首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
高产小麦耗水特性及干物质的积累与分配   总被引:38,自引:1,他引:38  
在2005—2006年和2006—2007年小麦生长季降水量分别为128.0 mm和246.4 mm条件下, 采用不同灌水量处理, 研究了高产条件下冬小麦的耗水特性和小麦干物质的积累与分配。结果表明, 底水和拔节水分别灌溉60 mm处理(W2)在两个生长季获得了最高的籽粒产量, 2005—2006年生长季其水分利用效率和灌溉水的利用效率均显著高于其他灌水处理; 2006—2007年生长季, 其水分利用效率较高, 降水量、灌水量和土壤供水量分别占农田耗水量的47.32%、23.04%和29.64%; 与不灌水处理(W0)相比, 灌水处理显著提高开花后干物质的积累量和开花后干物质积累量对籽粒的贡献率, 以W2处理最高, 分别达8 241.59 kg hm-2和84.18%。灌水量过多显著减少光合产物向籽粒的分配, 使产量降低。随灌水量增加, 小麦全生育期耗水量显著增大, 灌水量占农田耗水量的比例增加, 降水量和土壤供水量占农田耗水量的比例均降低, 以土壤供水量所占比例降低最大。综合考虑小麦的籽粒产量和水分利用效率, 在本试验条件下, 以底水和拔节水各60 mm的灌溉量为最优。在小麦生长季降雨量为246.4 mm条件下, 仅灌60 mm底水亦可获得较高的籽粒产量, 其土壤供水量占农田耗水量的比例和灌溉水的利用效率高于底水和拔节水处理。  相似文献   

2.
施氮量对旱地小麦耗水特性和产量的影响   总被引:5,自引:0,他引:5  
段文学  于振文  张永丽*  王东  石玉 《作物学报》2012,38(9):1657-1664
2009—2010和2010—2011小麦生长季, 分别利用小麦品种济麦22和山农16, 研究了施氮量0 (N0)、90(N1)、120 (N2)、150 (N3)、180 (N4)和210 kg hm-2 (N5)条件下的小麦耗水特性和产量水平。N3处理的耗水量在播种至拔节期与N1和N2处理无显著差异, 但在拔节至成熟期显著高于N1和N2处理; N4处理各阶段耗水量与N3处理无显著差异; N5处理在返青至开花期耗水量显著增加。当施氮量由90 kg hm-2增加到150 kg hm-2时, 小麦对深层土壤贮水利用能力增强, 但施氮量继续增加, 80 cm以下土层土壤贮水消耗量未显著增加。N3处理在拔节后株间蒸发量显著低于N1和N2处理, 开花后旗叶水分利用效率显著高于N1和N2处理, 但与N4和N5处理拔节后的株间蒸发量及开花后旗叶水分利用效率无显著差异。在本试验条件下, N3处理的产量、水分利用效率和降水利用效率最高, 氮肥生产效率也较高, 因此150 kg hm-2是适宜的施氮量。  相似文献   

3.
公顷产10000kg小麦氮素和干物质积累与分配特性   总被引:4,自引:0,他引:4  
以泰山23和济麦22为试验品种,通过连续2年的田间试验,对单产高达10 000 kg hm-2的小麦进行了施氮量和氮素吸收转运和分配特性的研究。在2006—2007年生长季,随着施氮量的增加,小麦籽粒产量先增加后降低,施纯氮240 kg hm-2 (N240)和270 kg hm-2(N270)处理的产量分别达9 954.73 kg hm-2和10 647.02 kg hm-2,比不施氮肥处理(N0)分别增加11.20%和18.93%。与N0处理相比,施氮处理显著增加了小麦植株氮素积累量、籽粒氮素积累量和开花后营养器官氮素向籽粒的转运量;随着施氮量的增加,成熟期小麦植株氮素积累量呈先增后降趋势,以N270处理最高;开花后营养器官氮素向小麦籽粒转运量和转运率先升后降,转运量以N270处理最大,为213.78 kg hm-2;而转运率以N240处理最高,为67.98%。随施氮量的增加,小麦成熟期各器官干物质积累量、花后营养器官干物质再分配量和再分配率先增后降,均以N270处理最高;开花后干物质积累对籽粒的贡献率亦呈先增后降的趋势,以N240处理最高。2005—2006年的试验结果呈相同变化趋势。在本试验条件下,小麦产量水平达10 000 kg hm-2时的适宜施氮量为240~270 kg hm-2,可供生产中参考。  相似文献   

4.
公顷产10000kg小麦氮素和干物质积累与分配特性   总被引:17,自引:0,他引:17  
以泰山23和济麦22为试验品种,通过连续2年的田间试验,对单产高达10 000 kg hm-2的小麦进行了施氮量和氮素吸收转运和分配特性的研究。在2006-2007年生长季,随着施氮量的增加,小麦籽粒产量先增加后降低,施纯氮240 kg hm-2 (N240)和270 kg hm-2(N270)处理的产量分别达9 954.73 kg hm-2和10 647.02 kg hm-2,比不施氮肥处理(N0)分别增加11.20%和18.93%。与N0处理相比,施氮处理显著增加了小麦植株氮素积累量、籽粒氮素积累量和开花后营养器官氮素向籽粒的转运量;随着施氮量的增加,成熟期小麦植株氮素积累量呈先增后降趋势,以N270处理最高;开花后营养器官氮素向小麦籽粒转运量和转运率先升后降,转运量以N270处理最大,为213.78 kg hm-2;而转运率以N240处理最高,为67.98%。随施氮量的增加,小麦成熟期各器官干物质积累量、花后营养器官干物质再分配量和再分配率先增后降,均以N270处理最高;开花后干物质积累对籽粒的贡献率亦呈先增后降的趋势,以N240处理最高。2005-2006年的试验结果呈相同变化趋势。在本试验条件下,小麦产量水平达10 000 kg hm-2时的适宜施氮量为240~270 kg hm-2,可供生产中参考。  相似文献   

5.
水氮调控对小麦植株干物质积累、分配与转运的影响   总被引:2,自引:0,他引:2  
为明确陕西关中地区节水高肥效的生产最优灌溉和施肥技术,以陕西关中3个品种为供试材料,设置不同灌水模式、施氮量、施肥方式,采用裂区设计,对不同小麦品种植株各器官干物质的积累、分配和转运进行研究。结果表明:3个品种间籽粒干物质分配量和比例均无显著差异,各器官中的干物质向籽粒的转运量、转运率及其对籽粒的贡献率表现不一致;施氮量对小麦干物质氮素积累、分配和转运的影响均无显著差异;施氮量相同的情况下,60%底肥+40%追肥处理,各器官中干物质的积累量和分配比例,以及各营养器官中干物质向籽粒的转运量、转运率和贡献率均高于100%底肥处理。四因素对小麦植株干物质积累分配与转运的影响顺序为:品种>灌溉模式>施氮量>施氮方式。  相似文献   

6.
2011-2012和2012-2013年连续2个小麦生长季,在大田条件下,设置0~20 cm (D1)、0~40 cm (D2)、0~60 cm (D3)和0~140 cm (D4) 4个土层测定土壤含水量,以各土层平均土壤相对含水量拔节期65%和开花期70%为目标相对含水量,全生育期不灌溉为对照处理 (D0),研究依据不同土层的土壤含水量测墒补灌对小麦旗叶光合特性和干物质积累与分配的影响。结果表明:D2的开花期叶面积指数和单位土地面积上旗叶叶面积、开花后7 d和14 d的旗叶净光合速率和实际光化学效率均高于其他处理,而气孔限制值低于其他处理;D2的成熟期干物质积累量、开花后干物质向籽粒的分配量和开花后同化物分配对籽粒的贡献率亦高于其他处理。两年度D2的籽粒产量分别为9367.4 kg hm-2和9727.5 kg hm-2,均显著高于其他处理;同时,D2的水分利用效率高于D0、D3和D4处理,与D1处理无显著差异。因此,于小麦拔节期和开花期依据0~40 cm土层的土壤含水量测墒补灌是同步实现高产和高水分利用效率的有效措施。  相似文献   

7.
不同株型小麦干物质积累与分配对氮肥响应的动态分析   总被引:19,自引:0,他引:19  
李国强  汤亮  张文宇  曹卫星  朱艳 《作物学报》2009,35(12):2258-2265
为了揭示株型和施氮量对小麦干物质积累与分配动态的影响,通过实施不同株型小麦品种和氮肥处理的田间试验,于主要生育期测定了各处理单株及不同器官干物质积累量,并分别利用Richards和VP方程对其进行拟合。结果表明,适量施氮提高了各株型小麦的干物质平均增长速率(Ra)和最大增长速率(Rmax),缩短了各株型小麦到达Rmax的时间,延长了各株型小麦的缓增持续期(D3)。施氮提高了紧凑型矮秆品种矮抗58、松散型品种淮麦17和中间型品种扬麦12的起始生长势(R0),缩短了上述3种株型小麦的渐增持续期(D1),降低了其到达Rmax时的干物质积累量(WRmax),而紧凑型高秆品种宁麦9号的R0、WRmax和D1与上述3种株型小麦的变化趋势相反。随施氮量的增加,矮抗58和宁麦9号的快增持续期(D2)呈下降趋势,而淮麦17和扬麦12的D2以中氮处理(150 kg hm-2)最低。施氮降低了淮麦17和扬麦12的叶、穗最大分配比例(Pmax)以及矮抗58和宁麦9号的茎鞘最大分配比例(PSmax),但增加了矮抗58和宁麦9号的叶部和穗部Pmax以及淮麦17和扬麦12的PSmax。施氮降低了宁麦9号、淮麦17和扬麦12的叶分配比例最大下降速率及矮抗58和宁麦9号的穗分配比例最大增长速率,而增加了矮抗58的叶分配比例最大下降速率及淮麦17和扬麦12的穗分配比例最大增长速率,但过量施氮抑制了宁麦9号穗分配比例最大增长速率的增加和扬麦12穗分配比例最大增长速率的下降。施氮对各株型小麦茎鞘分配比例最大增长和下降速率(RSimax和RSdmax)的影响无明显规律。因此,在建立高产小麦栽培技术体系时,应充分考虑到不同株型小麦干物质积累和分配动态对施氮量的响应差异。  相似文献   

8.
在高产条件下,研究了施氮0、75、150、225、300和375kg·hm-2对杂交棉干物质积累、分配和氮、磷、钾的吸收、分配与利用的影响,结果表明:施氮量与杂交棉的干物质和氮、磷、钾的积累间均表现显著正相关,増施氮肥促进了杂交棉的干物质和氮、磷、钾的积累,但是当施氮量增加到300kg·hm-2后,促进效果不显著。施氮量与各器官干物质、氮、磷、钾的分配比例关系:与叶片呈显著或极显著正相关,在棉花生育中期与茎呈负相关,生育后期呈正相关,在棉花生育中期与蕾、花、铃呈显著正相关,生育后期呈显著负相关。施氮量增到300kg·hm-2后,棉花生育后期干物质和氮磷钾在生殖器官的分配比例明显下降,在茎叶的分配比例明显提高,表现营养生长过旺。氮积累和分配与磷、钾积累和分配间表现很好的正相关,从产量水平看,以每公顷施氮300kg的子棉产量最高,比施氮225kg的增产1.66%,增产不显著。施氮量达375kg·hm-2时,子棉产量比300kg·hm-2的减产3.92%、比225kg·hm-2减产2.23%。随施氮量增加,氮肥利用率明显下降,而磷和钾的利用率提高。  相似文献   

9.
赵涛 《种子科技》2020,(4):19-20
为了探明不同施氮水平对小粒黑豆干物质积累特性的影响,选用"连枷条"小粒黑豆品种为材料,对开花期至成熟期植株地上部干物质及籽粒干物质积累动态进行研究。结果表明:小粒黑豆开花后,地上部干物质的积累量先增加后减少,籽粒干物质则持续增长。综合分析表明:小粒黑豆干物质积累最适宜的氮肥施用量为纯氮12 kg/667 m^2。  相似文献   

10.
林祥  王东 《作物学报》2017,43(9):1357-1369
我国黄淮平原水资源紧缺,而且年际间降水量及其时间分布存在较大差异,探明不同底墒条件下补充灌溉对冬小麦产量和水分利用效率的调节效应及其生理基础,可为该地区冬小麦节水高产栽培提供理论和技术支持。2013—2014和2014—2015年冬小麦生长季,在播种期0~100 cm土层土壤贮水量分别为201.5(A)、266.3(B)和317.0mm(C)3种底墒条件下,各设置4个补灌水处理,包括不灌水、拔节期+开花期补灌、越冬期+拔节期+开花期补灌、播种期+拔节期+开花期补灌,研究不同处理冬小麦耗水特性、旗叶光合、干物质积累与分配、产量及水分利用效率的差异。结果表明,冬小麦生育期总耗水量和土壤水消耗量均随播种期底墒的提高而增加。在底墒A和B条件下,冬小麦主要消耗降水和灌溉水。提高播种期补灌水平或于越冬期补灌,冬小麦在底墒A条件下对土壤水的消耗量显著增加,在底墒B条件下对土壤水的消耗量显著减少。在底墒C条件下,冬小麦耗水以土壤水为主,其次为降水,再次为灌溉水;播种期或越冬期补灌显著增加生育期总耗水量,对土壤水消耗量则无显著影响。于播种期、拔节期和开花期补灌,冬小麦在底墒A条件下可获得较高的籽粒产量,但水分利用效率较低;在底墒B条件下籽粒产量和水分利用效率均较高;在底墒C条件下,仅于拔节期和开花期补灌即可获得高产和高水分利用效率,播种期和越冬期无需补灌。综上所述,播前底墒是实施冬小麦合理补灌的重要依据。  相似文献   

11.
氮肥对小黑麦中饲237干物质积累及分配的影响   总被引:6,自引:0,他引:6  
李焰焰  聂传朋  董召荣 《种子》2006,25(7):41-43
对大田条件下不同施氮量和施氮方式对小黑麦中饲237干物质积累及分配的影响进行研究。结果表明,氮肥能提高中饲237灌浆中期的维管束数目、穗下节的长度和直径,促进中饲237拔节期后的干物质积累,提高牧草产量,且氮肥基.追2次施用效果比一次基施更好。中饲237灌浆中期,干物质在各器官中的分配额由大到小为茎〉穗部(穗轴+颖壳〉籽粒)〉鞘〉叶片。加大施氮量并且分两次施用能促进中饲237灌浆中期营养物质由鞘、茎叶向籽粒转移。  相似文献   

12.
为明确甘肃中部地区春小麦合理的施氮水平和灌水量,以陇春27为研究对象,以灌水量[1000(W1)、2000(W2)和3000m3/hm2(W3)]为主区,施氮量[0(N0)、80(N1)、160(N2)和240kg/hm2(N3)]为副区,研究水氮对小麦干物质累积、氮含量、氮素累积及产量的影响。结果表明,不同施氮量和灌水量对小麦干物质累积量、氮累积量、籽粒产量及氮转运均有显著影响,且存在互作效应;各生育期小麦干物质累积量随灌水量与施氮量的增大呈增大趋势,灌水量对干物质累积量影响大于施氮量;茎和叶氮含量随施氮量增大而增大,氮含量为籽粒>叶>颖壳>根>茎,灌水处理对小麦营养器官氮含量影响小于施氮处理;随灌水量与施氮量增大,小麦各器官氮累积量呈先增大后减小趋势;籽粒氮累积量与产量以W2N2处理最大,适宜的水氮供给有利于干物质从营养器官向生殖器官转移,从而提高籽粒产量和氮素生产效率。综上,灌水量与施肥量分别在2000m3/hm2和160kg/hm2时有利于小麦生产。  相似文献   

13.
耕作方式对旱地小麦耗水特性和干物质积累的影响   总被引:12,自引:0,他引:12  
黄淮海地区旱地小麦种植面积较大,降水少且年际间变化幅度大造成其产量低而不稳。耕作措施可影响土壤的蓄水,于2009-2011年连续2个小麦生长季,设置条旋耕、深松+条旋耕、深松+旋耕和旋耕4种耕作方式处理,研究耕作方式对黄淮海地区旱地小麦耗水特性和干物质积累的影响。结果表明,深松+条旋耕处理有利于降低小麦播种至冬前阶段的耗水量,提高开花至成熟阶段的耗水量及其占总耗水量的比例。2009-2010年度,深松+条旋耕处理播种至拔节阶段0~20 cm土层贮水减少量显著低于深松+旋耕和旋耕处理,拔节至成熟阶段40~160 cm土层贮水减少量显著高于条旋耕和旋耕处理。2009-2010年度的各生育时期和2010-2011年度的苗期、开花期、灌浆期,深松+条旋耕处理株间蒸发量显著低于深松+旋耕和旋耕处理,与条旋耕处理无显著差异。深松+条旋耕处理开花至成熟阶段干物质积累量显著高于其他处理,耗水量显著高于条旋耕和旋耕处理,水分利用效率高于深松+旋耕和旋耕处理,与条旋耕处理无显著差异,而且籽粒产量最高,是本试验条件下的最优耕作方式。  相似文献   

14.
土壤耕作方式对小麦干物质生产和水分利用效率的影响   总被引:14,自引:0,他引:14  
2007—2010小麦生长季,以高产小麦品种济麦22为材料,利用测墒补灌技术确定灌水量,研究高产条件下条旋耕、深松+条旋耕、旋耕、深松+旋耕和翻耕5种耕作方式对小麦的耗水特性、干物质积累与分配、籽粒产量及水分利用效率的影响。结果表明,深松+条旋耕和深松+旋耕的农田耗水量和0~200 cm土层的土壤贮水消耗量高于条旋耕和旋耕处理,深松+条旋耕的小麦株间蒸发量低于深松+旋耕和翻耕处理。深松+条旋耕和深松+旋耕成熟期的干物质积累总量、籽粒的干物质分配量及分配比例和开花后干物质同化量对籽粒的贡献率均高于翻耕处理,翻耕高于旋耕和条旋耕处理,条旋耕最低。深松+条旋耕三个生长季均获得高的籽粒产量,分别为9 409.01 kg hm-2、9 613.86 kg hm-2和9 698.42 kg hm-2,与深松+旋耕处理无显著差异,翻耕处理次之,条旋耕和旋耕低于上述处理,条旋耕最低。深松+条旋耕处理的水分利用效率在2007—2008生长季与深松+旋耕处理无显著差异;在2008—2010生长季最高,分别为21.39 kg hm-2 mm-1和22.09kg hm-2 mm-1,深松+旋耕处理次之,旋耕和条旋耕低于翻耕处理。在本试验条件下,深松+条旋耕是兼顾高产节水的最优耕作方式。  相似文献   

15.
测墒补灌对冬小麦干物质积累与分配及水分利用效率的影响   总被引:22,自引:1,他引:22  
于2007-2008和2008-2009小麦生长季, 以高产中筋冬小麦品种济麦22为材料, 在山东兖州小孟镇史王村(35.41°N, 116.41°E)采用大田试验, 研究了4种灌水处理对冬小麦干物质积累与分配及水分利用效率的影响。结果表明, 不灌水的W0处理(土壤相对含水量为播种期80% + 拔节期65% + 开花期65%)成熟期干物质积累量最低, W1处理(土壤相对含水量为播种期80% + 拔节期70% + 开花期70%)成熟期干物质积累量最高, 籽粒干物质分配量显著高于W2处理(土壤相对含水量为播种期80% + 拔节期80% + 开花期80%)和W3处理(土壤相对含水量为播种期90% + 拔节期80% + 开花期80%);开花前贮藏在营养器官中的干物质开花后向籽粒的再分配量和再分配率均为W0>W3>W2>W1, 开花后干物质积累量对籽粒的贡献率为W1>W2>W3>W0;W1处理在灌浆末期保持较高灌浆速率和净光合速率, 提高了开花后干物质的积累量和向籽粒的分配比例, 有利于增加粒重;W0处理水分利用效率较高, 但产量最低;灌水处理的籽粒产量、灌溉水利用效率、降水利用效率和灌溉效益两生长季均随测墒补灌量的增加而显著降低。综合两年结果, W1是本试验条件下高产节水的最佳灌溉处理, 其播种期、拔节期和开花期设计0~140 cm土层土壤平均相对含水量分别为80%、70%和70%, 在两个小麦生长季中, 通过测墒, 分别补充灌水43.8 mm和13.8 mm, 灌溉水和降水的利用效率最高, 并获得了最高籽粒产量, 分别为8837.8 kg hm-2和9040.9 kg hm-2。  相似文献   

16.
骆兰平  于振文  王东  张永丽  石玉 《作物学报》2011,37(6):1049-1059
2008—2010年连续2个小麦生长季,选用高产小麦品种济麦22,采用测墒补灌的方法,研究土壤水分对不同密度小麦旗叶光合性能、干物质积累与分配、籽粒产量及水分利用效率的影响。第一年在150株 m−2 (M1)和225株 m−2 (M2)两个密度下设置3个土壤含水量处理,即拔节期65%+开花期60%(W0)、拔节期75%+开花期75%(W1)和拔节后7 d 75%+开花后7 d 75%(W2);第二年选用第一年的节水高产密度处理M1,但土壤含水量调整为拔节期75%+开花期60% (W’0)、拔节期85%+开花期75%(W’1)和拔节后7 d 85%+开花后7 d 75%(W’2)。两种基本苗密度相比较,M1处理灌浆中后期的旗叶最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)和开花后干物质积累量和干物质向籽粒转运量显著高于M2处理。W2处理灌浆中后期的旗叶Fv/Fm和ΦPSII显著高于W1处理,而W’2处理灌浆中后期的旗叶光合速率(Pn)、蒸腾速率(Tr)、单叶水分利用效率(WUEL)和气孔导度(Gs)均显著高于W’1处理。在M1密度下,W2处理的干物质向籽粒的转运量,开花后干物质积累量及其对籽粒的贡献率显著高于W1处理,获得了较高的籽粒产量和水分利用效率,且干物质积累与分配、籽粒产量和水分利用效率在两年中结果趋势一致。在150株m−2密度下,0~140 cm土层平均土壤相对含水量拔节后7 d和开花后7 d均为75%和75%,是本试验条件下节水高产的最佳处理。  相似文献   

17.
高春华  于振文  石玉  张永丽  赵俊晔 《作物学报》2013,39(12):2211-2219
2007-2009年连续2个小麦生长季,利用测墒补灌技术,设置0~140 cm土壤相对含水量低(拔节期65%, 开花期55%~60%)、中(拔节期75%, 开花期65%~70%)、高(拔节期75%, 开花期75%) 3个处理,比较了14个小麦生产品种的水分利用特性及干物质积累和分配的差异。以小麦籽粒产量和水分利用率为指标的聚类分析,将14个小麦品种分为3组,分别是超高产高水分利用率组(I组)、超高产中水分利用率组(II组)和高产低水分利用率组(III组)。比较各组代表品种的耗水量、耗水模系数及日耗水量,播种至拔节期山农15 (I组)显著低于济麦22 (II组)和烟农21 (III组),拔节至开花期山农15显著高于济麦22和烟农21,开花至成熟期品种间无显著差异。在中水分条件下,山农15的土壤贮水消耗量及其占总耗水量的比例显著高于济麦22和烟农21,而在低和高水分条件下,3个品种无显著差异。在中、高水分条件下,山农15开花期的干物质积累量显著高于济麦22和烟农21,成熟期与济麦22无显著差异,但显著高于烟农21;营养器官开花前贮藏同化物向籽粒的转运量和转运率及对籽粒的贡献率均显著高于济麦22和烟农21;3品种的经济系数以山农15最大,济麦22次之,烟农21最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号