首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two groups of feline panleukopenia (FPV), feline calicivirus (FCV) and feline herpesvirus 1 (FHV-1) seronegative kittens (six cats per group) were administered one of two feline viral rhinotracheitis, calcivirus and panleukopenia (FVRCP) vaccines subcutaneously (one inactivated and one modified live) and the serological responses to each agent were followed over 49 days (days 0, 2, 5, 7, 10, 14, 21, 28, 35, 42, 49). While the kittens administered the modified live FPV vaccine were more likely to seroconvert on day 7 after the first inoculation than kittens administered the inactivated vaccine, all kittens had seroconverted by day 14. In contrast, FHV-1 serological responses were more rapid following administration of the inactivated FVRCP vaccine when compared with the modified live FVRCP vaccine. There were no statistical differences between the serological response rates between the two FVRCP vaccines in regard to FCV.  相似文献   

2.
OBJECTIVE: To determine whether detection of virus-specific serum antibodies correlates with resistance to challenge with virulent feline herpesvirus 1 (FHV-1), feline calicivirus (FCV), and feline parvovirus (FPV) in cats and to determine percentages of client-owned cats with serum antibodies to FHV-1, FCV, and FPV. DESIGN: Prospective experimental study. ANIMALS: 72 laboratory-reared cats and 276 client-owned cats. PROCEDURES: Laboratory-reared cats were vaccinated against FHV-1, FCV, and FPV, using 1 of 3 commercial vaccines, or maintained as unvaccinated controls. Between 9 and 36 months after vaccination, cats were challenged with virulent virus. Recombinant-antigen ELISA for detection of FHV-1-, FCV-, and FPV-specific antibodies were developed, and results were compared with results of hemagglutination inhibition (FPV) and virus neutralization (FHV-1 and FCV) assays and with resistance to viral challenge. RESULTS: For vaccinated laboratory-reared cats, predictive values of positive results were 100% for the FPV and FCV ELISA and 90% for the FHV-1 ELISA. Results of the FHV-1, FCV, and FPV ELISA were positive for 195 (70.7%), 255 (92.4%), and 189 (68.5%), respectively, of the 276 client-owned cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that for cats that have been vaccinated, detection of FHV-1-, FCV-, and FPV-specific antibodies is predictive of whether cats are susceptible to disease, regardless of vaccine type or vaccination interval. Because most client-owned cats had detectable serum antibodies suggestive of resistance to infection, use of arbitrary booster vaccination intervals is likely to lead to unnecessary vaccination of some cats.  相似文献   

3.
In this pilot study, 12 adult, gang-housed cats that were known to be previously exposed (n=12) to feline herpesvirus-1 (FHV-1) and/or vaccinated against (n=2) feline calicivirus (FCV) and FHV-1 were randomly assigned to one of two groups of six cats each. Nasal and pharyngeal samples were collected from each cat on days -7, -3, and 0 prior to vaccination and on days 3, 7, 10, 14, 17, 21, and 28 after vaccination with an FHV-1, FCV, and panleukopenia (FVRCP) vaccine developed for intranasal (six cats) or parenteral (six cats) use. FHV-1 DNA was amplified from 1/12 cats (1/69 samples; 1.4%) prior to vaccination and 2/12 cats after vaccination (2/154 samples; 1.3%). FCV RNA was amplified from 2/12 cats (2/69 samples; 2.9%) prior to vaccination and 7/12 cats (12/154 samples; 7.8%) after vaccination. Positive molecular diagnostic assay results for FHV-1 and FCV were uncommon prior to or after vaccination in these cats.  相似文献   

4.
Serum antibody titers are a useful measurement of protection against infection (feline panleukopenia virus [FPV]) or clinical disease (feline herpesvirus-1 [FHV] and feline calicivirus [FCV]), and their determination has been recommended as part of disease outbreak management in animal shelters. The objective of this study was to determine the sensitivity, specificity, and inter-observer and inter-assay agreement of two semi-quantitative point-of-care assays for the detection of protective antibody titers (PAT) against FPV, FHV and FCV in shelter cats. Low sensitivity for FPV antibodies (28%) rendered a canine point-of-care assay inappropriate for use in cats. The feline point-of-care assay also had low sensitivity (49%) and low negative predictive value (74%) for FPV PAT detection, but was highly accurate in the assessment of FHV and FCV PAT. Improvements in accuracy and repeatability of FPV PAT determination could make this tool a valuable component of a disease outbreak response in animal shelters.  相似文献   

5.
Forty-two seronegative cats received an initial vaccination at 8 weeks of age and a booster vaccination at 12 weeks. All cats were kept in strict isolation for 3 years after the second vaccination and then were challenged with feline calicivirus (FCV) or sequentially challenged with feline rhinotracheitis virus (FRV) followed by feline panleukopenia virus (FPV). For each viral challenge, a separate group of 10 age-matched, nonvaccinated control cats was also challenged. Vaccinated cats showed a statistically significant reduction in virulent FRV-associated clinical signs (P = .015), 100% protection against oral ulcerations associated with FCV infection (P < .001), and 100% protection against disease associated with virulent FPV challenge (P < .005). These results demonstrated that the vaccine provided protection against virulent FRV, FCV, and FPV challenge in cats 8 weeks of age or older for a minimum of 3 years following second vaccination.  相似文献   

6.
7.
OBJECTIVE: To evaluate duration of immunity in cats vaccinated with an inactivated vaccine of feline panleukopenia virus (FPV), feline herpesvirus (FHV), and feline calicivirus (FCV). ANIMALS: 17 cats. PROCEDURE: Immunity of 9 vaccinated and 8 unvaccinated cats (of an original 15 vaccinated and 17 unvaccinated cats) was challenged 7.5 years after vaccination. Specific-pathogen-free (SPF) cats were vaccinated at 8 and 12 weeks old and housed in isolation facilities. Offspring of vaccinated cats served as unvaccinated contact control cats. Virus neutralization tests were used to determine antibody titers yearly. Clinical responses were recorded, and titers were determined weekly after viral challenge. RESULTS: Control cats remained free of antibodies against FPV, FHV, and FCV and did not have infection before viral challenge. Vaccinated cats had high FPV titers throughout the study and solid protection against virulent FPV 7.5 years after vaccination. Vaccinated cats were seropositive against FHV and FCV for 3 to 4 years after vaccination, with gradually declining titers. Vaccinated cats were protected partially against viral challenge with virulent FHV. Relative efficacy of the vaccine, on the basis of reduction of clinical signs of disease, was 52%. Results were similar after FCV challenge, with relative efficacy of 63%. Vaccination did not prevent local mild infection or shedding of FHV or FCV. CONCLUSIONS: Duration of immunity after vaccination with an inactivated, adjuvanted vaccine was > 7 years. Protection against FPV was better than for FHV and FCV. CLINICAL IMPLICATIONS: Persistence of antibody titers against all 3 viruses for > 3 years supports recommendations that cats may be revaccinated against FPV-FHV-FCV at 3-year intervals.  相似文献   

8.
OBJECTIVE: To determine whether administration of inactivated virus or modified-live virus (MLV) vaccines to feral cats at the time of neutering induces protective serum antiviral antibody titers. DESIGN: Prospective study. ANIMALS: 61 feral cats included in a trap-neuter-return program in Florida. PROCEDURES: Each cat received vaccines against feline panleukopenia virus (FPV), feline herpes virus (FHV), feline calicivirus (FCV), FeLV, and rabies virus (RV). Immediately on completion of surgery, vaccines that contained inactivated RV and FeLV antigens and either MLV or inactivated FPV, FHV, and FCV antigens were administered. Titers of antiviral antibodies (except those against FeLV) were assessed in serum samples obtained immediately prior to surgery and approximately 10 weeks later. RESULTS: Prior to vaccination, some of the cats had protective serum antibody titers against FPV (33%), FHV (21%), FCV (64%), and RV (3%). Following vaccination, the overall proportion of cats with protective serum antiviral antibody titers increased (FPV [90%], FHV [56%], FCV [93%], and RV [98%]). With the exception of the FHV vaccine, there were no differences in the proportions of cats protected with inactivated virus versus MLV vaccines. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that exposure to FPV, FHV, and FCV is common among feral cats and that a high proportion of cats are susceptible to RV infection. Feral cats appeared to have an excellent immune response following vaccination at the time of neutering. Incorporation of vaccination into trap-neuter-return programs is likely to protect the health of individual cats and possibly reduce the disease burden in the community.  相似文献   

9.
In order to confirm the in vivo effectiveness of anti- feline herpesvirus type 1 (FHV-1) mouse-cat chimeric antibody (FJH2), and anti-feline calicivirus (FCV) mouse-cat chimeric antibody (F1D7), cats that had been experimentally infected with FHV-1 or FCV were administered intravenously with the chimeric antibodies, and observed for clinical manifestations. The symptoms due to FHV-1 or FCV infection in the cats administered FJH2 or F1D7 were obviously decreased when compared with those of the non-administered control cats. From these results, it was confirmed that both FJH2 and F1D7 were effective at reducing the appearance of symptoms due to FHV-1 and FCV infection, respectively.  相似文献   

10.
OBJECTIVE: To determine whether vaccinated cats either remained seropositive or responded serologically to revaccination against 3 key viral antigens after extended periods since their last vaccination. DESIGN: Serologic survey. ANIMALS: 272 healthy client-owned cats. PROCEDURE: Cats were > or = 2 years old and vaccinated for feline panleukopenia virus (FPV), feline calicivirus (FCV), and feline herpesvirus (FHV). On day 0, cats were revaccinated with a vaccine from the same line of vaccines as they had historically received. Antibody titers were measured in sera collected on day 0 (prevaccination titer) and 5 to 7 days later (postvaccination titer). Cats were considered to have responded serologically if they had a day-0 hemagglutination inhibition titer to FPV > or = 1:40, serum neutralization (SN) titer to FCV > or = 1:32, SN titer to FHV > or = 1:16, or > or = 4-fold increase in antibody titer after revaccination. RESULTS: The percentage of cats that had titers at or above the threshold values or responded to revaccination with a > or = 4-fold increase in titer was 96.7% for FPV, 97.8% for FCV, and 88.2% for FHV. CONCLUSIONS AND CLINICAL RELEVANCE: In most cats, vaccination induced a response that lasted up to and beyond 48 months for all 3 antigens. Although not equivalent to challenge-of-immunity studies as a demonstration of efficacy, results suggest that revaccination with the vaccine used in our study provides adequate protection even when given less frequently than the traditional 1-year interval. The study provides valuable information for clinicians to determine appropriate revaccination intervals.  相似文献   

11.
A serosurvey of feline herpesvirus type 1 (FHV-1), feline calicivirus (FCV), and feline parvovirus (FPV) in cats from Ho Chi Minh City area in southern Vietnam was conducted in December 1998, and we compared the results with our previous results in northern Vietnam (Hanoi area). The positive rate of FHV and FCV in domestic cats were 44% and 74%, respectively. They were rather higher than those in Hanoi area, while the seropositivity of FPV (44%) was similar to that in Hanoi area. In leopard cats, the positive rate of FPV was high (3/4) and it indicated that FPV was prevailing in leopard cats in Vietnam.  相似文献   

12.
OBJECTIVE: To determine whether administration of Crandell-Rees feline kidney (CRFK) cell lysates or vaccines against feline viral rhinotracheitis, calicivirus, and panleukopenia (FVRCP vaccines) that likely contain CRFK cell proteins induces antibodies against CRFK cell or feline renal cell (FRC) lysates in cats. ANIMALS: 14 eight-week-old cats. PROCEDURE: Before and after the study, renal biopsy specimens were obtained from each cat for histologic evaluation. Each of 4 FVRCP vaccines was administered to 2 cats at weeks 0, 3, 6, and 50. Between weeks 0 and 50, another 3 pairs of cats received 11 CRFK cell lysate inoculations SC (10, 50, or 50 microg mixed with alum). Clinicopathologic evaluations and ELISAs to detect serum antibodies against CRFK cell or FRC lysates were performed at intervals. RESULTS: Cats had no antibodies against CRFK cell or FRC lysates initially. All cats administered CRFK cell lysate had detectable antibodies against CRFK cell or FRC lysates on multiple occasions. Of 6 cats vaccinated parenterally, 5 had detectable antibodies against CRFK cell lysate at least once, but all 6 had detectable antibodies against FRC lysate on multiple occasions. Cats administered an intranasal-intraocular vaccine did not develop detectable antibodies against either lysate. Important clinicopathologic or histologic abnormalities were not detected during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Parenteral administration of vaccines containing viruses likely grown on CRFK cells induced antibodies against CRFK cell and FRC lysates in cats. Hypersensitization with CRFK cell proteins did not result in renal disease in cats during the 56-week study.  相似文献   

13.
Parenteral administration of Crandell Rees feline kidney (CRFK) cell lysates or feline herpesvirus 1, calicivirus, and panleukopenia virus-containing vaccines (FVRCP) grown on CRFK cells induces antibodies against CRFK cells. These antibodies also react with feline renal cell extracts. The purpose of this study was to determine whether interstitial nephritis would be detected in cats that were immunologically sensitized with CRFK lysates, boosted with CRFK lysates, and then biopsied 2 weeks after the booster. Cats (2 per group) were immunologically sensitized against CRFK lysates by administering 10 microg, 50 microg, or 50 microg plus alum 13 times (12 times in the first 50 weeks) over 2 years. Two cats were inoculated three times, 4 weeks apart with an FVRCP vaccine for intranasal administration as kittens, boosted 50 and 102 weeks later, and then renal biopsies taken 2 weeks after the last booster. Neither of the cats vaccinated with the FVRCP for intranasal administration had detectable renal inflammation. One cat in each of the three CRFK lysate sensitization groups had lymphocytic-plasmacytic interstitial nephritis.  相似文献   

14.
The induction of a quick onset of immunity against feline parvovirus (FPV), feline herpesvirus (FHV) and feline calicivirus (FCV) is critical both in young kittens after the decline of maternal antibodies and in cats at high risk of exposure. The onset of immunity for the core components was evaluated in 8–9 week old specific pathogen free kittens by challenge 1 week after vaccination with a combined modified live (FPV, FHV) and inactivated (FCV) vaccine. The protection obtained 1 week after vaccination was compared to that obtained when the challenge was performed 3–4 weeks after vaccination. The protocol consisted of a single injection for vaccination against FPV and two injections 4 weeks apart for FHV and FCV.At 1 week after vaccination, the kittens showed no FPV-induced clinical signs or leukopenia following challenge, and after FCV and FHV challenges the clinical score was significantly lower in vaccinated animals than in controls. Interestingly, the relative efficacy of the vaccination was comparable whether the animals were challenged 1 week or 3–4 weeks after vaccination, indicating that the onset of protection occurred within 7 days of vaccination. Following the 1-week challenge, excretion of FPV, FHV and FCV was significantly reduced in vaccinated cats compared to control kittens, confirming the onset of immunity within 7 days of vaccination.  相似文献   

15.
In this study an in vitro assay was optimized to detect feline proliferating lymphocytes as an assessment for the cell-mediated immune response. For this purpose, 5-bromo-2'-deoxyuridine (BrdU) labeling was chosen because of its sensitivity and the possibility of further characterization of proliferating cells. The assay was optimized by selecting the best batch and concentration of fetal bovine serum, β-mercaptoethanol concentration, cell density, BrdU incubation time and antigen presenting cell type. Cats were vaccinated with the attenuated Nobivac vaccine Tricat and the peripheral blood lymphocyte proliferation responses were quantified upon in vitro restimulation with inactivated and infectious feline panleukopenia virus (FPV), feline calicivirus (FCV) and felid herpesvirus 1 (FeHV-1). Proliferation signals were detected with inactivated FeHV-1 in the CD8(+) but not in the CD8(-) T lymphocyte population, with inactivated FCV and FPV in both CD8(-) and CD8(+) T lymphocyte populations. Restimulation with infectious FCV caused significant proliferation in the CD8(-) T lymphocyte population only while infectious FPV and FeHV-1 seemed to suppress lymphocyte proliferation in both T cell populations. Additional IFN-γ quantification in the culture supernatant revealed a large correlation between the proliferation signals and IFN-γ production, indicating that BrdU labeling is a very reliable technique to assess and characterize feline lymphoproliferative responses to viral antigens in vitro.  相似文献   

16.
To evaluate the clinically normal feline cornea for the presence of virulent feline herpesvirus-1 (FHV-1), corneas from 31 cats (25 with normal eyes and six with active disease or corneal scarring) euthanased at a shelter were collected. Corneas from two specific pathogen-free cats were included as negative controls. Virus isolation (VI), fluorescent antibody (FA) staining and real-time polymerase chain reaction (rt-PCR) were performed on all samples. The presence or absence of dexamethasone in the media was evaluated for its effect on VI. VI was positive for FHV-1 in six corneas from five cats, all with clinically normal eyes. One cornea was positive for feline calicivirus (FCV) in addition to FHV-1, but only in media that included dexamethasone. Eight corneas were positive on rt-PCR for FHV-1, all from cats with clinically normal eyes. All positive VI samples were confirmed with FA staining. VI and rt-PCR were negative for FHV-1 and FCV in cats with active disease or corneal scarring. Data from this study indicate that virulent FHV-1 and FCV can be present in feline corneas that are clinically normal. Dexamethasone may enhance viral spread through a cell receptor mechanism.  相似文献   

17.
OBJECTIVE: To determine the effects of anesthesia and surgery on serologic responses to vaccination in kittens. DESIGN: Prospective controlled trial. ANIMALS: 32 specific-pathogen-free kittens. PROCEDURES: Kittens were assigned to 1 of 4 treatment groups: neutering at 7, 8, or 9 weeks of age or no neutering. All kittens were inoculated with modified-live virus vaccines against feline panleukopenia virus (FPV), feline herpesvirus (FHV), and feline calicivirus (FCV) at 8, 11, and 14 weeks of age and inactivated rabies virus (RV) at 14 weeks of age. Serum antibody titers against FPV, FHV, and FCV were determined at 8, 9, 11, 14, and 17 weeks of age; RV titers were determined at 14 and 17 weeks of age. RESULTS: Serologic responses of kittens neutered at the time of first vaccination (8 weeks) were not different from those of kittens neutered 1 week before (7 weeks) or 1 week after (9 weeks) first vaccination or from those of kittens that were not neutered. In total, 31%, 0%, 69%, and 9% of kittens failed to develop adequate titers against FPV, FCV, FHV, and RV, respectively, by 17 weeks of age. CONCLUSIONS AND CLINICAL RELEVANCE: Neutering at or near the time of first vaccination with a modified-live virus vaccine did not impair antibody responses in kittens. Many kittens that were last vaccinated at 14 weeks of age had inadequate antibody titers at 17 weeks of age. Kittens may be vaccinated in the perioperative period when necessary, and the primary vaccination series should be extended through at least 16 weeks of age.  相似文献   

18.
The Oklahoma Department of Wildlife Conservation acquired 20 American river otters (Lutra canadensis) between 1984 and 1985 for reintroduction into Oklahoma waterways. In 1985, 10 otters were evaluated for serum antibody titers after vaccination with canine distemper virus, canine adenovirus type 2, canine parvovirus (CPV), feline panleukopenia virus (FPV), feline rhinotracheitis virus (FRV), and feline calicivirus. Prevaccination serum-virus neutralization (SVN) antibody to feline rhinotracheitis virus was found in 2 otters and to feline calicivirus in 1 otter. Using an indirect fluorescent antibody (IFA) assay, prevaccination antibody to CPV and FPV was found in 2 otters. A significant increase in SVN antibody titers was found after vaccination of otters with canine adenovirus type 2 (6 of 8 animals) and feline calicivirus (1 of 8 animals). One of 8 otters developed significant antibody titers to CPV and FPV, as measured by IFA assay. Otters did not develop SVN antibody titers to canine distemper virus after vaccination. Antigens of feline leukemia virus, using ELISA, or antibodies to feline infectious peritonitis, using IFA assay, were not found in the 20 otters.  相似文献   

19.
20.
This article presents the results of a study of captive tigers (Panthera tigris) and lions (Panthera leo) vaccinated with a recombinant vaccine against feline leukemia virus; an inactivated adjuvanted vaccine against rabies virus; and a multivalent modified live vaccine against feline herpesvirus, calicivirus, and panleukopenia virus. The aim of the study was to assess the immune response and safety of the vaccines and to compare the effects of the administration of single (1 ml) and double (2 ml) doses. The animals were separated into two groups and received either single or double doses of vaccines, followed by blood collection for serologic response for 400 days. No serious adverse event was observed, with the exception of abortion in one lioness, potentially caused by the incorrect use of the feline panleukopenia virus modified live vaccine. There was no significant difference between single and double doses for all vaccines. The recombinant vaccine against feline leukemia virus did not induce any serologic response. The vaccines against rabies and feline herpesvirus induced a significant immune response in the tigers and lions. The vaccine against calicivirus did not induce a significant increase in antibody titers in either tigers or lions. The vaccine against feline panleukopenia virus induced a significant immune response in tigers but not in lions. This report demonstrates the value of antibody titer determination after vaccination of nondomestic felids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号