首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation of chlorotoluron, 1-(3-chloro-4-methylphenyl)-3,3-dimethylurea, was investigated in laboratory and field-grown wheat and soil. Thin-layer cochromatography and, partially, derivatization and mass spectroscopy were used to elucidate the structures of the metabolites. Wheat treated with 4-methyl[14C]-phenyl-labeled chlorotoluron rapidly metabolized the herbicide using two independent mechanisms: (I) oxidation of the 4-methylphenyl group to yield 4-hydroxy-methylphenyl and 4-carboxyphenyl derivatives; and (II) N-demethylation. Mechanism (I) clearly predominated over mechanism (II). Young wheat degraded the herbicide mainly to 4-hydroxy-methylphenyl derivatives with only a small fraction being additionally N-monodemethylated. Most of both metabolites was conjugated, most probably, with glucose. In straw and grains of mature field-grown summer wheat treated postemergence with labeled chlorotoluron at a rate corresponding to 2 kg active ingredient/hectare 2.8 ppm and 0.12 ppm radioactivity equivalent to chlorotoluron were found, respectively. About 50% of this terminal radioactivity was nonextractable by organic solvents. No chlorotoluron or its N-demethylated derivatives were present in either plant part. About 40% of the radioactivity in straw consisted of 4-carboxyphenyl derivatives half of which were N-mono- or didemethylated. The rest of the terminal radioactivity was mainly in form of the 4-hydroxymethylphenyl derivative of chlorotoluron. Less than 20% of the soluble metabolites was present as conjugates. In soil mechanism (II) exceeded mechanism (I). At harvest of the wheat the 0.4 ppm radioactivity of the 0- to 30-cm soil layer was composed of 43% chlorotoluron, 36% N-mono- and 3% N-didemethylated chlorotoluron, as well as 13% 4-carboxyphenyl derivatives partly N-demethylated.  相似文献   

2.
Dinitroaniline herbicides such as oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide) disrupt mitosis in the meristematic cells of seedling plants by inhibiting the formation of microtubules. For further understanding of the biochemical mechanism of action of oryzalin, laboratory analyses with isolated plant tubulin must be employed. Plant tubulin from flagella of the alga Chlamydomonas was isolated and purified. This tubulin was incubated with [14C]oryzalin, and free oryzalin was separated from oryzalin bound to plant tubulin by miniature DEAE-cellulose chromatography. Scatchard analysis predicts a molar ratio of oryzalin bound to plant tubulin of 1.0 ± 0.1 when oryzalin is incubated with plant tubulin for 30 min at pH 6.9 and 25°C. The association constant for the oryzalin-tubulin complex is 2.08 ± 0.08 × 105M?1 at 25°C. The thermodynamic values for the formation of the oryzalin-tubulin complex at 25°C are ΔGo = ?7.25 ± 0.02 kcal mol?1, ΔHo = 6.5 ± 0.2 kcal mol?1, and ΔSo = 46 ± 2 cal mol?1 deg?1 (mean ± standard error). Oryzalin has little or no affinity for intact microtubules, previously denatured plant tubulin, actin, bovine serum albumin, calmodulin, ferredoxin, trypsin, or urease, indicating oryzalin is specific for the biologically active conformation of plant tubulin. Oryzalin binds to plant tubulin to form a complex that may be incapable of polymerizing into microtubules.  相似文献   

3.
[14C]Buturon, a urea herbicide, was sprayed on soil and winter wheat as an aqueous formulation (2.98 kg/ha) under outdoor conditions. Three months after application, a total of 49.2% of the applied radiocarbon was recovered: 46.9% in the soil, 0.3% in the leaching water (depth > 50 cm), and 2.0% in the plants. Radioactive residues in the soil were distributed to a depth of 50 cm and decreased with increasing depth of the soil. An average of 47% of the radioactivity present in the soil could be extracted with cold chloroform; by this extraction method, the formation of artefacts was avoided. Between one and two thirds of the extracted radioactivity was unchanged buturon. In the soil extracts, the following eight conversion products were isolated and identified by combined gas chromatography/mass spectrometry: N-(p-chlorophenyl)-N-methyl-O-methyl carbamate; N-(p-chlorophenyl)-O-methyl carbamate; N-(p-chlorophenyl)-N′-methyl-N′-isobutenyl-urea; N-(p-chlorophenyl)-N′-methyl-urea, N-(p-chlorophenyl)-N′-methyl-N′-isobutenylol-urea; p-chloroaniline in “biologically bound” form; N-(p-chlorophenyl)-N′-methyl-N′-methoxyisobutenyl-urea; and N-(p-chlorophenyl)-N′-methyl-N′-ethoxyisobutenyl-urea. In the leaching water, which contained only 0.005–0.006 mg/liter of radioactive substances, the following three conversion products were isolated and identified by gas chromatography/mass spectrometry: p-chloroformanilide; N-(p-chlorophenyl)-N-methyl-O-methyl carbamate; and an N-hydroxyphenyl-N′-methyl-N′-isobutinyl-urea. The results are discussed in relation to the factors responsible for the formation of these products.  相似文献   

4.
Ring- and carboxyl-labelled [14C]2,4-D were incubated under laboratory conditions, at the 2 g/g level, in a heavy clay, sandy loam, and clay loam at 85% of field capacity and 20 1C. The soils were extracted at regular intervals for 35 days with aqaeous acidic acetonitrile, and analysed for [14C]2,4-D and possible radioactive degradation products. Following solvent extraction, a portion of the soil residues were combusted in oxygen to determine unextracted radioactivity as [14C]carbon dioxide. The remaining soil residues were then treated with aqueous sodium hydroxide, and the radioactivity associated with the fulvic and humic soil components determined. In all soils there was a rapid decrease in the amounts of extractable radioacitivity, with only 5% of that applied being recoverable after 35 days. All recoverable radioactivity was attributable to [14C]2,4-D, and no [14C]-containing degradation products were observed. This loss of extractable radioactivity was accompanied by an increase in non-extractable radioactivity. Approximately 15% of the applied radioactivity, derived from carboxyl-labelled [14C]2,4-D, and 30% from the ring-labelled [14C]2,4-D was associated with the soil in a non-extractable form, after 35 days of incubation. After 35 days, less than 5% of the radioactivity from the carboxyl-labelled herbicide, and less than 10% of the ringlabelled material, was associated with the fulvic components derived from the three soils. Less than 5% of the applied radioactivities were identifiable with any of the humic acid components. It was considered that during the incubation [14C]2,4-D did not become bound or conjugated to soil components, and that non-extractable radioactivity associated with the three soil types resulted from incorporation of radioactive degradation products, such as [14C]carbon dioxide, into soil organic matter.  相似文献   

5.
The mode of action of trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine), oryzalin (3,5-dinitro-N4,N4-dipropylsulfanilamide), pronamide(N-(1,1-dimethylpropynyl) 3,5-dichlorobenzamide), and propham (isopropyl carbanilate) on purified microtubules from pig brains and on the ultrastructure of wheat (Triticum aestivum L. “Mediterranean,” C. I. 5303) and corn (Zea mays L. “yellow dent, U. S. 13”) roots was compared with that known for colchicine. Colchicine disrupts the in vivo cortical and spindle microtubules of root cells. Like colchicine, the herbicides trifluralin, oryzalin, and pronamide caused the loss of both cortical and spindle microtubules of root cells. The rate of microtubule disappearance depended on the type of herbicide and length of exposure of roots to the herbicide. Unlike colchicine, cortical microtubules were present in propham-treated roots but they were disoriented within the cell.In vitro polymerization studies with pig brain microtubules (Sus scrofa) showed that the herbicides failed to inhibit the assembly of purified microtubular protein into microtubules and that radioactively labeled herbicides did not bind to the microtubular protein. Colchicine inhibited the polymerization of microtubular protein and readily bound to the microtubular subunits. These results indicate that the mode of action of the herbicides is not similar to that of colchicine and that the loss of microtubules from root tip cells treated with trifluralin, oryzalin, and pronamide may be caused by these herbicides interfering with synthesis of microtubular protein or metabolism of endoplasmic reticulum membranes involved in microtubule assembly. The mode of action of propham appears to be on the microtubular organizing centers rather than on microtubules per se.  相似文献   

6.
The deamination of metribuzin was studied in vitro in peroxisomes isolated from the leaves of soybean cultivars which were either metribuzin tolerant, intermediate, or sensitive. The deamination rate observed with peroxisomes from tolerant leaves was about twice the rate observed with peroxisomes from sensitive leaves. The intermediate group was also intermediate with respect to the in-vitro deamination rate. Tolerant and sensitive intact soybean plants were pulse-labeled with [14C]metribuzin via the roots for 5 h. The extractable radioactivity in roots, stems and leaves was measured and separated into metabolites after the 5 h pulse and after an additional 24 h growth in water. The level of DA (deaminated metribuzin) was always significantly higher in the stems and leaves of tolerant soybean plants (4.8–10.0% of the extracted radioactivity) than in sensitive stems and leaves (1.8–2.9%). Conjugates were rapidly formed in tolerant as well as in sensitive soybean tissues. More conjugates were found in the tolerant cultivars, especially after the 5 + 24 h incubation time. Labeled [14C]DA fed to soybean plants via the roots was conjugated two to four times faster than [14C]metribuzin. Tolerant soybean tissue conjugated [14C] DA two to three times faster than sensitive tissue. The results are interpreted as showing that, in tolerant soybean plants, metribuzin is metabolized via deamination and subsequent conjugation, in addition to the well-known direct conjugation of metribuzin parent compound.  相似文献   

7.
The fate of the di-n-butylaminosulfenyl moiety in 2,3-dihydro-2,2-dimethyl-7-benzofuranyl (di-n-butylaminosulfenyl)(methyl)carbamate (DBSC or Marshal) was studied in the cotton plant at 1, 3, 6, and 10 days following foliage treatment with [di-n-butylamino-14C]DBSC. Dibutylamine and two major radioactive metabolites were obtained following extraction of the plant tissue with a methanol-buffer containing N-ethylmaleimide (NEM), a sulfhydryl scavenger which was added to prevent the cleavage of the NS bond during the workup procedure. The most adundant radioactive material recovered from plants was identified as a product arising from the reaction between NEM and dibutylamine. Extraction of plant tissue with straight methanol-buffer solution or with methol-buffer containing other sulfhydryl scavengers resulted in 57–86% of the applied radioactivity being recovered as dibutylamine in the organosoluble fraction. When [14C]dibutylamine was applied to cotton leaves, most of the radioactivity, i.e., 96% of the total recovered radioactivity, was found in the organosoluble fraction as dibutylamine. Dibutylamine is the major metabolite of [di-n-butylamino-14C]DBSC in the cotton plant.  相似文献   

8.
[14C]Monolinuron was added to soil which was then successively cropped with spinach, cress, and potatoes. Incubation was carried out in a closed system which allowed recoveries even of volatile degradation products and gave an overall recovery of 96% of the applied radioactivity at the end of the experiment. The spinach was found to contain 4.1% of the applied activity; the cress, 5.6%; old potatoes + leaves, 9.5%; new tubers, 1%; and the soil, 68.6%. The total amount of [14C]carbon dioxide liberated was 5.3%. The quantitative separation and characterization of the extractable radioactivity in spinach yielded 10.6% as unaltered monolinuron, 12% as 4-chlorophenylurea plus 4-chlorophenyl-hydroxymethylurea, 3.7% as 4-chlorophenylmethylurea, 1.4% as 4-chlorophenyl-hydroxymethyl-methoxyurea, 1.1% as 4-chlorophenyl-methoxyurea, and 71.2% as polar metabolites. Of these polar metabolites, 67.1% were cleaved with β-glucosidase, resulting in 2.9% unknown aglucone, 48.1% 4-chlorophenyl-hydroxymethyl-methoxyurea, and 16.1% 4-chlorophenyl-hydroxymethylurea. Similar results have been obtained in cress and potatoes. The soil contained 58% of monolinuron residues and 4.7?6.5% of the same types of metabolites as were found in plants. Twenty-one percent were found as polar metabolites.  相似文献   

9.
Radioactive dinitramine (1) was incorporated at 12 Ib/acre (0.6 ppm) in Anaheim silty loam soil and its degradation studied over an 8-month period. For both specifically—14CF3 and -Ring-UL-[14C] labeled (1), only ca. 20% of the radioactivity was lost from the incorporated zone. Mehanol- or acetonitrile-extractable radioactivity decreased rapidly over the initial 60 days reaching 20% after 244 days. Two compounds were isolated and characterized as (1), 0.05 ppm, and 6-amino-1-ethyl-2-methyl-7-nitro-5-trifluoromethylbenzimidazole (2), 0.06 ppm. Two other compounds were tentatively identified by TLC as monodealkylated dinitramine (3), 0.01 ppm, and 6-amino-2-methyl-7-nitro-5-trifluoromethylbenzimidazole (4), 0.01 ppm, Sodium hydroxide (10%) and anionic surfactant (10%) were effective in removing up to 50% of the residual bound radioactivity (i.e., nonacetonitrile extractable), while dimethylamine (25%) released 26%; extraction by acid was less effective.  相似文献   

10.
Aqueous suspensions and oil emulsions of a commercial [14C]diflubenzuron (N-[[(4-chlorophenyl)amino]carbonyl]-2,6-difluorobenzamide) formulation (Dimilin W-25) remained on the leaf surface of greenhouse-treated plant tissues. Absorption, translocation, and metabolism of the [14C]diflubenzuron were not significant. Less than 0.05% of the applied 14C was found in newly developed plant tissues 28 days after spray treatment. [14C]Diflubenzuron was degraded in soil. After 91 days, biometer flask studies showed that 28% of the 14C incorporated into the soil as [14C]diflubenzuron was recovered as 14CO2. Major dichloromethane-soluble soil residues were identified as unreacted [14C]diflubenzuron and [14C]4-chlorophenylurea. A minor unknown degradation product cochromatographed with 2,6-difluorobenzoic acid. Insoluble 14C-residues increased with time and represented 67.8% of the residual 14C in the soil 89 days after treatment. Cotton plants grown for 89 days in [14C]diflubenzuron-treated soil contained only 3% of the 14C applied to the soil. Small quantities of acetonitrile-soluble [14C]4-chlorophenylurea were isolated from the foliar tissues. Root tissues contained small amounts of [14C]diflubenzuron and trace quantities of a minor 14C-product that chromotographed similarly to 2,6-difluorobenzoic acid. Most of the 14C in the plant tissues (84–93%) was associated with an insoluble residue fraction 89 days after treatment.  相似文献   

11.
N-Hydroxymethyl [carbonyl-14C] dimethoate (0.43 ppm) and N-desmethyl [carbonyl-14C] dimethoate (0.50 ppm) were stem-injected into bean plants (Phaseolus vulgaris) in two separate experiments. Plants were harvested periodically, extracted, fractionated, and analyzed for metabolites. The resulting pattern of metabolites formed from the administration of these two compounds was different. Radioactivity was not detected in the organic fraction 2 days after N-desmethyl dimethoate administration. N-Desmethyl dimethoate was rapidly broken down to dimethoate carboxylic acid and other polar metabolites, then further degraded into materials which became part of the plant constituents. N-Hydroxymethyl dimethoate was quite stable in the plant. Most of the material not remaining as parent became rapidly conjugated and constant levels of conjugate were maintained. Very little radioactivity was bound in the plant marc. The metabolic pathway of these compounds is as follows: N-hydroxymethyl to the glucoside or N-desmethyl derivative; the N-desmethyl metabolite degrades primarily to the carboxylic acid but also to N-desmethyl dimethoxon, either of which in turn may be degraded to dimethoxon carboxylic acid. The conversion of -NHCH2OH to -NH2 is a slow reaction so that conjugation becomes the route of choice when the plant is treated with N-hydroxymethyl dimethoate.  相似文献   

12.
Plant residue and soil depth effects on metribuzin degradation were investigated. Dundee silt loam soil collected at depth increments of 0–10 cm (SUR) and 10–35 cm (SUB) was treated with labeled [5?14 C]metribuzin. Samples were assayed at several time points up to 140 days after treatment. Soybean residue was added to half of the SUR samples (RES), with remaining SUR unamended (NORES). None of the SUB samples were amended with soybean residue. Metribuzin mineralization to 14CO2 proceeded more slowly in RES and SUB than in NORES and SUR, respectively. Extractable components in SUR samples included polar metabolites, plus deaminated metribuzin (DA) in the RES, and parent metribuzin in the NORES. Deaminated diketometribuzin (DADK) and metribuzin comprised major 14C components extracted from SUB, while in SUR, faster degradation of metabolites resulted in metrizubin as the primary identifiable compound. Unextractable 14C increased until day 35 for both RES and NORES, after which it remained constant for NORES. but declined for RES. A corresponding rise in RES polar 14C suggested that as soybean residue decomposed, 14C bound in the residue was released as extractable polar material. Soil with soybean residue accumulation may alter metabolite degradation patterns, but does not impede initial metribuzin degradation. Depth differences in metribuzin degradation were attributed to reductions in microbial activity with increasing soil depth.  相似文献   

13.
The breakdown of the herbicide benzoylprop ethyl [SUFFIX, ethyl N-benzoyl-N-(3,4-dichlorophenyl)-2-aminopropionate] has been examined in wheat, oat, and barley seedlings after application of 14C-labeled herbicide to the foliage.Within 15 days of the application the route and rate of the breakdown were similar in the plants of all three species. Some of the herbicide was present in the plants in a complexed form which could be extracted from the plant with organic solvents and converted back into the herbicide on treatment with hot acid. Evidence was obtained for hydrolysis of the herbicide in the plant to give its des-ethyl analog which conjugated with plant sugars. There was some evidence for a small degree of degradation of benzoylprop ethyl by debenzoylation to give products which also conjugated or complexed.There was no evidence for the formation of 3,4-dichloroaniline in the plants.  相似文献   

14.
The absorption, translocation and metabolism of the selective pre- or early post- emergence herbicide epronaz (N-ethyl-N-propyl-3-propylsulphonyl-1,2,4-triazole-1-carboxamide) were investigated using selected crop and weed species. The pattern of tolerance to epronaz of both germinating seeds and 10-day-old plants grown in nutrient solution, was found to be soybean (Glycine max L.) > maize (Zea mays L.) > cotton (Gossypium hirsutum L.) > rice (Oryza sativa L.) > barnyard grass [Echinochloa crus-galli (L.) Beauv.]. In all species, absorption and translocation of 14C from a nutrient solution containing [14C]epronaz (0.02 μCi ml?1) increased with time. Autoradiographic and liquid scintillation analysis indicated the presence of radioactivity in the apical regions of all species after 4 h. Interspecies variation in uptake and distribution did not appear to be a major factor explaining selectivity, although the resistance of cotton may be partly due to compartmentalisation of 14C in the lysigenous glands in stem and leaves. Analysis of extracts from plants treated with [14C]epronaz indicated the presence of epronaz, its major degradation product [3-propylsulphonyl-l,2,4-triazole (BTS 28 768)] and certain unknown radio-labelled compounds. The major metabolite (Unknown I) was believed to be a conjugate of certain plant components with either epronaz or BTS 28 768. The rate of formation of Unknown I corresponded to the relative resistance and susceptibility to epronaz of soybean, rice and barnyardgrass. The level of the herbicide remained much higher in cotton than in the other species, possibly reflecting compartmentalisation and inactivation of epronaz in the lysigenous glands. For maize, high levels of uptake, exudation and degradation in the nutrient solution were recorded.  相似文献   

15.
Several species of insects, exhibiting varying responsiveness to the juvenile hormone antagonist precocene II (6,7-dimethoxy-2,2-dimethylchromene), were challenged topically with a tritiated preparation of the title compound. Metabolism of [3H]precocene II was subsequently examined by withdrawing hemolymph samples from treated animals at appropriate time intervals and characterizing the extractable radiolabel chromatographically. Quantitative (or qualitative) differences observed between the respective metabolic profiles were found not correlative with specimen sensitivity to precocene. Production of two heretofore unreported metabolites, identified by spectral and chemical means as O-β-glucosides of 6- and 7-monodemethylated precocene II, was demonstrated in both sensitive and insensitive species. No evidence for the presence of a hemolymphborne, biologically effective “activated metabolite” produced in vivo by precocene-susceptible insects could be found. The latter finding may well argue for in situ bioactivation of precocene at the target tissue(s) by these sensitive insects.  相似文献   

16.
Most of the label, present in the roots of bean, tomato and barley seedlings after short-term root-treatment with 3H-triforine, appeared only weakly adsorbed on to the root tissue and was desorbed after transplanting in fungicide-free soil. Label taken up accumulated almost exclusively in the leaves present at the time of treatment; all leaves expanding after termination of the treatment remained virtually devoid of radioactivity. In “adult” plants label was usually present in a concentration gradient from roots to youngest leaves; in tomato plants, however, distribution of label was rather irregular. Time-course studies with bean and barley plants revealed that the aerial parts were gradually supplied with label, from old to youngest leaves, the maximum relative accumulation of radioactivity slowly moving acropetally. Under the experimental conditions chosen, triforine was converted nearly quantitatively to one metabolite, which almost certainly is different from any known non-enzymic breakdown product of the fungicide.  相似文献   

17.
The degradation of the herbicide diclofop-methyl, ( ± )-methyl 2-[4-(2,4-dichloro-phenoxy)phenoxy]propionate, was investigated in two agricultural soils under aerobic and anaerobic conditions. Using two differently labelled forms of [14C]-diclofop-methyl the qualitative as well as the quantitative formation of extractable metabolites was followed for 64 days. The mineralisation of the uniformly labelled aromatic rings was pursued by monitoring the 14CO2 generated for 25 weeks. As a first step of the degradation a very rapid hydrolysis of the ester bond was detected under all conditions. Diclofop, the corresponding substituted propionic acid formed, was extensively degraded under aerobic conditions, the final product being 14CO2. As an intermediate, a compound later identified by GLC/MS to be 4-(2,4-dichlorophenoxy)phenol, was found in the extracts. Furthermore, traces of six other unknown metabolites were detected. Under anaerobic conditions the degradation proceeded to a small extent. At most 3% of the applied radioactivity was accounted for by the degradation product 4-(2,4-dichlorophenoxy)phenol. No other metabolite, including 14CO2, was observed, implying lack of any further degradation.  相似文献   

18.
Absorption, translocation and metabolism of [14C]3-isopropyl-2,1,3-benzothiadiazin-4-one-2,2-dioxide (bentazon) by several plant species were investigated to determine the mechanism of bentazon selectivity.Marked selective phytotoxicities were observed between resistant rice (Oryza sativa L.) and susceptible Cyperus serotinus Rottb. when treated with bentazon. Absorption and transolcation of bentazon did not differ greatly between highly resistant rice and susceptible C. serotinus. However, a marked difference in bentazon metabolism occurred between the two species. In rice about 80% of the absorbed bentazon was metabolized within 24 h, and after 7 days about 85% was converted to a major water-soluble metabolite and unchanged bentazon was only 5%. In C. serotinus 50–75% of the radioactivity was unchanged bentazon after 7 days.Large amounts of water-soluble metabolites were detected in root-treated resistant plants such as barnyardgrass (Echinochloa crus-galli Beauv.), soybean (Glycine max Merr.) and corn (Zea mays L.), but only small amounts were present in such susceptible plants as Sagittaria pygmaea Miq. and Eleocharis kuroguwai Ohwi. Therefore, the mechanism of bentazon selectivity appears to be a difference between resistant and susceptible species in their ability to metabolize and detoxify bentazon.The major metabolite in rice was identified as 6-(3-isopropyl-2,1,3-benzothiadiazin-4-one-2,2-dioxide)-O-β-glucopyranoside, determined by GC-MS, NMR, IR and gas chromatography after hydrolysis with sulfuric acid or β-glucosidase.  相似文献   

19.
施氮量对滴灌高产春大豆根系生长及产量的影响   总被引:1,自引:0,他引:1  
为揭示施氮量对滴灌高产春大豆根系生长及产量的影响规律,在田间滴灌条件下采用挖掘取样法研究了0 kg·hm~(-2)(N_0)、75 kg·hm~(-2)(N_(75))、150 kg·hm~(-2)(N_(150))、225 kg·hm~(-2)(N_(225))4种施氮量对新大豆27号0~80 cm土层根系干物质量、侧根长度、表面积、根系活性、伤流量、根瘤数、根瘤质量及产量的影响。结果表明:随着施氮量的增加,0~80 cm土层根系总干物质量、侧根总长度、侧根总表面积呈现先增后降的变化趋势,均以N_(150)处理最高,在R_5(始粒期)期分别较N_0增加27.3%、49.46%、38.14%,其中,0~20 cm土层分别较N_0增加27.0%、29.02%、34.24%;R_5期N_(150)单株伤流量较N_0增加176.0%,R_2(盛花期)期0~20、20~40 cm土层根系活力N_(150)分别较N_0增加44.3%、25.1%;R_5期N_(150)单位面积根瘤数及质量分别较N_0减少8.74%、34.6%;施氮可增加产量,以N_(150)产量最高,为4 889.62kg·hm~(-2),氮肥农学利用效率3.58 kg·kg~(-1)。施氮增加产量主要是促进0~20 cm土层根系生长,提高0~40 cm根系活力的结果。  相似文献   

20.
Metribuzin [4-amino-6-tert-butyl-3-(methylthio)-1,2,4-triazin-5(4H)-one] metabolism was studied in tomato (Lycopersicon esculentum Mill. “Sheyenne”). Pulse-treatment studies with seedlings and excised leaves showed that [5-14C]metribuzin was rapidly absorbed, translocated (acropetal), and metabolized to more polar products. Foliar tissues of 19-day-old seedlings metabolized 96% of the root-absorbed [14C]metribuzin in 120 hr. Excised mature leaves metabolized 85–90% of the petiole-absorbed [14C]metrubuzin in 48 hr. Polar metabolites were isolated by solvent partitioning, and purified by adsorption, thin-layer, and high-performance liquid chromatography. A minor intermediate metabolite (I) was identified as the polar β-d-(N-glucoside) conjugate of metribuzin. The biosynthesis of (I) was demonstrated with a partially purified UDP-glucose: metribuzin N-glucosyltransferase from tomato leaves. A possible correlation between foliar UDP-glucose: metribuzin N-glucosyltransferase activity levels and differences in the tolerance of selected tomato seedling cultivars to metribuzin was suggested. The major polar metabolite (II) was identified as the malonyl β-d-(N-glucoside) conjugate of metribuzin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号