首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Climate change is likely to alter decomposition rates through direct effects on soil biotic activity and indirect effects on litter quality with possible impacts on the global carbon budget and nutrient cycling. Currently, there is a need to study the combined effects of climatic drivers and agricultural practises on decomposition.In an in situ litter bag experiment, we studied the effects of rainfall variability (including drought combined with heavy rain pulses as well as regular irrigation) interacting with winter warming and increased winter precipitation and with changes in cutting frequency, on decomposition in a temperate grassland. Litter bags contained mixed and species-specific litter of all different climate and land-use manipulations and were placed within the plots of litter origin. Moreover, we aimed to disentangle the causes of changes in decomposition by investigating two further approaches: Firstly, we studied the effects of changes in leaf chemicals as a result of the manipulations by removing litter from the experiment that has been pre-exposed to the manipulations before placing it on an untreated standard plot outside the experiment. Secondly, we assessed the effects of changes in soil faunal activity by investigating the decomposition of standard material under differing rainfall variability.As a result, decomposition was reduced when litter bags were exposed to drought for six weeks within an 11 months period. Neither additional winter rain nor winter warming had an effect on decomposition, likely because winter warming reduced snow cover and increased variability of surface temperatures. Climate manipulations did not change litter quality. Furthermore, decomposition on the untreated standard plot was not affected by the climate manipulations that the litter was previously exposed to. Thus, reduced decomposition under extreme rainfall variability and drought may mainly be caused by a decrease in soil biotic activity, as indicated by reduced decomposition of standard material during drought.More frequent cutting strongly stimulated decomposition, however, this stimulating effect was absent under extreme rainfall variability including drought. The stimulation of decomposition under more frequent cutting was attributed to changes in litter quality, namely a decrease in C/N ratio. Accordingly, litter from more frequently cut communities decomposed faster on the untreated control plot outside the experiment.Projected increases in drought frequency and increased rainfall variability under climate change may inhibit decomposition and alter nutrient and carbon cycling along with soil quality. Especially decomposition in frequently cut grassland appears vulnerable towards drought.  相似文献   

2.
Tillage may influence nitrate losses from agricultural soils. Losses of nitrate were measured in drainflow at 60 cm depth and in combined surface runoff and interflow in the A horizon (=surface layer flow) on hydrologically sealed plots with a two-year comparison (1988–1990) of shallow-tine cultivation vs. mouldboard ploughing. Ploughing increased concentrations and loadings of nitrate in drainflow and surface layer flow, especially in the first year. After these two years the shallow-tined plots were ploughed to plant winter beans (Vicia faba L.), and nitrate in drainflow then increased over the next three winters, slightly exceeding that from the plots which had been ploughed throughout for winter cereals. The composition of the surface layer flow did not show this effect, however. Calculations of net winter mineralisation of soil organic nitrogen showed that shallow-tine cultivation may have decreased mineralisation slightly compared with ploughing in the first two years. These calculations did not indicate any increase in mineralisation for two winters after the minimally cultivated plots were ploughed in autumn 1990, probably because the soil was then very dry. This increase was apparently delayed until the fifth winter (1992/1993), which was much wetter than any since autumn 1990. In the previous eight years (1980–1988) half of the plots had been ploughed and half had been direct drilled. Averaged over the five winters 1988/1989–1992/1993, the five measures of nitrate loss in drainflow from plots previously direct drilled were 6–57% more than from plots previously ploughed, and winter mineralisation was 20% more, with no evidence of any decline in either with time. The nitrate produced by mineralisation of organic matter conserved by the eight years of direct drilling was mainly lost by leaching or denitrification; it was of little or no benefit to the crops. The results suggest that in the long term more nitrate is leached from land subject to periods of minimal or zero tillage and ploughing than from land ploughed every year.  相似文献   

3.
Mediterranean ecosystems are water limited and the current general circulation Models (GCM) and ecophysiological models forecast a warming and a further increase of drought in the next decades. A stronger water stress can decrease the capacity for nutrient absorption by plants. We conducted a field experiment to simulate forecasted drought and warming in a Mediterranean calcareous shrubland to assess the performance of root-surface phosphatase activities of the dominant shrub Globularia alypum. These enzyme activities were higher in autumn and spring, when the climate conditions were optimal for plant activity, than in summer or winter, when there was either lack of water or cold temperatures. A decrease in soil moisture in drought plots decreased root-surface phosphatase activity (29% in summer and 25% in autumn). The decrease in root-surface phosphatase activity in drought plots coincided with a decrease in P leaf concentrations and P accumulation in aboveground biomass and loss of photosynthetic capacity of some dominant shrub species of this ecosystem, and with a tendency to increase total soil-P. These results suggest that the expected drier conditions in this Mediterranean shrubland in the next decades will slow down the P uptake by plants, thereby, diminishing the P contents in biomass and increasing total P contents in soil in non-available forms and that this can be, in part, attributable to a result of the decrease in root-surface phosphatase activity.  相似文献   

4.
Soil invertebrate communities are likely to be highly vulnerable to low soil moisture, caused by a reduction in summer rainfall which is predicted for some regions under current climate change scenarios. However, the effects of changes in summer rainfall on soil invertebrate assemblages have rarely been tested experimentally. In this study, samples were taken in 2003 and 2004 from a long-running field experiment, to investigate the impact of 10 years of experimental summer drought and increased summer rainfall manipulations on the soil fauna of a calcareous grassland. Summer drought altered the soil invertebrate assemblage in the autumn, immediately following treatment application, but by the following spring treatment effects were no longer apparent. The two most common root herbivore species responded differently to the summer rainfall manipulations. Larvae of the dominant root-chewing species, Agriotes lineatus, were more numerous under enhanced rainfall in both the spring and autumn. In contrast, abundance of the Coccoidea Lecanopsis formicarum was unaffected by the rainfall manipulations. The responses of root herbivores to an increased incidence of summer droughts are therefore likely to vary, depending on their feeding strategy and life history.  相似文献   

5.
Microbial communities drive soil organic matter (SOM) decomposition through the production of a variety of extracellular enzymes. Climate change impact on soil microbial communities and soil enzymatic activities can therefore strongly affect SOM turnover, and thereby determine the fate of ecosystems and their role as carbon sinks or sources.To simulate projected impacts of climate change on Swiss Jura subalpine grassland soils, an altitudinal soil transplantation experiment was set up in October 2009. On the fourth year of this experiment, we measured microbial biomass (MB), microbial community structure (MCS), and soil extracellular enzymatic activities (EEA) of nine hydrolytic and oxidative extracellular enzymes in the transplanted soils on a seasonal basis.We found a strong sampling date effect and a smaller but significant effect of the climate manipulation (soil transplantation) on EEA. Overall EEA was higher in winter and spring but enzymes linked to N and P cycles showed higher potential activities in autumn, suggesting that other factors than soil microclimate controlled their pool size, such as substrate availability. The climate warming manipulation decreased EEA in most cases, with oxidative enzymes more concerned than hydrolytic enzymes. In contrast to EEA, soil MB was more affected by the climate manipulation than by the seasons. Transplanting soils to lower altitudes caused a significant decrease in soil MB, but did not affect soil MCS. Conversely, a clear shift in soil MCS was observed between winter and summer. Mass-specific soil EEA (EEA normalized by MB) showed a systematic seasonal trend, with a higher ratio in winter than in summer, suggesting that the seasonal shift in MCS is accompanied by a change in their activities. Surprisingly, we observed a significant decrease in soil organic carbon (SOC) concentration after four years of soil transplantation, as compared to the control site, which could not be linked to any microbial data.We conclude that medium term (four years) warming and decreased precipitation strongly affected MB and EEA but not MCS in subalpine grassland soils, and that those shifts cannot be readily linked to the dynamics of soil carbon concentration under climate change.  相似文献   

6.
Abstract. Nitrate leaching and soil mineral N status under grassland were measured on three contrasting soils, spanning winters 1995/96, 1996/97 and 1997/98, in Western England. The soils investigated were a freely draining silty clay loam (Rosemaund), a well drained loam (IGER 1) and a poorly drained clay loam (IGER 2). The effects of reseeding (ploughing and resowing grass) at IGER 1 and IGER 2 in autumn 1995 or 1996 were compared with undisturbed pasture. Reseeding at Rosemaund, in autumns 1995 or 1996, or spring 1996 was compared with undisturbed pasture of 3 sward ages (2, 5, >50 years).
Nitrate-N leaching losses during the winter immediately following autumn reseeding ranged between 60 and 350 kg N ha–1 in 1995/96, depending on soil type, sward management history and rainfall. Losses were much less in the following winter when treatments were repeated (10–107 kg N ha–1).
Reseeding in spring had little effect on soil mineral N content or leaching losses in the following autumn, compared with undisturbed pasture. Similarly, leaching losses from autumn reseeds in the second winter after cultivation were the same as undisturbed pasture (1-19 kg N ha–1). The effect of ploughing grassland for reseeding was relatively short-term, in contrast to the effect of repeated annual cultivation associated with arable rotations.  相似文献   

7.
The recovery of a range of semi-natural grassland and heathland plots in southern England is described after disturbance by measured amounts of seasonal trampling. After 2000 passages during a summer period, all plots recover more than 50% live cover in a few weeks of autumn growth. Calluna heathland is an exception and does not recover. After 400 passages during a winter period initial damage is high on grassland plots on clay soils but other grassland plots recover than 50% live cover after a period of six weeks of spring growth. Calluna heathland shows a delayed response to winter trampling and does not recover. Plots trampled both in summer and winter show cumulative effects of wear. These results are compared with those from upland communities.  相似文献   

8.
Soil properties and plant species diversity are key elements of forest ecosystem functioning and are affected directly by climate change. The aim of this work was to study plant species diversity, physicochemical and soil microbiological properties and enzymatic activities after induced drought conditions and thinning at semiarid (Calasparra) and dry (Yeste) Pinus halepensis Mill. forest stands. Different plots affected by a wildfire event 17 years ago, with or without thinning 5 years after the fire event, were selected. A 15% rainfall reduction over 3 years was also carried out. Physicochemical soil properties (soil texture, pH, carbonates, total organic carbon, electrical conductivity and total N and P), soil enzymes (urease, phosphatase, β‐glucosidase and dehydrogenase activities), carbon mineralisation and soil microbial biomass carbon were analysed in the selected study areas. Shannon and Simpson indices were calculated, and total plant cover and plant species richness were evaluated. The results showed no differences in microbiological soil properties and soil enzyme activities when comparing thinned and unthinned plots; conversely, plant species diversity indices were affected by thinning. Induced drought affected only total cover and species richness, which were lower at Yeste. Significant site variation was also observed in soil properties, species richness and total plant cover, as opposed to the plant species diversity indices. We conclude that soil properties recover in the midterm after thinning activities, and they resist against a 15% rainfall reduction under potential climate change conditions remaining steady after induced drought. The plant community presents different responses to drought depending on the experimental site. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Renovation of grassland may increase the mineralization of organic material and leads to a high amount of mineral N in soil which can be leached in the winter period. Soil mineral N (SMN) in autumn and calculated nitrate leaching during winter were measured after the renewal of 8 y–old cut grassland on a sandy soil in NW Germany in 1999 to 2002. Several factors, which may influence the intensity of N mineralization, were investigated in the 2 years following renewal: the season of renovation (spring or late summer/early autumn), the technique (rotary cultivator or direct drilling), and the amount of N fertilization (0 or 320 kg N ha–1 y–1 in the 7 years before the renovation). Calculated nitrate‐N leaching losses during winter were significantly higher following renewal in early autumn (36–64 kg N ha–1) compared to renewal in spring (1–7 kg N ha–1). This effect was only significant in the first, not in the second winter after renovation. The renovation technique had a significant effect on the nitrate‐N leaching losses only in the first year after the renovation. Direct drilling led to higher leaching losses (35 kg N ha–1) than the use of a rotary cultivator (30 kg N ha–1) in the same year. Calculated nitrate losses (on average over 60 kg N ha–1) were highest after renewal of N‐fertilized grassland in late summer/early autumn. To minimize N leaching losses, it would be more effective to plan grassland renewal in spring rather than in late summer/autumn. Another, however, less effective option is to reduce N fertilization before a renovation in autumn.  相似文献   

10.
土地利用/覆盖变化对气候具有重要影响,为探讨耕地扩张的气候效应,基于土地利用数据及MODIS遥感资料,采用窗口搜索法,利用能量平衡的原理,研究2000−2018年东北地区耕地扩张的潜热和净短波辐射通量变化,分析耕地扩张对地表温度的影响。结果表明:(1)研究期内东北地区耕地面积增加1.6×104km2,主要来自林地和草地,分别占耕地扩增面积的16.33%和76.24%。(2)与林地相比,耕地白天对地表具有增温作用,夜间具有降温作用,全天具有增温作用,并具有明显的季节特征。夏秋季节耕地的蒸散发弱于林地,潜热通量比林地少,导致耕地对地表具有增温作用,冬季耕地的净短波辐射远少于林地,导致耕地对地表降温。(3)与草地相比,耕地夜间总体的降温效应稍强于白天的增温效应,使耕地全天对地表具有降温效应,并具有不同的季节特征。夏秋季节耕地的蒸散发强于草地,耕地的潜热通量比草地多,成为耕地对地表降温的主要原因,而在春冬季节,耕地与草地吸收的净短波辐射差异较小,同时潜热差异也较小,因此对地表的增温/降温效应不明显。  相似文献   

11.
Arctic climate change is expected to lead to a greater frequency of extreme winter warming events. During these events, temperatures rapidly increase to well above 0 °C for a number of days, which can lead to snow melt at the landscape scale, loss of insulating snow cover and warming of soils. However, upon return of cold ambient temperatures, soils can freeze deeper and may experience more freeze-thaw cycles due to the absence of a buffering snow layer. Such loss of snow cover and changes in soil temperatures may be critical for litter decomposition since a stable soil microclimate during winter (facilitated by snow cover) allows activity of soil organisms. Indeed, a substantial part of fresh litter decomposition may occur in winter. However, the impacts of extreme winter warming events on soil processes such as decomposition have never before been investigated. With this study we quantify the impacts of winter warming events on fresh litter decomposition using field simulations and lab studies.Winter warming events were simulated in sub-Arctic heathland using infrared heating lamps and soil warming cables during March (typically the period of maximum snow depth) in three consecutive years of 2007, 2008, and 2009. During the winters of 2008 and 2009, simulations were also run in January (typically a period of shallow snow cover) on separate plots. The lab study included soil cores with and without fresh litter subjected to winter-warming simulations in climate chambers.Litter decomposition of common plant species was unaffected by winter warming events simulated either in the lab (litter of Betula pubescens ssp. czerepanovii), or field (litter of Vaccinium vitis-idaea, and B. pubescens ssp. czerepanovii) with the exception of Vaccinium myrtillus (a common deciduous dwarf shrub) that showed less mass loss in response to winter warming events. Soil CO2 efflux measured in the lab study was (as expected) highly responsive to winter warming events but surprisingly fresh litter decomposition was not. Most fresh litter mass loss in the lab occurred during the first 3-4 weeks (simulating the period after litter fall).In contrast to past understanding, this suggests that winter decomposition of fresh litter is almost non-existent and observations of substantial mass loss across the cold season seen here and in other studies may result from leaching in autumn, prior to the onset of “true” winter. Further, our findings surprisingly suggest that extreme winter warming events do not affect fresh litter decomposition.  相似文献   

12.
[目的]从旱涝灾害角度分析气候变化对东北农牧交错带的影响,对该区的气候变化和旱涝特征进行研究,为充分利用气候资源,合理调配水资源,提高灾害应变能力提供科学依据。[方法]统计1960—2011年东北农牧交错带21个气象台站的逐月气温、降水资料,应用Mann—Kendall气候突变检验法、标准化降水指数(SPI)、样条函数插值法对该带旱涝状况的时空分布进行了分析。[结果](1)东北农牧交错带气候呈现出明显的暖干化趋势,SPI3表明春、夏、秋三季干旱事件增多,21世纪以来,春旱事件较为频繁,冬季降水略微增加;(2)气温突变发生在1988年,突变后,干旱的比例增加了20.7%,涝的比例增加了9.3%,降水处于"正常"的年份则大幅度减少,对该区极为不利;(3)SPI12低值中心由科尔沁沙地向东北延伸到松嫩平原,干旱面积有大幅度增加的趋势,东北农牧交错带中南部旱化较为严重。[结论]东北农牧交错带暖干化的趋势给该区农牧业带来不利影响,受旱地区应及时启动干旱预警紧急方案,开展抗旱工作。  相似文献   

13.
In terrestrial ecosystems most carbon (C) occurs below-ground, making the activity of soil decomposer organisms critical to the global carbon cycle. Temperate grassland ecosystems, contain large, diverse and active soil meso- and macrofauna decomposer communities. Understanding the effects of climate change on their ecology offers a first step towards meaningful predictions of changes in soil organic carbon mineralisation.We examined the effects of soil warming on the abundance, diversity and ecology of temperate grassland soil fauna functional groups, ecosystem net CO2 flux and respiration and plant above- and below-ground productivity in a 2-year plant-soil mesocosm experiment. Low voltage heating cable mounted on a framework of stainless steel mesh provided a constant 3.5 °C difference between control and warmed mesocosm soils.Results showed that this temperature increment had little effect on soil respiration and above-ground plant biomass. There was, however, a significant effect on the soil fauna due to warmer conditions and increased root growth, with significant decreases in the numbers in the large oligochaete groups and Prostigmata mites and the re-distribution of enchytraeids to deeper soil layers. Functional groups exhibited individualistic responses to soil warming, with the total disappearance of epigeic species in the case of the ecosystem engineers and an increased diversity of fungivorous mites that, together, produced significant changes in the composition and trophic structure of the fauna community.The observed switch towards a fungal driven food web has important implications for the fate of soil organic carbon in temperate ecosystems subjected to sustained warming. Accordingly, soil biology needs to be properly incorporated in C models to make better predictions of the fate of SOC under warmer scenarios.  相似文献   

14.
道日娜  包玉海   《水土保持研究》2019,26(3):159-165
为研究内蒙古干旱时空分布特征,将内蒙古地区分为荒漠生态分区、草原生态分区和森林生态分区,选用标准化降水指数为气象干旱评价因子,对1980—2015年内蒙古降水数据进行了动态分析。结果表明:(1)1980—2015年,内蒙古草原和森林区的SPI12有轻微减小趋势,而荒漠区的SPI12有增加趋势。(2)荒漠区干旱强度主要为中旱和轻旱,草原区以轻旱为主,森林区发生不明显干旱、轻旱和中旱的频率一样。荒漠和草原区干旱影响范围主要为无明显干旱和全域性干旱,而森林区主要为无明显干旱和区域性干旱。(3)春季3个区的SPI都有明显增加趋势。夏季3个区的SPI均有减小趋势。秋季荒漠区的SPI有增加趋势,草原区变化趋势不明显,而森林区SPI有减小趋势。冬季森林和草原区的SPI有增大趋势,而荒漠区SPI无明显变化趋势。(4)春季3个区多数站点的SPI值均有增加趋势。夏季3个区多数站点的SPI值都呈减小趋势。内蒙古秋季SPI变化趋势率表现为西部地区增大,东部地区减小。冬季荒漠生态分区SPI有增加趋势的站点多数分布于西部,有减小趋势的站点多分布于东部,草原区SPI有增大趋势的站点数较多,森林区的全部站点的SPI值都有增大的趋势。研究结论可为内蒙古地区干旱的监测预警和防灾减灾提供理论依据。  相似文献   

15.
基于SPEI的中国西北地区气象干旱变化趋势分析   总被引:5,自引:0,他引:5  
中国西北地区深居欧亚大陆腹地,是同纬度最干旱的地区之一,如果持续干旱,将对该地区社会经济发展产生严重的影响。因此,深入研究西北地区的干旱特征,为制定改善生态环境,促进西北经济发展有着重要的意义。标准化降水蒸散指数(SPEI)将温度对蒸散的影响融合在内,是全球气候变暖背景下研究干旱的新理想指标。采用1959-2011年西北地区149个具有代表性的气象站点的资料,对西北地区近53 a干旱时空变化进行分析。结果表明,西北地区普遍存在干旱现象。从年际变化来看,该区呈变干趋势,1996年发生突变。从季节的变化来看,春、夏、秋明显变干,冬季有变湿趋势,变湿趋势不明显。春、夏、秋季发生突变,冬季突变不明显。从空间变化来看,春、夏秋大部分地区呈变干趋势,冬季大部分呈变湿趋势。与年鉴资料对比的结果进一步证明SPEI指数在西北地区具有较好的适用性。  相似文献   

16.
为探究河南省旱涝变化规律及其气候驱动因子,利用河南省17个国家基准气象台站1960—2018年逐日降水、气温资料,采用降水和潜在蒸发均一化旱涝指标,对河南省旱涝时空演变特征进行了多尺度、系统性分析。结果表明:(1)近59年河南省旱涝呈振荡性波动且具显著干旱化趋势,1980s偏涝程度最强,1990s中期之后趋于偏旱,而且干旱化趋势在未来将持续增强。季节间旱涝存在明显差异,尤其春季、秋季干旱化趋势最显著,夏季、冬季无显著干旱化趋势。全年、季节旱涝演变普遍存在3~5 a的年际周期变化,秋季还存在7~8 a的周期变化,全年与春、夏、冬季还存在13~14 a的周期性。(2)河南省全年与秋季呈全域性干旱化趋势,尤其以开封、郑州和新乡等黄河沿岸连片区干旱化趋势最为显著,夏季全省无明显旱涝变化趋势,冬春季干旱化趋势呈不同局域性。(3)1990s中期之后河南省极端干旱发生频次快速增多,连片、区域性干旱化趋势显著增强,极端雨涝则显著减少,冬季极端旱涝较少,夏季发生频次最高,全年与季节极端旱涝在空间变化上呈规律性差异分布。(4)1990s中期以来河南省持续性干旱事件的增多增强已成为必然趋势,发生次数、强度、持续时间均远超以往,而持续性雨涝事件则在1990s中期之后显著减少,两者的发生演化基本呈反相同步呼应、此消彼长的特点。河南省旱涝演变呈显著干旱化趋势,且呈全域性干旱化趋势分布特点,极端干旱、持续性干旱事件增多增强已成为必然趋势。  相似文献   

17.
Albedo controls surface energy balance and affects the microclimate conditions of ecosystems. Changes in albedo could induce significant changes in climate. Anthropogenic and natural factors, such as land cover and land use change, could result in the albedo change of land surfaces. In this study, we used Moderate Imaging Spectroradiometer (MODIS) data and climate station observations to investigate the albedo patterns of a temperate grassland (Grasslands National Park, Canada) and its changes due to the impact of climate variations. Our study focuses on 3 years of data (2001–2003), each of which had a different climatic regime. In 2001, precipitation fell well below its historical mean, and drought severely affected agricultural production over the GNP region. In 2002, annual precipitation was well above its historical mean, although most of the precipitation fell in the late growing season and drought conditions still occurred in the early growing season of the year. In 2003, annual precipitation was slightly lower than its historical mean, but more precipitation fell in the early growing season. MODIS and climate station observations suggest (a) during the winter-to-summer and summer-to-winter transitional periods, air temperature plays an important role in determining the surface albedo by controlling snow absence and presence; (b) in the winter season, the amount of precipitation (snow) greatly affects the surface albedo of this ecosystem; (c) in the growing season, ecosystem water conditions can significantly alter the surface albedo of the semiarid grassland through their impact on plant growth and ecosystem conditions. These results show that surface albedo changes of this temperate grassland highly respond to climate variations. The results of this study have a number of implications in weather forecasting, climate change, and ecosystem studies. Our results stress the importance of (a) accurately simulating snow coverage fractions in regions where snow cover tends to exist throughout a long winter season, and thus, has a large influence on surface albedo; (b) accurately simulating temperatures during seasonal transitional periods (winter–summer or summer–winter) since they determine the dates that snow covers the land surface and, in turn, strongly impact on simulations of surface albedo; (c) explicitly linking the impacts of climate change with variations on surface albedo, and the feedbacks of the albedo response to the physical climate system, in the climate model projections.  相似文献   

18.
Low and moderate rates of ammonium nitrate (NH4NO3) fertilizer were applied in late winter or late summer to mature ‘d'Anjou’ pear (Pyrus communis, L.) trees (planted 1963, 1965) from 1976 to 1994. Data on cold tolerance, nutrition, yield and fruit quality in relation to nitrogen (N) fertilization were collected between 1980 and 1988. Early autumn cold tolerance was higher for trees receiving low N rates versus moderate N rates in either late winter or late summer. In late autumn and early winter, cold tolerance increased for all trees, and little difference in winter hardiness existed for any N treatment. By mid‐winter, cold tolerance was higher for trees receiving the moderate rate of N in late winter versus low N in late summer. Cold tolerance was relatively high throughout autumn and winter freeze‐test periods for trees fertilized with low N in late winter. Tree vigor, fruit size, leaf N, and fruit N were highest for trees receiving the late winter, moderate rate of N. Yield was lowest, but fruit firmness, fruit quality and fruit calcium (Ca) concentrations were highest for trees treated with the late winter, low rate of N. The incidence of cork spot was lower from trees with the late winter, low N treatment than for the late summer, moderate N‐treated trees.  相似文献   

19.
基于SPI的近53 a宁夏干旱时空演变特征研究   总被引:2,自引:0,他引:2  
利用宁夏回族自治区9个气象站点1959-2011年的逐月降水数据计算其标准化降水指标(standardized precipitation index,SPI)值,并结合干旱站次比、干旱强度、气候倾向率及ArcGIS中反距离加权插值等方法,分析了研究区干旱的时空变化特征。结果表明,近53 a来,宁夏回族自治区年SPI在波动中呈降低的趋势,其变化倾向率为-0.131/10 a,呈更加干旱趋势,且干旱增幅以21世纪最大;从季节SPI变化来看,春、夏、秋季干旱呈增重趋势,但冬季有所缓解。从干旱发生的范围和强度来看,宁夏回族自治区重旱发生范围略有扩大,而轻旱和中旱略有减小,强度微呈减弱趋势;四季中,总体呈现出冬季干旱强度略增,范围缩小,春季干旱范围扩大。强度增强,而夏秋干旱范围缩小。宁夏回族自治区存在季节连旱频发现象,持续时间长,尤其是春、夏、秋跨季节连旱对农业生产影响最大。年和季节SPI的空间差异明显,表现为由北向南干旱的加重幅度逐渐增大,尤以南部山区对区域干旱变化的响应最为敏感。  相似文献   

20.
《Applied soil ecology》2000,14(3):231-248
We hypothesized that changes in the pattern of spring precipitation would alter the species composition of a temperate soil-surface collembolan community. Experimental manipulation of precipitation during a drought in southern England was used to test this hypothesis in spring 1997. Replicated plots in a field of spring peas received spring drought (plots shielded from rainfall), reference (actual) rainfall and spring irrigation during the first 2 weeks of May. Shielding plots extended the existing drought to 58 days. Thereafter all plots received natural precipitation only, which in June considerably exceeded the long-term average for the site. Redundancy Analysis (RDA) and the recently-developed method of Principal Response Curves analysis (PRC) were used to summarise and test statistically changes in community composition under the three precipitation treatments, using counts of soil-surface species obtained by suction sampling. Irrigation decreased counts of Bourletiella hortensis, but had a positive impact on all other species studied, whilst the effect of spring drought was negative. Effects of spring precipitation persisted for the 97-day duration of the study despite the unusually wet summer. The possibility that changes in patterns of rainfall in northern Europe would promote some species as crop pests is proposed, but not supported by our findings. We use the collembolan data to illustrate some advantages of PRC analysis over RDA and other ordination techniques for analysing community responses to experimental treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号