3 months with the waterborne Mg concentration of 10.6–12.7 mg L?1. Magnesium sulphate was used as the supplementation Mg source in the diets. The experiment was carried out in a flow‐through system. Growth, survival rate, Na+/K+‐ATPase, Mg2+‐ATPase and tissue mineral contents were measured to investigate the effect of dietary magnesium in gibel carp. At the end of the experiment, the hepatopancreas of fish were collected for enzyme determination. The hepatopancreas, vertebrae and whole body were collected for tissue magnesium content analysis. After 3 months, dietary magnesium supplementation did not improve the growth performance, including feed intake, weight gain and feed conversion efficiency of juvenile gibel carp. On the contrary, negative impacts on survival, reduced growth performance and dramatically decreased Na+/K+‐ATPase, Mg2+‐ATPase and superoxide dismutase activities were observed in gibel carp fed a high Mg diet of 2900 mg kg?1. Although serum and hepatopancreas Mg and Ca contents were not affected by dietary Mg supplementation, vertebrae and whole‐body Mg contents increased significantly with the increasing dietary Mg concentrations. Based on the relationship between whole‐body Mg retention and dietary Mg concentration, a suitable dietary Mg level of 745 mg kg?1 could be estimated for gibel carp. It could be concluded that dietary Mg supplementation did not improve the growth performance, but could increase vertebrae Mg contents of gibel carp. Considering the adverse effects, a dietary Mg concentration of above 2900 mg kg?1 is not recommended and it should be careful to supplement magnesium in practical diets for gibel carp as most feed ingredients contain high magnesium concentrations.  相似文献   

12.
Assessing the responses of lysozyme activity and antioxidant defences to hypoxia is important to understand the adaptation and tolerance strategies of fish under hypoxia. This study investigated the effects of different dissolved oxygen (DO) levels on Carassius auratus, a natural triploid fish, from Qihe River. The content of malondialdehyde (MDA) and the activities of lysozyme and antioxidant enzymes were measured in the kidney and spleen after hypoxic exposure. At the DO concentrations of 1 and 2 mg L?1, the activities of antioxidant enzymes and lysozyme significantly decreased and the content of MDA significantly increased (P < 0.01). This result suggests that hypoxia decreased antioxidant enzyme and lysozyme activities and caused MDA accumulation in a concentration‐dependent manner. The DO level of 4 mg L?1 increased the activities of superoxide dismutase and catalase in the kidney and the activities of glutathione peroxidase and catalase in the spleen (P < 0.05). This result implies that slight hypoxic stress can enhance antioxidant defences to alleviate the damage of oxidative stress. The reduced activities of antioxidant enzymes and the accumulation of MDA at the DO level of ≤2 mg L?1 implied the decrease in antioxidative ability and the occurrence of oxidative stress. The decrement in lysozyme activity indicated that the antibacterial ability was weakened to some degree. Therefore, hypoxic stress at DO levels ≤2 mg L?1 should be removed by aeration to avoid the oxidative damage resulting from the reduced antioxidative ability and prevent the outbreak of diseases caused by weakened antibacterial effects.  相似文献   

13.
14.
Echinacea purpurea (EP), a globally popular herbal medicine, has been used to treat various diseases in human and animals. However, little has been reported about its effects in fish. In this study, crucian carp (Carassius auratus) were selected to evaluate the effects of EP on growth performance and antioxidant response and the expressions of microRNAs. The results showed EP could stimulate the growth of crucian carp with the best effect was observed at dose of 4 g kg?1. In serum, the content of hydroxyl radical (·OH) and malondialdehyde (MDA) decreased by EP supplementation, whereas the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) increased. Similarly, the content of ·OH decreased, and the activities of CAT, GPX and GR increased in liver of crucian carp. Furthermore, in livers of crucian carp, EP supplements upregulated the expressions of the microRNAs (miR‐16, miR‐21, miR‐125b, miR‐146a, miR‐155, miR‐181a and miR‐223), which had been confirmed to participate in regulating antioxidant and immune function in mammals. Our results suggest EP supplements in diets stimulated growth performance and antioxidant response of crucian carp. In liver, the upregulation of specific miRNAs may participate in the antioxidant effects of EP diets.  相似文献   

15.
This study was conducted to investigate the effects of dietary protease on growth performance, feed utilization, whole‐body proximate composition, nutrient digestibility, intestinal and hepatopancreas structure of juvenile Gibel carp, Carassius auratus gibelio (mean weight 8.08 ± 0.18 g). Six diets were prepared, including a positive control diet (dietary protein 350 g/kg, PC), one negative control diet (dietary protein 33 g/kg, NC) and four protease supplementations diets, which were 75, 150, 300 and 600 mg/kg protease NC diet. After 12 weeks of diet feeding in indoor recycle aquarium tanks, no significant difference (> .05) was found on growth performance between fish fed diet with 75–600 mg/kg protease and the PC group. Compared with the fish fed the NC diet, the specific growth rate of fish fed 300 mg/kg protease increased significantly (< .05), as well as protein efficiency ratios (< .05), while feed conversion was the opposite (< .05). The nutrient digestibility of crude protein and lipid was higher (< .05) in fish fed 150 mg/kg protease diet than the PC diet. Whole‐body proximate composition of fish was not affected (> .05) by the dietary treatment. Serum alkaline phosphatase and albumin were significantly affected by dietary protease (< .05), while the content of total protein, glucose, triglyceride, total cholesterol, aspartate aminotransferase and alanine aminotransferase activities in serum was not affected (> .05). Foregut muscular thickness was thinner (< .05), when the fish fed diets supplementation of protease in 150 or 600 mg/kg diet than the NC diet. Protease activities in hepatopancreas and foregut were higher (< .05), in the fish fed 150 or 300 mg/kg protease diet than the fish fed the PC diet, but those in the mid‐ and hindgut were not significantly affected (> .05) by the dietary treatments. Based on the regression analysis of weight gain rate, the optimal dietary inclusion level of protease was 400 mg/kg in the diet for juvenile Carassius auratus gibelio.  相似文献   

16.
This study was aimed to evaluate the effects of dietary supplementation of Bacillus cereus as probiotics on growth, fillet quality, serum biochemical parameters and intestinal histology of Pengze crucian carp (Carassius auratus var. Pengze). Fish were fed basic diet (Control group) and three diets such as CD7, CD9 and CD11 supplemented with B. cereus at dose of 107, 109 and 1011 CFU/kg for 70 days. The results showed that supplementation of 109 CFU/kg B. cereus significantly improved the growth performance compared to that in the Control group. The textures of muscle were improved by dietary supplementation of probiotics, and the hardness, gumminess, chewiness and the resilience of fish fillet increased with increasing dose of B. cereus. Total cholesterol including high‐density lipoprotein and low‐density lipoprotein level in serum decreased correspondingly with increasing level of probiotics whereas, acid phosphatase and catalase activities increased in serum. B. cereus supplementation enhanced the immunity and antioxidant capacity via an increase in acid phosphatase, alkaline phosphatase, glutathione peroxidase, reduce glutathione, and catalase, accompanied by a significant reduction in malondialdehyde. Higher intestinal fold height was observed in CD9 group than other groups. The lowest enterocyte height was exhibited in the Control group, HE values increased with increasing dose of probiotics. Moreover, dietary inclusion of B. cereus significantly affected the digestive enzymes activities in terms of higher lipase and trypase activities. In conclusion, dietary supplementation of B. cereus could promote the growth, elevate the immunity and antioxidant status of carp, and importantly improve the texture of fish fillet.  相似文献   

17.
An 11‐week growth trial was conducted to determine dietary myo‐inositol (MI) requirement for juvenile gibel carp (Carassius auratus gibelio). Myo‐inositol was supplemented to the basal diet to formulate six purified diets containing 1, 56, 107, 146, 194 and 247 mg MI kg?1 diet, respectively. Each diet was fed to triplicate groups of juvenile gibel carp (initial body weight 3.38 ± 0.27 g, mean ± SD) in a flow‐through system. The diets were randomly assigned to different fish tanks. Fish fed ≥ 107 mg MI kg?1 diet had significantly higher weight gain (WG), feed efficiency (FE) and protein efficiency ratio than those fed 1 mg MI kg?1 diet. Fish fed ≥ 56 mg MI kg?1 diet had higher feeding rate and survival compared with fish fed 1 mg MI kg?1 diet. Dietary supplemental inositol did not affect fish liver inositol concentration. Fish fed ≥ 56 mg MI kg?1 diet had higher body dry matter, crude protein and gross energy and lower hepatosomatic index than fish fed 1 mg MI kg?1 diet. Dietary inositol supplementation decreased fish body ash. Quadratic regression of weight gain indicated that the myo‐inositol requirement to maximum growth for juvenile gibel carp was 165.3 mg MI kg?1 diet.  相似文献   

18.
The goal of this study was to investigate the effects of dietary supplementation with β‐glucan and microencapsulated probiotics (Bacillus subtilis or Pediococcus acidilactici) on growth performance, body composition, haemolymph constituents, and intestinal morphology and microbiota of the Pacific white shrimp Litopenaeus vannamei. Four treatment diets [basal diet (C), β‐glucan‐containing diet (β‐glu), β‐glucan plus B. subtilis‐containing diet (β‐glu+Bs), and β‐glucan plus P. acidilactici‐containing diet (β‐glu+Pa)] were fed to L. vannamei for 90 days. Shrimp fed the β‐glu and β‐glu+Pa diets exhibited similar growth performance and body protein content, which were significantly higher than those of shrimp fed the control diet (P < 0.05). No significant differences in haemolymph triglyceride, cholesterol, protein, haemolymph urea nitrogen or chloride were detected among the experimental diets. However, dietary β‐glucan alone increased the haemolymph glucose level and osmolarity (P < 0.05). Synbiotic supplementation had greater effects on intestinal microbiota and morphology than dietary β‐glucan alone. For example, β‐glu+Bs increased the number of intestinal lactic acid bacteria and decreased the number of Vibrio spp. (P < 0.05), and β‐glu+Pa increased the height of intestinal villi.  相似文献   

19.
A 12‐week growth trial was conducted in a flow‐through system to determine dietary selenium (Se) requirement for on‐growing gibel carp (initial body weight: 76.2 ± 0.05 g, mean ± SEM). Selenomethionine was supplemented to the basal diet to formulate seven semi‐purified diets containing 0.26, 0.58, 0.72, 1.14, 1.34, 1.73 and 2.09 mg Se kg?1 diet. The results showed that plasma superoxide dismutase (SOD) activity significantly increased when fish were fed with 0.58 mg Se kg?1 diet (< 0.05) and then decreased at 2.09 mg Se kg?1 diet (< 0.05). Plasma T‐AOC activity was higher in fish fed with 0.72 mg Se kg?1 diet (< 0.05) and plasma malondialdehyde (MDA) was higher in fish fed with 0.26 mg Se kg?1 diet (< 0.05). When fish were fed 1.14 mg Se kg?1 diet, hepatic GSH‐Px, T‐AOC, GSH and CAT activities were significantly higher than those fed with 0.26 mg Se kg?1 diet (< 0.05). Hepatic superoxide dismutase (SOD) activity was higher at 1.34 mg Se kg?1 diet (< 0.05). Fish liver Se concentrations were significantly higher when fed with 0.72 mg Se kg?1 diet (< 0.05) and then kept constant when Se ≥ 0.72 mg kg?1 (> 0.05). Whole‐body and muscle Se concentrations were higher when fed with 1.34 mg Se kg?1 diet (< 0.05) and kept a plateau when Se ≥ 1.34 mg kg?1 (> 0.05). In conclusion, based on broken‐line regression of hepatic Se concentrations, hepatic SOD activity and hepatic T‐AOC activity, dietary Se requirements for on‐growing gibel carp was 0.73 mg kg?1, 1.12 mg kg?1 and 1.19 mg kg?1 diet respectively.  相似文献   

20.
The wide use of lipid as a non‐protein energy substitute has led to lipid metabolic problems in cultured tilapia. Therefore, studies that reduce the effects of high‐fat diets in genetically improved farmed tilapia (GIFT) are required. This study evaluated the optimum level and effects of dietary α‐lipoic acid (α‐LA) on growth performance, body composition, antioxidant capacity and lipid metabolism of GIFT tilapia. The basal diet (120 g/kg lipid) was supplemented with six concentrations of α‐LA at 0 (control), L300, L600, L900, L1200 and L2400 mg/kg diet to make the experimental diets, which were fed to GIFT tilapia juveniles (initial body weight: 0.48 ± 0.01 g) for 8 weeks. The weight gain of fish improved significantly in the L300 than other dietary treatments. The intraperitoneal fat index and lipid content of fish fed on the L2400 diet decreased significantly than those fed on the control diet. The activities of superoxide dismutase and glutathione peroxidase (GSH‐Px) in serum and liver were significantly higher in fish fed on the L300 diet than the control. The reduced GSH content of fish fed on the L300 in serum and liver was significantly higher than those fed on control diet. The malondialdehyde content in serum and liver was significantly lower in L300 than in the control. The adipose triglyceride lipase gene was significantly up‐regulated in fish fed on the L2400, but the diacylglycerol acyltransferase 2 gene was down‐regulated in adipose. The liver‐type fatty acid‐binding protein gene in the liver was significantly up‐regulated in fish fed on the L300 and L600 diets. Moreover, the acyl‐coenzyme A oxidase gene in liver was significantly up‐regulated in fish fed on the L300, L600, L900 and L1200 diets. Polynomial regression analysis indicated that 439–528 mg/kg α‐LA is an appropriate dosage in high‐fat diet to improve growth performance and relieve lipid oxidative damage by accelerating lipid catabolism and reducing lipid synthesis in GIFT tilapia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号