首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Sulfur-containing amino acid requirement of rapidly growing steers   总被引:3,自引:0,他引:3  
Eight ruminally cannulated steers (294 kg, ADG = 1.3 kg/d) were used in a N retention study (8 x 8 latin-square design) to evaluate sulfur-containing (S) amino acid (AA) requirements for growth. Treatments were abomasal infusions of seven levels of L-methionine (0, 3, 6, 9, 12, 15 and 18 g/d) and one level of DL-methionine (6 g/d). All steers were fed a semipurified diet based on ammoniated corn cobs (DMI = 6.56 kg/d) and were abomasally infused with 400 g/d dextrose and 296.4 g/d of crystalline AA that simulated the non-S-AA pattern of casein. Infusion of 3 g/d supplemental L-methionine maximized N retention in steers. Intestinal flows of absorbable S-AA were determined to be 1.89 g/kg DMI. Breakpoint analysis of retained N as a function of total absorbable S-AA yielded a total S-AA requirement of 14.7 g/d. Nitrogen retention for DL-methionine (36.4 g/d) was not different (P greater than .05) from that for 6 g/d L-methionine (38.8 g/d), but because this value was not in the linear response range, the efficacy of DL-methionine in meeting S-AA needs could not be evaluated. Plasma methionine concentrations increased linearly (P less than .05) in response to L-methionine infusion and were greater (P less than .05) for steers infused with 6 g/d DL-methionine (45.3 microM) than for steers receiving 6 g/d L-methionine (30.5 microM). Plasma cystine increased when up to 9 g/d L-methionine was infused.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Creatine stores high-energy phosphate bonds in muscle and is synthesized in the liver through methylation of guanidinoacetic acid (GAA). Supplementation of GAA may therefore increase methyl group requirements, and this may affect methyl group utilization. Our experiment evaluated the metabolic responses of growing cattle to postruminal supplementation of GAA, in a model where methionine (Met) was deficient, with and without Met supplementation. Seven ruminally cannulated Holstein steers (161 kg initial body weight [BW]) were limit-fed a soybean hull-based diet (2.7 kg/d dry matter) and received continuous abomasal infusions of an essential amino acid (AA) mixture devoid of Met to ensure that no AA besides Met limited animal performance. To provide energy without increasing the microbial protein supply, all steers received ruminal infusions of 200 g/d acetic acid, 200 g/d propionic acid, and 50 g/d butyric acid, as well as abomasal infusions of 300 g/d glucose. Treatments, provided abomasally, were arranged as a 2 × 3 factorial in a split-plot design, and included 0 or 6 g/d of l-Met and 0, 7.5, and 15 g/d of GAA. The experiment included six 10-d periods. Whole body Met flux was measured using continuous jugular infusion of 1-13C-l-Met and methyl-2H3-l-Met. Nitrogen retention was elevated by Met supplementation (P < 0.01). Supplementation with GAA tended to increase N retention when it was supplemented along with Met, but not when it was supplemented without Met. Supplementing GAA linearly increased plasma concentrations of GAA and creatine (P < 0.001), but treatments did not affect urinary excretion of GAA, creatine, or creatinine. Supplementation with Met decreased plasma homocysteine (P < 0.01). Supplementation of GAA tended (P = 0.10) to increase plasma homocysteine when no Met was supplemented, but not when 6 g/d Met was provided. Protein synthesis and protein degradation were both increased by GAA supplementation when no Met was supplemented, but decreased by GAA supplementation when 6 g/d Met were provided. Loss of Met through transsulfuration was increased by Met supplementation, whereas synthesis of Met from remethylation of homocysteine was decreased by Met supplementation. No differences in transmethylation, transsulfuration, or remethylation reactions were observed in response to GAA supplementation. The administration of GAA, when methyl groups are not limiting, has the potential to improve lean tissue deposition and cattle growth.  相似文献   

3.
An experiment was conducted to develop a system useful for measuring methionine requirements of growing steers. Seven ruminally cannulated steers (312 kg, gaining .91 kg/d) were fed a diet based on ammoniated corn cobs, corn starch, molasses and urea. Quantities of N and sulfur-containing amino acids disappearing from the small intestine were 96.0 and 14.8 g/d, respectively. Postruminal infusions of Na-caseinate (CAS) resulted in linear (P less than .01) increases in N retention with values increasing from 30.1 g/d with no postruminal CAS infusion to 39.3, 50.8 and 59.2 g/d (averaged across methionine supplementation) when 100, 200 and 300 g/d CAS were infused. Postruminal infusions of a mixture of crystalline L-amino acids (simulating the nonsulfur-containing essential amino acid pattern of casein; SIM) at levels of 100, 200 and 300 g/d also led to linear increases (P less than .01) in N retention with steers retaining 30.9, 38.9 and 50.5 g N/d (averaged across methionine supplementation), respectively. Postruminal infusion of 12 g/d L-methionine across CAS and SIM infusions improved (P less than .01) N retention by 7.6 g/d but infusion of SIM, which is devoid of sulfur amino acids, also increased N retention. Responses to methionine supplementation was greatest when 200 or 300 g/d SIM were abomasally infused. The data are interpreted to demonstrate that, for steers fed a diet containing little true protein, postruminal supplementation with nonsulfur-containing amino acids tended to increase the ability of growing steers to respond to methionine supplementation.  相似文献   

4.
Ruminally cannulated Rambouillet wether lambs were used in three 6 x 6 Latin square experiments (n = 6/experiment) to determine which essential AA limit N retention. Lambs (BW = 36.9 +/- 1.9 kg for Exp. 1, 35.1 +/- 1.4 kg for Exp. 2, and 46.0 +/- 1.3 kg for Exp. 3) were housed in metabolism crates and limit-fed (DMI = approx. 1.8% of BW daily) twice daily a soybean hull-based diet low in ruminally undegradable protein. Treatments for Exp. 1 were continuous abomasal infusions of a solution (500 mL/d) containing 1) no AA (CON), 2) a mixture of 10 essential AA and 2 nonessential AA (10EAA), 3) 10EAA with Met removed, 4) 10EAA with Lys removed, 5) 10EAA with His removed, and 6) 10EAA with Thr removed. Treatments for Exp. 2 were abomasal infusions of 1) CON, 2) 10EAA, 3) 10EAA with Leu, Ile, and Val removed (-BCAA), 4) 10EAA with Arg removed, 5) 10EAA with Phe removed, and 6) 10EAA with Trp removed. Treatments for Exp. 3 were abomasal infusions of 1) CON, 2) 10EAA, 3) -BCAA, 4) 10EAA with Leu removed, 5) 10EAA with Ile removed, and 6) 10EAA with Val removed. All lambs received continuous infusions of acetate and propionate into the rumen and dextrose into the abomasum to supply additional energy. Periods were 7 d: 3 d for adaptation to abomasally infused treatments and 4 d for fecal and urinary collections. Blood samples were collected 3 h after feeding on d 7. In all 3 experiments, N retention was greater (P < 0.10) for lambs receiving 10EAA vs. CON, demonstrating that the basal AA supply from CON was limiting. Removal of each of the essential AA from 10EAA decreased (P < 0.10) their concentrations in plasma (except for Trp), indicating that 10EAA supplied these AA in excess of the animal's requirement. In Exp. 1, N retention (g/d) decreased (P < 0.10) in response to the removal of Met and Thr, but was not affected by removal of Lys and His from 10EAA. In Exp. 2, N retention decreased (P < 0.10) in response to removal of all 3 branched-chain AA, Arg, and Trp, whereas the removal of Phe from 10EAA did not affect N retention. In Exp. 3, N retention decreased (P < 0.10) in response to removal of branched-chain AA and Val, but was not affected by the omission of Leu and Ile from 10EAA. The results of this research demonstrated that Met, Thr, Arg, Trp, and Val limited N retention of lambs fed a diet low in ruminally undegradable protein.  相似文献   

5.
Two experiments were conducted with ruminally cannulated Holstein steers to determine effects of N supply on histidine (His) utilization. All steers received 2.5 kg DM/d of a diet based on soybean hulls; abomasal infusion of 250 g/d amino acids, which supplied adequate amounts of all essential amino acids except His; abomasal infusion of 300 g/d glucose; and ruminal infusion of 180 g/d acetate, 180 g/d propionate, and 45 g/d butyrate. Both experiments were 6 x 6 Latin squares with treatments arranged as 3 x 2 factorials. No significant (P < 0.05) interactions between main effects were noted for N balance criteria in either Exp. 1 or 2. For Exp. 1, steers (146 +/- 7 kg) received 0, 1.5, or 3 g/d of L-His infused abomasally in combination with 0 or 80 g/d urea infused ruminally to supply a metabolic ammonia load. Urea infusions increased (P < 0.05) ruminal ammonia concentration from 8.6 to 19.7 mM and plasma urea from 2.7 to 5.1 mM. No change in N retention occurred in response to urea (35.1 and 37.1 g/d for 0 and 80 g/d urea, respectively, P = 0.16). Retained N increased linearly (P < 0.01) with His (31.5, 37.8, and 39.0 g/d for 0, 1.5, and 3 g/d L-His, respectively). Efficiency of deposition of supplemental His between 0 and 1.5 g/d averaged 65%. In Exp. 2, steers (150 +/- 6 kg) were infused abomasally with 0 or 1 g/d of L-His in combination with no additional amino acids (Control), 100 g/d of essential + 100 g/d of nonessential amino acids (NEAA+EAA), or 200 g/d of essential amino acids (EAA). Retained N increased (P = 0.02) from 34.2 to 38.3 g/d in response to His supplementation. Supplementation with NEAA+EAA increased (P < 0.05) N retention (33.9, 39.3, and 35.6 g/d for Control, NEAA+EAA, and EAA, respectively), likely in response to increased energy supply. Plasma urea concentrations of steers receiving NEAA+EAA (3.8 mM) and EAA (3.8 mM) were greater (P < 0.05) than those of Control steers (2.7 mM). The average efficiency of His utilization was 63%, a value similar to the value of 65% observed in Exp. 1, as well as the 71% value predicted by the Cornell net carbohydrate and protein system model. Under our experimental conditions, increases in N supply above requirements, as either ammonia or amino acids, did not demonstrate a metabolic cost in terms of His utilization for whole-body protein deposition by growing steers.  相似文献   

6.
Two separate studies were conducted using a continuous culture fermenter system to determine effects of supplementing D,L-methionine and various methionine derivatives on degradation of methionine by ruminal bacteria. A basal diet containing 20% alfalfa hay, 20% corn silage and 60% grain mix (DM basis) was provided at a rate of 75 g DM/d per fermenter and served as an unsupplemented control in both experiments. In Exp. 1, methionine sources included D,L-methionine, D,L-methionine hydantoic acid, D,L-methionine hydantoin, N-acetyl-D,L-methionine, methylthio-isobutyric acid, methylthio-propionic acid and D,L-methionine sulfoxide. These sources were added directly to fermenters twice daily and supplied an equivalent of 98 mg/d D,L-methionine (.13% of diet DM) and 21 mg/d S. Effluent methionine flow from fermenters was higher (P less than .05) with diets supplemented with D,L-methionine hydantoic acid (245 mg/d), D,L-methionine hydantoin (245 mg/d) and N-acetyl-D,L-methionine (270 mg/d) than with control (211 mg/d) or D,L-methionine (211 mg/d) treatments, indicating a lower ruminal bacterial degradation of these methionine derivatives. There were no major effects on bacterial fermentation due to methionine supplementation or source. In Exp. 2, methionine sources included D,L-methionine, methionine hydroxy analog and N-hydroxymethyl-D,L-methionine; these were mixed with the basal diet to provide an equivalent of 250 mg/d D,L-methionine (.33% of diet DM). Sodium sulfate was added to the control diet to attain equal S (54 mg/d) levels across treatments. Flow of methionine was not affected (P greater than .05) by methionine supplementation, indicating extensive degradation of all three methionine sources by ruminal bacteria.  相似文献   

7.
Sulphur‐containing amino acids (SAA) are essential and usually the first limiting amino acids for growth, milk and wool production. The keratin fibre that grows from epidermal tissue is rich in SAA. The rate of fibre growth and its S content are influenced by the availability of SAA. Betaine is a dietary source for a labile methyl group and actively participates in methionine metabolism by donating methyl groups for the remethylation of homocysteine to methionine. Ruminants are capable of synthesizing SAA from inorganic S sources, and most bacteria in the rumen can use inorganic S to meet their requirements for growth. The objective of this study was to examine whether betaine and an inorganic sulphur supplement could provide methyl groups and sulphur amino acids in a way that growth performance and wool production of ewes and lambs are improved. Treatments performed included betaine supplementation, sulphate supplementation and betaine plus sulphate supplementation with five replications for each treatment. The dry matter intake of the ewes was affected by betaine plus sulphate supplementation (p < 0.05). In the ewes, betaine plus sulphate supplementation increased (p < 0.05) the wool growth rate, wool yield, staple length and wool sulphur concentration, while decreasing wool wax and wool yellowness (p < 0.05). In the lambs, wool growth rate, wool yield, fibre diameter, staple length, staple strength, wool sulphur concentration, wool wax and fibre percentage did not differ (p > 0.05) between treatments. In the ewes, plasma methionine concentration increased (p < 0.05) with betaine plus sulphate treatment. No corresponding difference (p > 0.05) was observed in plasma methionine concentration in the lambs. It can be concluded that betaine plus sulphate supplementation has the potential to change wool characteristics in the ewes, while these compounds were without any effect on growth and wool production of the lambs. Combining the two supplements was advantageous.  相似文献   

8.
Studies were conducted to determine limiting amino acids (AA) for cattle limit-fed soybean hull-based diets. Ruminally cannulated Holstein steers were maintained in metabolism crates, fed the same basal diet (73% soyhulls, 19% alfalfa, DM basis), and given the same intraruminal infusions (400 g/d acetate; to supply energy without increasing microbial protein supply). Treatments were infused abomasally. In Exp. 1, steers (200 kg) were provided 1) water, 2) 10 g/d of methionine (MET), or 3) a mixture of 10 essential AA (10AA). Nitrogen retention (13.7 g/d) was greatest (P < .05) for steers receiving 10AA. Steers receiving MET (7.9 g/d) had greater (P < .05) N retention than control steers (5.4 g/d). In Exp. 2, steers (200 kg) were provided 10AA or 10AA with L-Lys deleted from the mixture. Steers receiving 10AA tended (P < .09) to have greater N retention (19.0 g/d) than those receiving no lysine (16.3 g/d). In Exp. 3, steers (194 kg) were provided 10AA or 10AA with L-Thr deleted from the mixture. Nitrogen retention was not affected by removal of threonine. In Exp. 4, steers (152 kg) were provided 10AA or 10AA with L-His, L-Trp, L-Arg, L-Phe, or branched-chain AA (L-Leu, L-Ile, and L-Val) removed. Nitrogen retention was reduced (P < .05) by removal of either L-His or the branched-chain AA. For steers limit-fed soybean hull-based diets, methionine was first-limiting; histidine, at least one of the branched-chain AA, and possibly lysine were also limiting.  相似文献   

9.
Seven ruminally cannulated Holstein steers (194 +/- 16 kg) housed in metabolism crates were used in a 6 x 6 Latin square, with one additional steer, to study effects of ruminal ammonia load on methionine (Met) use. All steers received a diet based on soybean hulls (2.6 kg DM/d), ruminal infusions of 200 g/d of acetate, 200 g/d of propionate, and 50 g/d of butyrate, as well as abomasal infusion of 300 g/d of glucose to provide energy without increasing microbial protein supply, and abomasal infusions of a mixture (248 g/d) of all essential AA except Met. Treatments were arranged as a 3 x 2 factorial and included urea (0, 40, or 80 g/d) infused ruminally to supply metabolic ammonia loads and Met (2 or 5 g/d) infused abomasally. Supplementation with the greater amount of Met decreased (P < 0.05) urinary N excretion from 68.8 to 64.8 g/d and increased (P < 0.05) retained N from 22.0 to 27.5 g/d. Urea infusions linearly increased (P < 0.05) urinary N excretions, plasma urea concentrations, and urinary urea excretions, but retained N was not affected. The efficiency of deposition of supplemental Met, calculated by assuming that Met deposition is 2.0% of protein deposition (6.25 x retained N), ranged between 18 and 27% when steers received 0 or 80 g/d of urea, respectively. There were no (P > or = 0.40) effects of treatments on serum insulin or IGF-I concentrations. In our model, increasing ammonia load did not affect whole-body protein deposition in growing steers when Met was limiting.  相似文献   

10.
OBJECTIVE: To determine effects of dietary cysteine on blood sulfur amino acids (SAA), reduced glutathione (GSH), oxidized glutathione (GSSG), and malondialdehyde (MDA) concentrations in cats. ANIMALS: 12 healthy adult cats. PROCEDURE: Cats were fed diets with a nominal (0.50 g/100 g dry matter [DM]), moderate (1.00 g/100 g DM), or high (1.50 g/100 g DM) cysteine content in a 3 X 3 Latin square design with blocks of 8 weeks' duration. Venous blood samples were collected after each diet had been fed for 4 and 8 weeks, and a CBC and serum biochemical analyses were performed; poikilocyte, reticulocyte, and Heinz body counts were determined; and MDA, GSH, GSSG, and SAA concentrations were measured. RESULTS: Blood cysteine and MDA concentrations were not significantly affected by dietary cysteine content. Blood methionine, homocysteine, and GSSG concentrations were significantly increased when cats consumed the high cysteine content diet but not when they consumed the moderate cysteine content diet, compared with concentrations obtained when cats consumed the nominal cysteine content diet. Blood GSH concentrations were significantly increased when cats consumed the moderate or high cysteine content diet. CONCLUSIONS: Increased dietary cysteine content promotes higher blood methionine, homocysteine, GSH, and GSSG concentrations in healthy cats. CLINICAL RELEVANCE: Supplemental dietary cysteine may be indicated to promote glutathione synthesis and ameliorate adverse effects of oxidative damage induced by disease or drugs.  相似文献   

11.
Eight Limousin-cross steers (355 kg) were used in a replicated 4 x 4 Latin-square designed to estimate lysine requirements. Steers were fed a semipurified diet containing little ruminal escape protein. Treatments were abomasal infusions of 0, 8, 16, or 24 g/day L-lysine. All steers were additionally infused with 400 g/day dextrose and 285.9 g/day of an amino acid mix that contained (g/day) L-methionine (12.0), L-histidine (8.1), L-arginine (10.5), L-threonine (12.0), L-valine (18.0), L-isoleucine (13.8), L-leucine (27.3), L-phenylalanine (28.2), L-glutamic acid (76.5), glycine (76.5) and L-tryptophan (3.0); it had been demonstrated previously that when lysine was included in this infusion mixture, nutritional requirements of steers for maximal N retention were met or exceeded. Nitrogen retention averaged 38 g/day and was not affected by treatment, implying that the lysine requirement of steers was less than the 37.8 g/day lysine estimated to be absorbed from the small intestine when the basal diet was fed.  相似文献   

12.
In Exp. 1, 300 heifers (260 kg initial BW) were used to compare growth performance of cattle fed forage-free diets containing predominantly soybean hulls with that of cattle receiving roughage- and corn-based diets and to determine whether cattle fed soybean hull-based diets would respond to supplementation with methionine hydroxy analogue (MHA), lipid-coated betaine, or concentrated separator by-product (CSB; a source of betaine). Treatments included 1) a roughage-based diet fed at 2.75% of BW, 2) a corn-based diet fed at 1.5% of BW, 3) a corn-based diet fed at 2.25% of BW, 4) a soybean hull-based diet fed at 1.5% of BW (SH1.5), 5) a soybean hull-based diet fed at 2.25% of BW (SH2.25), 6) SH1.5 top-dressed with 11.4 g/d Alimet (10 g/d MHA), 7) SH2.25 top-dressed with 11.4 g/d Alimet, 8) SH2.25 top-dressed with 7 g/d of a lipid-coated betaine product (4.2 g/d betaine), and 9) SH2.25 top-dressed with 250 g/d CSB (15.5 g/d betaine). Supplemental MHA, betaine, and CSB did not change DMI, ADG, or gain:feed ratio for cattle fed soybean hulls. Heifers fed soybean hull-based diets gained 29% slower (P < 0.05) and had 27% lower gain:feed ratios than heifers fed the corn-based diets. Cattle fed soybean hull-based diets had gains that were lower (P < 0.05) than those of cattle fed the roughage-based diets, but gain:feed ratios were similar because cattle were fed less of the soybean hull-based diets. Roughage-fed cattle had similar gains but 25% lower (P < 0.05) gain:feed ratios than cattle fed the corn-based diets. In Exp. 2, degradation by ruminal microbes of betaine in anhydrous betaine, betaine-HCl, feed-grade betaine, lipid-coated betaine, and CSB was evaluated in vitro using ruminal inocula collected from steers fed a high-grain or high-roughage diet. The roughage diet led to less betaine disappearance than the grain diet. More betaine was degraded from CSB than from other sources, perhaps because sugars provided by CSB stimulated fermentation, but no large differences occurred among the other four sources. Betaine from all sources was extensively degraded, although some betaine may escape ruminal degradation.  相似文献   

13.
In 2 experiments, 6 ruminally cannulated Holstein steers (205 +/- 23 and 161 +/- 14 kg initial BW in Exp. 1 and 2, respectively) housed in metabolism crates were used in 6 x 6 Latin squares to study the effects of excess AA supply on Met (Exp. 1) and Leu (Exp. 2) use. All steers received a diet based on soybean hulls (DMI = 2.66 and 2.45 kg/d in Exp. 1 and 2, respectively); ruminal infusions of 200 g of acetate/d, 200 g of propionate/d, and 50 g of butyrate/d, as well as abomasal infusion of 300 g of glucose/d to provide energy without increasing the microbial protein supply; and abomasal infusions of a mixture of all essential AA except Met (Exp. 1) or Leu (Exp. 2). Periods were 6 d, with 2-d adaptations and 4 d to collect N balance data. All treatments were abomasally infused. In Exp. 1, treatments were arranged as a 2 x 3 factorial, with 2 amounts of l-Met (0 or 4 g/d) and 3 AA supplements (no additional AA, control; 100 g/d of nonessential AA + 100 g/d of essential AA, NEAA + EAA; and 200 g/d of essential AA, EAA). Supplemental Met increased (P < 0.01) retained N and decreased (P < 0.01) urinary N and urinary urea N. Retained N increased (P < 0.01) with NEAA + EAA only when 4 g/d of Met was provided, but it increased (P < 0.01) with EAA with or without supplemental Met. Both AA treatments increased (P < 0.01) plasma urea and serum insulin. Plasma glucose decreased (P = 0.03) with supplemental Met. In Exp. 2, treatments were arranged as a 2 x 3 factorial with 2 amounts of L-Leu (0 or 4 g/d) and 3 AA supplements (control, NEAA + EAA, and EAA). Supplemental Leu increased (P < 0.01) retained N and decreased (P < 0.01) urinary N and urinary urea N. Both AA treatments increased (P < 0.01) retained N, and they also increased (P < 0.01) urinary N, urinary urea N, and plasma urea. Serum insulin increased (P = 0.06) with supplemental Leu and tended (P = 0.10) to increase with both AA treatments. Supplementation with excess AA improved Met and Leu use for protein deposition by growing cattle.  相似文献   

14.
Six ruminally cannulated Holstein steers (initial BW = 189 +/- 11 kg) housed in metabolism crates were used in a 6 x 6 Latin square to study effects of ruminal ammonia load on Leu utilization. All steers received a diet based on soybean hulls (2.7 kg of DM/d), ruminal infusions of 200 g of acetate/d, 200 g of propionate/d, and 50 g of butyrate/d, as well as an abomasal infusion of 300 g of glucose/d to provide energy without increasing microbial protein supply and an abomasal infusion of a mixture (238 g/d) of all essential AA except Leu. Treatments were arranged as a 3 x 2 factorial and included Leu (0, 4, or 8 g/d) infused abomasally and urea (0 or 80 g/d) infused ruminally. Abomasal Leu infusion linearly decreased (P < 0.05) both urinary and fecal N excretions and linearly increased (P < 0.05) retained N, but the decreases in urinary N excretion in response to Leu tended (P = 0.07) to be greater, and the increases in retained N in response to Leu were numerically greater in the presence of the urea infusion. Although urea infusions increased (P < 0.05) plasma urea concentrations, urinary N excretions, and urinary urea excretions, retained N also was increased (P < 0.05). The efficiency of deposition of supplemental Leu ranged from 24 to 43% when steers received 0 or 80 g of urea/d, respectively. Under our experimental conditions, increasing ammonia load improved whole-body protein deposition in growing steers when Leu supply was limiting.  相似文献   

15.
The effects of energy supplementation on Leu utilization in growing steers were evaluated in 2 experiments by using 6 ruminally cannulated Holstein steers. In Exp. 1, steers (initial BW = 150 +/- 7 kg) were limit-fed (2.3 kg of DM/d) a diet based on soybean hulls and received a basal ruminal infusion of 100 g of acetate/d, 75 g of propionate/d, and 75 g of butyrate/d, as well as abomasal infusions of 200 g of glucose/d and a mixture (215 g/d) containing all essential AA except Leu. Treatments were arranged as a 3 x 2 factorial, with 3 amounts of Leu infused abomasally (0, 4, and 8 g/d) and supplementation of diets with 2 amounts of energy (0 and 1.9 Mcal/d of GE). Supplemental energy was supplied by ruminal infusion of 100 g of acetate/ d, 75 g of propionate/d, and 75 g of butyrate/d, as well as abomasal infusion of 200 g of glucose/d to provide energy to the animal without affecting the microbial protein supply. When no supplemental energy was provided, Leu supplementation increased N balance, with no difference between 4 and 8 g/d of Leu (24.5, 27.0, and 27.3 g/d for 0, 4, and 8 g/d of Leu), but when additional energy was supplied, N retention increased linearly in response to Leu (25.6, 28.5, and 31.6 g/d for 0, 4, and 8 g/d of Leu; Leu x energy interaction, P = 0.06). The changes in N balance were the result of changes in urinary N excretion. The greater Leu retentions in response to energy supplementation when Leu was the most limiting nutrient indicate that energy supplementation improved the true efficiency of Leu utilization. In addition, supplemental energy increased the gross efficiency of Leu utilization when the Leu supply was not limiting by increasing the maximal rates of protein deposition. Experiment 2 was similar to Exp. 1, but steers had an initial BW of 275 +/- 12 kg and were limit-fed at 3.6 kg of DM/d. Retention of N was not affected (P = 0.22) by Leu supplementation, indicating that Leu did not limit protein deposition. Energy supply increased N retention (P < 0.01) independently of Leu supplementation (33.0 vs. 27.8 g/d). Overall, energy supplementation improved Leu utilization by modestly increasing N retention when Leu was limiting and by increasing the ability of steers to respond to the greatest amount of supplemental Leu. We conclude from these results that the assumption of a constant efficiency of AA utilization is unlikely to be appropriate for growing steers.  相似文献   

16.
  1. An experiment with a 2 × 3 factorial design with two concentrations of dietary betaine (0 and 600 mg/kg) and three dietary concentrations of methionine (0, 600 and 1200 mg/kg) was conducted using goslings to estimate growth, nutrient utilisation and digestibility of amino acids from 21 to 70 d of age.

  2. Three hundred geese were randomised at 18 d of age into 6 groups with 5 replicates per treatment and 10 geese per replicate.

  3. Increasing dietary concentrations of methionine gave a linear increase in body weight and average daily gain. The coefficient of crude fat retention increased as dietary methionine increased and there was a significant non-linear response to increasing dietary methionine. Similarly, increasing supplemental methionine gave linear increases in the digestibility of methionine and cysteine.

  4. The results of this study indicated that optimal dietary supplementation of methionine could increase growth performance and methionine and cysteine utilisation in growing goslings. Betaine supplementation had no apparent sparing effect on methionine needs for growth performance, but did improve the apparent cysteine digestibility.

  相似文献   

17.
Graded quantities of 1.38,2.76 and 4.14 g/kg L-methionine were included in a control diet formulated to contain 3.07 g/kg digestible methionine.Each of the 4 dietary treatments was offered to 6 replicate cages(initially 8 birds per cage)from 1 to 21 d postehatch.The parameters assessed included growth performance,nutrient utilisation(apparent metabolisable energy[AME],AME:GE ratios,N retention,Ncorrected apparent metabolisable energy[AMEn]),apparent digestibility coefficients and disappearance rates of amino acids in the distal ileum.They also included free amino concentrations in systemic plasma(brachial vein)at 20 d postehatch and in hepatic tissue at 14 and 21 d postehatch.Graded L-methionine inclusions quadratically influenced weight gain(r=0.688;P=0.001)and FCR(r=0.780;P<0.001).It may be deduced from the quadratic regressions that 3.43 g/kg L-methionine supported maximum weight gain of 1,036 g/kg and 3.50 g/kg L-methionine minimum FCR of 1.193,from 1 to 21 d postehatch.The control diet contained specified levels of 3.07 g/kg digestible methionine and 13.0 g/kg digestible lysine.Thus,an inclusion of 3.465 g/kg L-methionine corresponded to a total of 6.535 g/kg methionine or a methionine-to-lysine ratio of 50.3,which is higher than standard recommendations.The implications of this and other outcomes of the present study are reported and discussed.  相似文献   

18.
Ruminally cannulated steers (281 +/- 18 kg) were used to evaluate effects of choline on digestion and metabolism. Four steers were implanted with 24 mg of estradiol and 120 mg of trenbolone acetate, and four steers were not implanted. Cattle were assigned to concurrent 4 x 4 Latin squares. Dietary treatments were a 2 x 2 factorial: 0 or 4% tallow (DM basis) in corn-based diets, and 0 or 5 g/d supplemental choline administered abomasally. Blood collected before and 6 h after the initial choline infusion was used to assess acute responses to choline. Digestibility and blood metabolites were measured after adaptation to choline, as well as after an abomasal dose of 100 g of lipid. Digestibilities of dietary DM (P = 0.29) and of dietary total fatty acids (P = 0.42) were not affected by choline. Apparent digestibilities of C18:0 and C18:1 fatty acids were greater (P < 0.05) when diets contained 4% tallow. Digestibilities of fatty acids in the lipid dose were less than those in the diet, and no biologically important differences in fatty acid disappearance resulted from the treatments. No significant acute responses to choline were detected. After adaptation to choline, no important differences in plasma metabolites occurred in response to choline infusion. Plasma urea was less (P < 0.05) for implanted cattle, reflecting increased deposition of protein. Plasma cholesterol was greater (P < 0.05) for steers fed 4% tallow. Changes in plasma triglycerides in response to an abomasal lipid dose were less (P < 0.05) for steers fed 4% tallow, probably due to greater triglyceride concentrations at the time of lipid dosing. In summary, few responses to abomasally infused choline were observed in either digestion or plasma metabolites.  相似文献   

19.
We evaluated the effects of different supplemental energy sources on Met use in growing steers. Ruminally cannulated Holstein steers were used in two 6 x 6 Latin squares, and data were pooled for analyses. In Exp. 1, steers (148 kg) were fed 2.3 kg of DM/d of a diet based on soybean hulls. Treatments (2 x 3 factorial) were abomasal infusion of 0 or 3 g of l-Met/d, and supplementation with no energy or with glucose (360 g/d) or fat (150 g/d) continuously infused into the abomasum. In Exp. 2, steers (190 kg) received 2.6 kg of dietary DM/d and were provided (2 x 3 factorial) with 0 or 3 g of l-Met/d, and with no supplemental energy or with acetate (385 g/d) or propionate (270 g/ d) continuously infused into the rumen. In both experiments, the energy sources supplied 1.3 Mcal of GE/d, and all steers received basal infusions of 400 g of acetate/d into the rumen and a mixture (125 g/d) of all essential AA except Met into the abomasum. Nitrogen balance (18.8 vs. 23.5 g/d; P < 0.01) and whole-body protein synthesis (2.1 vs. 2.3 kg/d; P < 0.07) were increased by Met supplementation, indicating that protein deposition was limited by Met. Supplemental energy reduced (P < 0.01) urinary N excretion and increased (P < 0.01) N retention without differences among energy sources. Increases in N retention in response to Met were numerically greater when energy was supplemented. Efficiency of supplemental Met use was 11% when no energy was supplemented but averaged 21% when 1.3 Mcal of GE/d was provided. Whole-body protein synthesis and degradation were not affected by energy supplementation. Serum insulin concentrations were increased by glucose and propionate supplementation. Serum IGF-I concentrations were increased by supplementation with Met or glucogenic sources of energy. In growing steers, N retention was increased by energy supplementation even though protein deposition was limited by Met, suggesting that energy supplementation improves the efficiency of AA use. These responses were independent of the source of energy.  相似文献   

20.
动物营养中胆碱同其它甲基供体间的关系   总被引:21,自引:2,他引:19  
本文概述了胆碱、甜菜碱和蛋氨酸三种甲基供体的特性与共性;它们之间的代谢关系;饲养实践中的添加效应以及相互替代值。作者认为,日粮中必须含有一定数量的胆碱和蛋氨酸,分别用于合成磷脂和蛋白质。甜菜碱作为一种有效的甲基供体和抗应激剂,有明显的饲用效果。所谓甜菜碱替代蛋氨酸并非指生化途径可以替代,而只是反应在生产指标方面的相同或相近的效应,这种替代效应还受动物本身和日粮类型等因素的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号