共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of dietary copper concentration and source on performance and copper status of growing and finishing steers 总被引:8,自引:0,他引:8
Performance and Cu status were measured in growing and finishing steers supplemented with different copper (Cu) concentrations and sources. Sixty Angus (n = 36) and Angus x Hereford (n = 24) steers were stratified by weight and initial liver Cu concentration within a breed and randomly assigned to treatments. Treatments consisted of 1) control (no supplemental Cu); 2) 20 mg Cu/kg DM from Cu sulfate (CuSO4); 3) 40 mg Cu/kg DM from CuSO4; 4) 20 mg Cu/ kg DM from Cu citrate (C6H4Cu2O7); 5) 20 mg Cu/kg DM from Cu proteinate; and 6) 20 mg Cu/kg DM from tribasic Cu chloride (Cu2(OH)3Cl). A corn silage-soybean meal-based diet that was analyzed to contain 10.2 mg of Cu/kg DM was fed for 56 d. Steers were then switched to a high-concentrate diet that was analyzed to contain 4.9 mg of Cu/kg DM. Equal numbers of steers per treatment were slaughtered after receiving the finishing diets for either 101 or 121 d. Performance was not affected by Cu level or source during the growing phase. Gain, feed intake, and feed efficiency were reduced (P < .05) by Cu supplementation during the finishing phase. Plasma and liver Cu concentrations were higher in steers receiving supplemental Cu at the end of both the growing and finishing phases. Steers supplemented with 40 mg Cu/kg DM from CuSO4 had higher (P < .05) liver Cu concentrations than those supplemented with 20 mg Cu/kg DM from CuSO4. Liver Cu concentrations did not increase over the finishing phase relative to liver Cu concentrations at the end of the growing phase. These results indicate that as little as 20 mg/kg of supplemental Cu can reduce performance in finishing steers. 相似文献
2.
A study was conducted to determine the effect of dietary Mn on performance of growing and finishing steers, and to evaluate the effect of pharmacological concentrations of Mn on lipid metabolism and subsequent carcass quality in steers. One hundred twenty Angus cross steers were blocked by BW and origin and assigned randomly to one of six treatments (four replicate pens per treatment) providing 0 (control), 10, 20, 30, 120, or 240 mg of supplemental Mn/kg of DM from MnSO4. Steers were fed a corn silage-based growing diet for 84 d, and then switched to a corn-based finishing diet for an average of 112 d. The control growing diet analyzed 29 mg of Mn/kg of DM, whereas the control finishing diet analyzed 8 mg of Mn/kg of DM. Jugular blood samples were obtained on d 56 of the growing and finishing phase for plasma Mn and glucose analysis. Final BW, DMI, ADG, and G:F did not differ (P = 0.38 to P = 0.98) across treatments during growing and finishing phases. Plasma Mn concentrations were not affected by treatment; however, liver and LM Mn at slaughter increased linearly (P = 0.02 and 0.002, respectively) with increasing dietary Mn. Plasma glucose concentrations did not differ (P = 0.90) among treatments. Serum nonesterified fatty acid concentrations tended (P = 0.10) to decrease linearly with increasing dietary Mn on d 56 of the finishing phase. Longissimus muscle lipid concentration was affected quadratically (P = 0.08) by dietary Mn. Muscle lipid seemed to increase slightly when steers were fed 30 or 120 mg of Mn/kg of DM, but decreased with the addition of 240 mg of Mn/kg of DM. Carcass characteristics were not affected by dietary Mn. Manganese concentrations of 29 and 8 mg/kg of DM in the growing and finishing diets, respectively, were adequate for maximizing performance of growing and finishing steers in this experiment. Supplementing physiological or pharmacological concentrations of Mn affected lipid metabolism; however, this did not result in altered carcass characteristics. 相似文献
3.
Effects of L-carnitine on nitrogen retention and blood metabolites of growing steers and performance of finishing steers 总被引:2,自引:0,他引:2
Greenwood RH Titgemeyer EC Stokka GL Drouillard JS Löest CA 《Journal of animal science》2001,79(1):254-260
Two experiments were conducted to evaluate L-carnitine supplementation to cattle fed grain-based diets. In Exp. 1, seven Angus-cross steers (216 kg) were used in a 7 x 4 incomplete Latin square experiment to evaluate the effects of supplemental L-carnitine on N balance and blood metabolites. Steers were fed a corn-based diet (17.5% CP) at 2.5% of BW. Treatments were 0, 0.25, 0.5, 1.0, 1.5, 2.0, and 3.0 g/d of supplemental carnitine. The 18-d periods included 13 d for adaptation and 5 d for collection of feces and urine. Blood was collected before feeding and 3 and 6 h after feeding on d 18 of each period. Dry matter intakes tended to be highest when 1.5 g/d of carnitine was supplied, but N retention was not affected by carnitine and averaged 29.3 g/d. Plasma carnitine concentrations and urinary excretion increased with increasing carnitine supply, indicating that at least some of the carnitine escaped ruminal degradation and was absorbed by the steers. Plasma concentrations of NEFA demonstrated a treatment x time interaction; they decreased linearly in response to carnitine before feeding but increased linearly in response to carnitine at 6 h after feeding. Serum insulin and plasma glucagon, IGF-I, cholesterol, triglyceride, and amino acids were not affected by carnitine. Plasma concentrations of glucose, glycerol, urea, and beta-hydroxybutyrate all were increased by some of the levels of carnitine supplementation, but results for these measurements did not follow easily described patterns and seemed to be related to differences in DMI. In Exp. 2, 95 crossbred steers (357 kg initial BW) were fed finishing diets (14.5% CP) for 129 d. Diets were based on steam-flaked corn and contained 6% alfalfa and 4% tallow. Feed intakes, gains, and feed efficiencies were not affected by supplementation with 2 g/d L-carnitine. However, steers receiving L-carnitine tended to have fatter carcasses, as indicated by tendencies (P < 0.2) for thicker backfat, higher marbling scores, and higher yield grades. In conclusion, carnitine supplementation did not alter lean deposition in growing steers but it did alter plasma NEFA concentrations of growing steers fed a corn-based diet and also seemed to increase fat deposition in finishing cattle. 相似文献
4.
We conducted an experiment to determine the effects of dietary copper (Cu) source and level on carcass characteristics, longissimus muscle fatty acid composition, and serum and muscle cholesterol concentrations in steers. Sixty Angus and Angus x Hereford steers were stratified by weight and initial liver Cu concentration within a breed and randomly assigned to treatments. Treatments consisted of: 1) control (no supplemental Cu); 2) 20 mg Cu/kg DM from Cu sulfate (CuSO4); 3) 40 mg Cu/kg DM from CuSO4; 4) 20 mg Cu/kg DM from Cu citrate; 5) 20 mg Cu/kg DM from Cu proteinate; and 6) 20 mg Cu/kg DM from tribasic Cu chloride. A corn silage-soybean meal-based diet was fed for 56 d. Steers were then switched to a high-concentrate diet. Equal numbers (n = 5) of steers per treatment were slaughtered after receiving the finishing diets for either 101 or 121 d. Serum cholesterol was not affected by treatment during the growing phase but was decreased (P < .05) in steers supplemented with Cu by d 84 of the finishing period and remained lower (P < . 05) at subsequent sampling periods. Longissimus muscle cholesterol concentration tended to be reduced (P < .11) by Cu supplementation. Hot carcass weight and backfat were lower (P < .05) in animals receiving supplemental Cu. However, Cu-supplemented and control steers had similar marbling scores. Longissimus muscle polyunsaturated fatty acid concentrations (18:2 and 18:3) were increased (P < .07) and saturated fatty acid concentrations tended (P < . 11) to be reduced by Cu supplementation. These results indicate that as little as 20 mg of supplemental Cu/kg diet can reduce backfat and serum cholesterol and increase muscle polyunsaturated fatty acids in steers fed high-concentrate diets. 相似文献
5.
An experiment was conducted to determine the effects of dietary concentrations of Co on vitamin B12 production and fermentation of mixed ruminal microbes grown in continuous culture fermentors. Four fermentors were fed 14 g of DM/d. The DM consisted of a corn and cottonseed hull-based diet with Co supplemented as CoCO3. Dietary treatments were 1) control (containing 0.05 mg of Co/kg of DM), 2) 0.05 mg of supplemental Co/kg of DM, 3) 0.10 mg of supplemental Co/kg of DM, and 4) 1.0 mg of supplemental Co/kg of DM. After a 3-d adjustment period, fermentors were sampled over a 3-d sampling period. This process was repeated 2 additional times for a total of 3 runs. Ruminal fluid vitamin B12 concentrations were affected by Co supplementation (P < 0.01), and there was a treatment x day interaction (P < 0.01). By sampling d 3, cultures fed the basal diet supplemented with 0.10 mg of Co/kg had greater (P < 0.05) vitamin B12 concentrations than those supplemented with 0.05 mg of Co/kg of DM, and increasing supplemental Co from 0.10 to 1.0 mg/kg of DM increased (P < 0.01) ruminal fluid vitamin B12 concentration. Ruminal fluid succinate also was affected (P < 0.10) by a treatment x day interaction. Cobalt supplementation to the control diet greatly decreased (P < 0.05) succinate in ruminal cultures on sampling d 3 but not on d 1 or 2. Molar proportions of acetate, propionate, and isobutyrate, and acetate:propionate were not affected by the addition of supplemental Co to the basal diet. However, molar proportions of butyrate, valerate, and isovalerate increased (P < 0.05) in response to supplemental Co. The majority of long-chain fatty acids observed in this study were not affected by Co supplementation. However, percentages of C18:0 fatty acids in ruminal cultures tended (P < 0.10) to be greater for Co-supplemented diets relative to the control. Methane, ammonia, and pH were not greatly affected by Co supplementation. The results indicate that a total (diet plus supplemental) Co concentration of 0.10 to 0.15 mg/kg of dietary DM resulted in adequate vitamin B12 production to meet the requirements of ruminal microorganisms fed a high-concentrate diet in continuous-flow fermentors. 相似文献
6.
7.
Dietary copper effects on lipid metabolism, performance, and ruminal fermentation in finishing steers 总被引:5,自引:0,他引:5
Sixty Angus steers (391.1+/-6.1 kg) were used to determine the effects of dietary Cu concentration on lipid metabolism and ruminal fermentation. Steers were stratified by weight and randomly assigned to treatments. Treatments consisted of 0 (control), 10, or 20 mg of supplemental Cu (as CuSO4)/kg diet DM. Steers were housed in pens equipped with individual electronic Calan gate feeders. On d 86 and 92, ruminal fluid was collected from two steers/treatment for IVDMD determination. Equal numbers of steers per treatment were slaughtered after receiving the finishing diets for 96 or 112 d. Gain, feed intake, feed efficiency, IVDMD, and ruminal VFA molar proportions were not affected by Cu supplementation. Copper supplementation increased (P < .05) liver Cu concentrations, and steers supplemented with 20 mg Cu/kg DM had higher (P < .05) liver Cu concentrations than steers supplemented with 10 mg Cu/kg DM. Serum total cholesterol concentrations were reduced by d 56 and at subsequent sampling dates in steers receiving supplemental Cu. Longissimus muscle cholesterol concentrations were lower (P < .10) in steers supplemented with Cu. Backfat depth was less (P < .05) in steers receiving supplemental Cu, but marbling scores were similar across treatments. Unsaturated fatty acid composition of longissimus muscle was increased (P < .05) and saturated fatty acid composition tended (P < .12) to be reduced in Cu-supplemented steers. Polyunsaturated fatty acid concentrations were higher (P < .05) in steers receiving Cu. These results indicate that addition of 10 or 20 mg Cu/kg to a high-concentrate diet containing 4.9 mg Cu/kg DM alters lipid and cholesterol metabolism in steers but does not affect ruminal fermentation. 相似文献
8.
Thirty Angus steers averaging 357 kg were used to: 1) determine the effect of feeding lasalocid (33 mg/kg diet) on mineral metabolism and 2) determine the effects of varying dietary sodium (Na) and potassium (K) on finishing steers fed lasalocid. Treatments consisted of: 1) control (.25% Na, .5% K); 2) lasalocid (.05% Na, .5% K); 3) lasalocid (.25% Na, .5% K); 4) lasalocid (.05% Na, 1.4% K) and 5) lasalocid (.25% Na, 1.4% K). Ruminal fluid and blood samples were collected on d 28 and 90 of the 102-d study. Gain and feed conversion tended to be higher for steers fed lasalocid with the exception of the .05% Na, 1.4% K treatment. Control steers had lower (P less than .05) erythrocyte K concentrations, reduced (P less than .05) soluble concentrations of magnesium and copper in ruminal fluid and decreased plasma concentrations of zinc (P less than .05) and phosphorus (P less than .10) at 90 d compared with steers fed lasalocid and similar concentrations of Na (.25%) and K (.5%). Increasing dietary Na from .05 to .25% in the presence of lasalocid increased (P less than (P less than .05) molar proportion of ruminal acetate at 28 and 90 d reduced (P less than .05) propionate at 90 d. Increasing K from .5 to 1.4% decreased (P less than .01) soluble Na and increased (P less than .01) soluble K concentrations in ruminal fluid. Steers fed lasalocid (.25% Na, .5% K) had lower concentrations of K (P less than .10) and zinc (P less than .10) in liver than control steers. Sodium and K level also affected tissue concentrations of certain minerals. Results suggest that dietary Na and K influence mineral metabolism and that dietary Na affects ruminal molar proportion of acetate in cattle fed lasalocid. 相似文献
9.
Effects of supplemental zinc concentration and source on performance, carcass characteristics, and serum values in finishing beef steers 总被引:1,自引:0,他引:1
Malcolm-Callis KJ Duff GC Gunter SA Kegley EB Vermeire DA 《Journal of animal science》2000,78(11):2801-2808
Three studies were conducted to examine the effects of zinc concentration or source in diets of finishing beef steers. In Exp. 1, 108 (British x Continental) beef steers were supplemented with concentrations of added zinc (as ZnSO4) at 20, 100, or 200 mg/kg of dietary DM. No differences (P > 0.10) were noted among treatments for ADG or gain:feed for the 112-d finishing period. However, a linear (P < 0.10) decrease was noted in daily DMI with increasing zinc concentrations for the overall finishing period. No differences (P > 0.10) were noted in hot carcass weight; dressing percentage; longissimus muscle area; percentage of kidney, pelvic, and heart fat; or marbling score. There were, however, quadratic increases in s.c. fat thickness (P < 0.05) and yield grade (P < 0.01) with added zinc. In Exp. 2, 12 beef steers were used to examine effects of added dietary zinc on serum concentrations of cholesterol and fatty acid profiles. No differences (P > 0.10) were observed in cholesterol or fatty acids among the supplemental zinc levels. In Exp. 3, 84 Brangus- and Angus-sired steers were fed a steam-flaked corn-based diet containing 30 mg of supplemental zinc per kilogram of dietary DM from one of the following sources: 1) ZnSO4, 2) Zn amino acid complex, or 3) a zinc polysaccharide complex. No differences (P > 0.10) were noted for the overall 126-d trial for ADG, DMI, or gain:feed ratio. Percentage kidney, pelvic, and heart fat was increased (P < 0.10) in steers supplemented with ZnSO4 vs the average of Zn amino acid and Zn polysaccharide complexes. However, s.c. fat thickness was greater (P < 0.10) in steers supplemented with Zn amino acid and Zn polysaccharide complexes vs ZnSO4. Serum zinc concentration did not differ (P > 0.10) among zinc sources. Supplemental zinc concentration in finishing diets did not seem to influence feedlot performance and had a minimal impact on carcass quality. Either the organic or inorganic source can be included in finishing diets without affecting feedlot performance. 相似文献
10.
11.
Effects of soybean oil and dietary copper on ruminal and tissue lipid metabolism in finishing steers
An experiment was conducted to determine the effects of Cu and soybean oil (SBO) supplementation on ruminal and tissue lipid metabolism and carcass characteristics in finishing steers. Sixty Angus steers (369.0 +/- 10.1 kg) were stratified by weight and randomly assigned to treatments in a 2 x 2 factorial arrangement, with factors being 0 or 20 mg of supplemental Cu/kg DM from Cu sulfate and 0 or 4% SBO. Steers were fed a high-concentrate basal diet that contained 5.3 mg Cu/kg DM. Average daily gain and feed intake were reduced (P < 0.01) by SBO but were not affected by Cu. Gain:feed ratio was not affected by treatment. Liver Cu concentrations were higher (P < 0.01) in steers receiving supplemental Cu and lower (P < 0.04) in SBO-supplemented steers. Copper supplementation tended to reduce (P < 0.12) and SBO supplementation tended to increase (P < 0.11) serum cholesterol concentrations. Backfat depth was reduced (P < 0.10) by Cu and SBO supplementation. Marbling scores and longissimus muscle lipid content were not affected by Cu supplementation; however, SBO supplementation reduced (P < 0.01) marbling scores. Longissimus muscle polyunsaturated fatty acids tended to be increased (P < 0.14) in Cu-supplemented steers. Longissimus muscle C18-conjugated dienes and the 18:1 trans isomer were increased (P < 0.05) in SBO-supplemented steers. Ruminal fluid 18:3 was increased (P < 0.05) and the 18:1 trans isomer was decreased (P < 0.05) in Cu-supplemented steers. These results indicate that as little as 20 mg of supplemental Cu/kg DM can reduce backfat and may alter lipid metabolism in steers fed high-concentrate diets. 相似文献
12.
R A Zinn 《Journal of animal science》1989,67(4):1029-1037
Two hundred twenty-eight crossbred steers (304 kg) were used in a 125-d comparative slaughter trial to evaluate the influence of level and source of supplemental fats on their feeding value for feedlot cattle. Dietary treatments consisted of a steam-rolled, barley-based finishing diet containing 1) no supplemental fat; 2) 4% yellow grease (YG); 3) 4% blended animal-vegetable fat (BVF); 4) 8% YG; 5) 8% BVF or 6) 6% BVF and 2% crude soybean lecithin. Increasing level of supplemental fat in the diet resulted in linear improvements (P less than .01) in weight gain, feed conversion and NE value of the diet. Estimated NE values of YG and BVF were similar and did not appear to be influenced by level of supplementation, averaging 5.78 and 4.61 Mcal/kg for maintenance and gain, respectively. Fat supplementation resulted in linear increases in empty body fat (P less than .01), kidney, pelvic and heart fat (P less than .01) and marbling score (P less than .05). Partially replacing BVF with lecithin did not influence (P greater than .10) steer performance, carcass merit or estimated NE value of the diet. The comparative feeding value (in terms of both diet acceptability and NE value) of the supplemental fats tested was similar and was apparently not influenced by level of supplementation up to 8% of diet DM. 相似文献
13.
Forty-eight growing pigs were randomly assigned to five dietary groups and penned individually. They received a diet based on barley, wheat, corn and soya bean meal according to requirement. The experimental groups were supplemented with 400% or 800% of vitamins B(2), B(6) and pantothenic acid, or 400% or 800% of biotin, while all other vitamins were administered according to requirement. Growth performance, carcass characteristics, aspartate aminotransferase (AST), and content of vitamins in blood, liver and muscles were recorded. Growth performance showed no influence of supplementation, while backfat thickness in the group with 800% B(2)/B(6)/pantothenic acid was significantly higher. Content of B(2) in blood, liver and muscle was similar in all groups. Content of B(6) in blood and liver showed significant differences according to supplementation. The content of vitamin B(6) in muscle in the experimental groups was significantly higher than that in the control group. The content of pantothenic acid in blood and muscle in the experimental groups was significantly higher, while in liver all groups were significantly influenced by the supplementation level. Biotin content in liver showed no influence, but the content in plasma was significantly higher in the experimental groups and the content in muscle was significantly higher according to supplementation. The activity of AST showed no significant influence of the dietary vitamin level, but it was obviously decreased in the groups supplemented with biotin. The findings indicate that the dietary supplementation of vitamin B(2), B(6), pantothenic acid and biotin could not improve performance, but the contents in blood, liver and muscle. 相似文献
14.
Influence of oscillating dietary crude protein concentration on performance, acid-base balance, and nitrogen excretion of steers 总被引:2,自引:0,他引:2
Cole NA Greene LW McCollum FT Montgomery T McBride K 《Journal of animal science》2003,81(11):2660-2668
Decreasing dietary N inputs into beef cattle feeding operations could potentially decrease environmental concerns relating to air and water quality. Previous studies with sheep suggest that oscillating dietary CP concentrations may improve N use efficiency and thereby decrease dietary N requirements. Therefore, two studies were conducted to determine the effects of oscillating dietary CP concentrations on performance, acid-base balance, and manure characteristics of steers fed high-concentrate diets. Steers were fed to a constant backfat thickness in both studies. In the first trial, 92 steers (mean BW = 408 +/- 2.8 kg; four pens/treatment) were fed the following diets: 1) constant 12% CP, 2) constant 14% CP, and 3) 10 and 14% CP oscillated at 2-d intervals. Steer performance and carcass characteristics were measured. In the second trial, 27 steers were individually fed the same three experimental dietary regimens (nine steers/treatment). Animal performance, arterial acid-base balance, plasma metabolites, and fecal characteristics were measured. In both trials, steers fed the 14% CP diet tended (P < 0.10) to have greater ADG and gain:feed than steers fed the 12% CP diet. Steers fed the oscillating CP regimen had intermediate performance. In Trial 1, steers fed the 14% CP diet tended (P = 0.09) to have smaller longissimus area and higher quality grades than steers fed the oscillating CP regimen. Protein retentions (g/d) calculated from NRC (2000) equations were greater (P = 0.04) for steers fed the 14% CP diet than steers fed the 12% CP diet. Steers fed the oscillating CP regimen tended (P = 0.08) to have greater calculated protein retention (g/d) than steers fed the 12% CP diet. Steers fed the 14% CP diet had greater (P < 0.05) calculated urinary N excretion than steers fed the 12% CP or oscillating CP regimens. Venous plasma concentrations of urea N were greater (P < 0.001) in steers fed the 14% CP diet than in steers fed the 12% CP diet; steers fed the oscillating CP regimen were intermediate but fluctuated over days. Based on arterial blood gas concentrations, acid-base balance was not significantly affected by dietary CP regimen. Results of these trials suggest that the CP requirement of steers in these studies was greater than 12% of the diet DM, and/or that the degradable CP requirement was greater than 6.3% of diet DM. However, the effects of oscillating dietary CP were minimal. 相似文献
15.
Twenty-four Hereford steers averaging 228 kg initially were used to evaluate four levels of lysocellin (0, 11, 22 and 33 mg/kg diet) when individually fed a corn silage-based diet. Gains were similar for all lysocellin levels over the 112-d study. As lysocellin level increased, there was a linear decrease in dry matter intake and an improvement in feed conversion (P less than .05). Feed to gain ratios were 6.27, 6.14, 5.67 and 5.59 for the 0, 11, 22 and 33 mg/kg of lysocellin treatments, respectively. Molar proportion of acetate was lower (P less than .05) and propionate was higher (P less than .05) for steers fed lysocellin than for controls at d 84. Ruminal fluid concentrations of soluble Cu and Zn were higher (P less than .05) in steers fed lysocellin at 28 and 84 d and increased as lysocellin level increased. Plasma Zn was lower (P less than .05) at both 28 and 84 d in steers fed lysocellin, whereas plasma Cu concentrations were similar for controls and for those fed lysocellin. Both ruminal fluid soluble P and plasma P concentrations were higher (P less than .05) in steers fed lysocellin than in controls at d 84. These results are interpreted to indicate that feed conversion of growing cattle is improved by lysocellin and that metabolism of certain minerals is affected by this ionophore. 相似文献
16.
Chizzotti FH Pereira OG Tedeschi LO Valadares Filho SC Chizzotti ML Leão MI Pereira DH 《Journal of animal science》2008,86(5):1173-1181
Two trials were conducted to evaluate the effects of dietary NPN levels on animal performance, diet digestibility, ruminal characteristics, and microbial efficiency. Experiment 1 was conducted with 24 Holstein x Nellore crossbred steers (350 +/- 20 kg of BW) distributed in 6 blocks to evaluate intake and digestibility of nutrients and performance. The diets consisted of 70% corn silage and 30% concentrate (DM basis) and were formulated to contain 12.5% CP (DM basis). Treatments consisted of 0, 15.5, 31, and 46.5% of dietary N as NPN. There were no treatment differences in the daily intakes of DM (P = 0.47), OM (P = 0.60), CP (P = 0.24), nonfiber carbohydrates (NFC; P = 0.74), or TDN (P = 0.63); however, NDF intake decreased linearly as NPN increased (P = 0.02). Additionally, no effects of NPN were observed on apparent total tract digestibility of DM (P = 0.50), OM (P = 0.53), NDF (P = 0.63), or NFC (P = 0.44). The apparent total tract digestibility of CP increased linearly (P = 0.01), but ADG (1.14 kg/d) was not influenced (P = 0.96) as NPN increased. In Exp. 2, 4 ruminally and abomasally cannulated steers (300 +/- 55 kg of BW) were fed the same diet used in Exp. 1 to evaluate the effects of NPN levels on intake and digestibility of nutrients, ruminal characteristics, and microbial efficiency. There were no differences in the daily intakes of DM (P = 0.22), OM (P = 0.17), CP (P = 0.31), NDF (P = 0.29), or TDN (P = 0.49). However, NFC intake increased linearly (P = 0.02), and there was a quadratic effect (P = 0.01) on intake of ether extract as NPN increased. Ruminal digestibility of CP increased linearly (P = 0.01) with the increase of dietary NPN. There were no differences (P >or= 0.28) in microbial protein synthesis and microbial efficiency among the treatments. The results of these trials suggest that dietary NPN levels (up to 46.5% of total N) can be fed to crossbred steers receiving corn silage-based diets without affecting their growth performance or ruminal protein synthesis. 相似文献
17.
R A Zinn 《Journal of animal science》1989,67(4):1038-1049
Six crossbred steers (315 kg) with cannulas in the rumen, proximal duodenum and distal ileum were used to study the influence of level and source of dietary fat on characteristics of digestion. Dietary treatments consisted of a steam-rolled barley-based finishing diet containing 1) no supplemental fat; 2) 4% yellow grease (YG); 3) 4% blended animal-vegetable fat (BVF); 4)8% YG; 5) 8% BVF or 6) 6% BVF and 2% crude lecithin. Increasing level of fat supplementation resulted in linear decreases (P less than .01) in ruminal and total tract digestion of OM and ADF and intestinal digestion of fat (P less than .05). At the 4 and 8% levels of supplementation, intestinal true digestibility of fat averaged 80.1 and 69.3%, respectively. Ruminal molar proportions of acetate decreased, and propionate molar proportion, as well as DE and ME values of the diet, increased linearly (P less than .01) with level of fat supplementation. The DE and ME values for fat were 8.17 and 9.76 at the 4% level and 7.35 and 8.72 Mcal/kg at the 8% level of supplementation, respectively. Yellow grease supplementation resulted in greater (P less than .05) ruminal fiber digestion and greater ruminal molar proportions of propionate than BVF. Intestinal fat digestion was similar (P greater than .10) for YG and BVF. Adding 25% lecithin to BVF resulted in greater ruminal fiber digestion and greater ruminal molar proportions of acetate; however, lecithin tended (P less than .10) to have a lower ME value than BVF. 相似文献
18.
Twenty-four steers initially averaging 221 kg BW were used to evaluate the effects of lysocellin and calcium (Ca) level on performance and ruminal and plasma characteristics. Lysocellin at 0 or 22 mg/kg of diet and Ca at .3 or .6% were fed in a 2 X 2 factorial arrangement of treatments. Steers in individual pens had ad libitum access to a diet consisting of 80% corn silage and 20% (DM basis) of a protein, mineral and vitamin supplement. Ruminal fluid and blood samples were collected on d 42 and 85 of the 113-d trial. Steers fed the .6% Ca diet gained faster and required less feed/unit of gain than those fed the .3% Ca diet (P less than .05). There was a tendency for a lysocellin X Ca interaction for gain and feed efficiency (P less than .10). Lysocellin tended to depress performance when fed with .3% Ca, but it tended to improve gain and feed efficiency when fed with .6% Ca. Molar proportions of propionate were higher and those of acetate were lower (P less than .01) for steers fed lysocellin. Ruminal-soluble Zn, Fe and Cu levels were higher (P less than .01) in steers fed lysocellin. Ruminal-soluble Ca (P less than .01) was higher and ruminal-soluble P and Na were lower (P less than .01) in steers fed .6% Ca. Plasma K was higher (P less than .05) in steers fed .6% Ca but it was lower (P less than .05) in steers fed lysocellin. Results of this study indicate that dietary Ca affects certain metabolic responses to lysocellin in growing cattle. 相似文献
19.
Bryant TC Rivera JD Galyean ML Duff GC Hallford DM Montgomery TH 《Journal of animal science》1999,77(11):2893-2903
Ruminally protected choline (RPC) was evaluated in two experiments. In Exp. 1, beef steers (n = 160; average initial BW = 350.9 kg) were fed a 90% concentrate diet with either 0, .25, .5, or 1.0% RPC (DM basis) for 112 to 140 d. Feeding .25% RPC increased ADG 11.6% compared with 0% RPC, but responses diminished with increasing RPC level (cubic response, P < .10). Daily DMI was not affected by RPC level, but feed:gain was improved 6.8% with .25% RPC compared with 0% RPC, and responses diminished with increasing RPC level (cubic response, P < .10). Carcass yield grade increased linearly (P < .10) as RPC level increased, but marbling score was lower for all three RPC-containing diets than for the 0% RPC diet (quadratic response, P < .05). In Exp. 2, 20 Suffolk lambs (initial BW = 29.8 kg) were fed an 80% concentrate diet for 56 d with the same RPC levels as in Exp. 1. Serum triglycerides (TG) and cholesterol (CLSTRL) were measured in weekly blood samples, and intensive blood samples were collected on d 28 and 56 to evaluate serum insulin (INS), GH, and NEFA. For the 56-d feeding period, ADG responded quadratically (P < .10) to RPC level, but DMI and feed:gain were not affected. Serum INS and NEFA concentrations increased linearly (P < .05) and serum GH responded cubically (P < .05) to RPC level on d 28, but no differences were noted on d 56. Serum TG concentrations in weekly samples increased linearly (P < .10) with RPC level, but, averaged over all weeks, serum CLSTRL concentrations did not differ (P > .10) among treatments. Quantities of carcass mesenteric (P < .05) and kidney fat (P < .10) increased linearly, but longissimus muscle and liver fat contents did not differ (P > .10) among RPC levels. Supplementing RPC in high-concentrate diets improved performance, but results were not consistent among RPC levels or between cattle and sheep. Potential effects of RPC might be mediated through alterations in fat metabolism and(or) metabolic hormones related to fat metabolism. 相似文献
20.
Jiriaei Fatemeh Kazemi-Bonchenari Mehdi Moradi Mohammad Hossein Mirmohammadi Davood 《Tropical animal health and production》2020,52(2):829-837
Tropical Animal Health and Production - The effects of feeding corn steep liquor (CSL; 420 g/kg crude protein, DM basis) along with different cereal grains on performance, digestibility,... 相似文献