共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined recruitment and average weight-at-age time series for Pacific herring ( Clupea pallasi ) populations from the Bering Sea and north-east Pacific Ocean to determine similarities. Statistical correlation and multivariate clustering methods indicated Pacific herring populations form large-scale groups. Large year classes occur synchronously among several Pacific herring populations. Multivariate cluster analyses of recruitment and weight-at-age data indicated that Bering Sea herring populations are distinct from north-east Pacific Ocean populations. Within the NE Pacific Ocean, there appear to be three groups of herring populations: a British Columbia group, a south-east Alaska coastal group, and an outer Gulf of Alaska group. Jackknife and randomization tests indicate these groups are robust and not the result of random chance. Deviations from observed herring population groups were examined for indications of anthropogenic perturbations. The Prince William Sound herring populations did not show any strong deviations corresponding to the oil spill of 1989. There might not yet be enough data since the spill to detect changes in the recruitment or weight-at-age data since that time, particularly if oil spill effects were concentrated on the early life history stages. 相似文献
2.
An investigation of the biological basis of recruitment,growth and adult survival rate variability of Pacific herring (Clupea pallasi) from British Columbia: a synthesis 下载免费PDF全文
R. W. Tanasichuk 《Fisheries Oceanography》2017,26(4):413-438
I explored the biological basis of variation in recruitment (age 3 abundance), growth and age‐specific adult survival rate for the major populations [West Coast Vancouver Island (WCVI), Strait of Georgia, Central Coast, North Coast and Haida Gwaii] of Pacific herring (Clupea pallasi) that inhabit British Columbian waters. The analyses were based on a synthesis of time series of empirical observations of herring population characteristics (egg deposition, age‐specific abundance and size) and prey, competitor and predator biomass/abundance. Recruitment was not correlated among populations. Recruitment variability was explained for WCVI herring only, as a consequence of prey (the euphausiid Thysanoessa spinifera) biomass during August in each of the first 3 years of life, and the biomass of piscivorous Pacific hake (Merluccius productus) during the first year of life. Recruit mass and adult mass‐at‐age were correlated among populations and over ages within populations. Recruit mass was affected by T. spinifera biomass in August of the first and third years of life. Adult mass‐at‐age variability was determined mainly by size at the beginning of the growth season, but also by T. spinifera biomass in August. Age‐specific adult survival rates were not correlated among the five populations. Survival rates decreased with age; there were additional population‐specific effects of somatic mass and T. spinifera biomass in August. The analyses were repeated using physical oceanographic explanatory variables. Only recruit mass variation was explained significantly by physical oceanographic variables, and the biological‐based explanation of recruit mass variability accounted for more of the variation. 相似文献
3.
Ecological effects of regime shifts in the Bering Sea and eastern North Pacific Ocean 总被引:6,自引:0,他引:6
Large‐scale shifts occurred in climatic and oceanic conditions in 1925, 1947, 1977, 1989 and possibly 1998. These shifts affected the mix and abundance of suites of coexisting species during each period of relative environmental stability—from primary producers to apex predators. However, the 1989 regime shift was not a simple reversal of the 1977 shift. The regime shifts occurred abruptly and were neither random variations nor simple reversals to the previous conditions. Timing of these anomalous environmental events in the North Pacific Ocean appears to be linked to physical and biological responses in other oceanic regions of the world. Changes in the atmospheric pressure can alter wind patterns that affect oceanic circulation and physical properties such as salinity and depth of the thermocline. This, in turn, affects primary and secondary production. Data from the North Pacific indicate that regime shifts can have opposite effects on species living in different domains, or can affect similar species living within a single domain in opposite ways. Climatic forcing appears to indirectly affect fish and marine mammal populations through changes in the distribution and abundance of their predators and prey. Effects of regime shifts on marine ecosystems are also manifested faster at lower trophic levels. Natural variability in the productivity of fish stocks in association with regime shifts indicates that new approaches to managing fisheries should incorporate climatic as well as fisheries effects. 相似文献
4.
A qualitative understanding of the long‐term variation in the population dynamics of Yellow Sea (YS) herring is particularly important for clarifying the evolutionary processes and driving mechanisms of the YS large marine ecosystem. Unfortunately, because of a lack of long‐term, continuous, and simultaneous monitoring data, the specific driving processes and mechanisms of climate effects on the population dynamics of YS herring remain largely unknown. In response to this scientific issue, we preliminarily propose the idea of reconstructing long‐term changes in YS herring abundance over the past 590 years (AD 1417–2004) based on historical documents and attempt to explore the impacts of climate on the population. Our results show that YS herring abundance maintained at a relatively high level from AD 1417 to 1870 (during the Little Ice Age); in contrast, the population declined significantly from AD 1870 to 2004 at different rates. In addition, we also found that there were strong relationships between the population abundance of YS herring and the Pacific decadal oscillation (PDO) and drought/flood cycles. We suggest that the fluctuations in YS herring abundance may be influenced by ocean–climatic circulation shifts throughout the North Pacific, especially the PDO. 相似文献
5.
Shifts in climate regime are prominent features of the physical environment of the eastern Bering Sea and in recent years have been documented in approximately 1977 and 1989. Average snow crab (Chionoecetes opilio) recruitment decreased sharply after the 1989 fertilization year. Models in which control of snow crab recruitment shifts between drivers dependent on climate ‘regime’ are presented. These models are evaluated using cross‐validation and retrospective analysis, both of which indicate that the relationships are relatively robust to varying levels of information. Larval survival as influenced by food availability in the pelagic phase and advection to suitable nursery grounds are the hypothesized mechanisms driving recruitment dynamics. 相似文献
6.
The neon flying squid, Ommastrephes bartrami, is one of the most important jig fisheries in the northwest Pacific Ocean. In order to understand the movement of O. bartrami fishing-ground better and supply O. bartrami fishing-ground information for Chinese fishing boats in the northwest Pacific ocean, the fishing condition analysis and forecasting system of O. bartrami was developed successfully. The system was based on established comprehensive database, which included the catch data of O. bartrami (total yields, count of total fishing boats, fishing position etc. ) and oceanic environmental information (SST, SST gradient etc. ). Artificial intelligent technology about case-based reasoning was also combined with GIS component technology successfully in the system. The process and function of system establishment are composed of four parts: setting up of case database for central fishing-ground and its environmental factors, knowledge reasoning of fishery information, GIS visualization analyzing as well as trend forecasting of central fishing-ground and information production mapping. At last as an example of the results, an experimental central fishing-ground forecasting of O. bartrami from 9 to 15 in July 2002 in the northwest Pacific Ocean was given in the paper. The results showed that through three class similar searching forecasting central fishing-ground would move west, and indicating that forecasting of the system for O. bartrami central fishing-ground was correct by comparing to real fishing-ground from 16 to 22 in July 2002. Consequently, artificial intelligent expert system technology about case-based reasoning is a useful method for fishing condition and fishing-ground forecasting. 相似文献
7.
The inter-annual variability in year class strength (1976–2000) of North Sea herring (Clupea harengus) was investigated using Paulik diagrams based on survey data and Virtual Population Analysis. The herring life cycle was split into five stages: spawning stock biomass (SSB), egg production, larvae, fish with 0 winter rings on the otolith (0-wr), 1-wr and 2-wr. Surveys were used as indices and Paulik analysis revealed relationships between stages. In 80% of the years, year class strength reflected SSB. Poorer than expected year classes were determined during the larva to 0-wr phase, whilst stronger than expected year classes were apparently determined during the 0-wr to 1-wr stage. There was no clear relationship between survival of young stages of herring and the abundance of Calanus finmarchicus but the year class strength of 0-wr and 1-wr had a negative relationship to bottom water temperature. Lower sea water temperatures in the North Sea are associated with higher Calanus abundance. The analysis shows that the strength of aberrant year classes of North Sea herring is determined between the pelagic larval and the juvenile stages. 相似文献
8.
Spatial correlation patterns in coastal environmental variables and survival rates of salmon in the north-east Pacific Ocean 总被引:1,自引:0,他引:1
We examined spatial correlations for three coastal variables [upwelling index, sea surface temperature (SST), and sea surface salinity (SSS)] that might affect juvenile salmon ( Oncorhynchus spp.) during their early marine life. Observed correlation patterns in environmental variables were compared with those in survival rates of pink ( O. gorbuscha ), chum ( O. keta ), and sockeye ( O. nerka ) salmon stocks to help identify appropriate variables to include in models of salmon productivity. Both the upwelling index and coastal SST were characterized by strong positive correlations at short distances, which declined slowly with distance in the winter months, but much more rapidly in the summer. The SSS had much weaker and more variable correlations at all distances throughout the year. The distance at which stations were no longer correlated (spatial decorrelation scale) was largest for the upwelling index (> 1000 km), intermediate for SST (400–800 km in summer), and shortest for SSS (< 400 km). Survival rate indices of salmon showed moderate positive correlations among adjacent stocks that decreased to zero at larger distances. Spatial decorrelation scales ranged from approximately 500 km for sockeye salmon to approximately 1000 km for chum salmon. We conclude that variability in the coastal marine environment during summer, as well as variability in salmon survival rates, are dominated by regional scale variability of several hundred to 1000 km. The correlation scale for SST in the summer most closely matched the observed correlation scales for survival rates of salmon, suggesting that regional-scale variations in coastal SST can help explain the observed regional-scale covariation in survival rates among salmon stocks. 相似文献
9.
K. O. COYLE L. B. EISNER F. J. MUETER A. I. PINCHUK M. A. JANOUT K. D. CIECIEL E. V. FARLEY A. G. ANDREWS 《Fisheries Oceanography》2011,20(2):139-156
Concern about impacts of climate change in the Bering Sea prompted several research programs to elucidate mechanistic links between climate and ecosystem responses. Following a detailed literature review, Hunt et al. (2011) (Deep‐Sea Res. II, 49, 2002, 5821) developed a conceptual framework, the Oscillating Control Hypothesis (OCH), linking climate‐related changes in physical oceanographic conditions to stock recruitment using walleye pollock (Theragra chalcogramma) as a model. The OCH conceptual model treats zooplankton as a single box, with reduced zooplankton production during cold conditions, producing bottom‐up control of apex predators and elevated zooplankton production during warm periods leading to top‐down control by apex predators. A recent warming trend followed by rapid cooling on the Bering Sea shelf permitted testing of the OCH. During warm years (2003–06), euphausiid and Calanus marshallae populations declined, post‐larval pollock diets shifted from a mixture of large zooplankton and small copepods to almost exclusively small copepods, and juvenile pollock dominated the diets of large predators. With cooling from 2006–09, populations of large zooplankton increased, post‐larval pollock consumed greater proportions of C. marshallae and other large zooplankton, and juvenile pollock virtually disappeared from the diets of large pollock and salmon. These shifts in energy flow were accompanied by large declines in pollock stocks attributed to poor recruitment between 2001 and 2005. Observations presented here indicate the need for revision of the OCH to account for shifts in energy flow through differing food‐web pathways due to warming and cooling on the southeastern Bering Sea shelf. 相似文献
10.
The robustness of a previously described environmentally mediated stock–recruitment relationship for Pacific cod in Hecate Strait, BC, Canada was tested with 10 yr of additional data. The original analysis tested several alternative hypotheses and concluded that water transport through Hecate Strait, as indicated by sea level height, coupled with cod spawning biomass formed the best model. The present analysis indicates the relationship held through the 1990s. The implications of variation in sea level on stock production were investigated with a delay‐difference stock production model that included an environmentally mediated stock–recruitment relationship. The model predicted that the maximum fishery yield would vary between 1750 and 3670 t yr?1 over the observed range of sea level height, and the estimated unsustainable fishing mortality during periods of low productivity would be only 0.5 times that in periods of high productivity. 相似文献
11.
Environmental and biological monitoring for forecasting anchovy recruitment in the southern Benguela upwelling region 总被引:3,自引:1,他引:2
S. J. PAINTING L. HUTCHINGS J. A. HUGGETT J. L. KORRÛBEL A. J. RICHARDSON & H. M. VERHEYE 《Fisheries Oceanography》1998,7(3-4):364-374
Environmental and biological sampling and monitoring have been carried out in the southern Benguela since 1988. The overall goal of this research is to investigate environmental factors affecting anchovy recruitment and to develop the ability to forecast anchovy recruitment from year-to-year using field data obtained during the spawning season (August to March). Sampling was conducted at three different temporal and spatial scales: during annual (November) broad-scale hydro-acoustic surveys to determine spawner biomass on the entire spawning ground and in the core transport and recruitment areas; during monthly surveys in the core spawning, transport and recruitment regions over two entire spawning seasons (1993/94 and 1994/95); and during weekly sampling (since 1995) along a single transect downstream from the spawning area. Annual surveys provide the best spatial coverage, but are inadequate for representing environmental conditions and anchovy spawning success over a prolonged season. Weekly sampling provides the best temporal coverage, but logistical constraints restrict information to a limited portion of the spawning area and a reduced number of variables. Monthly surveys provide intermediate coverage in time and space, but are expensive and labour-intensive. Forecasting anchovy recruitment has been based on two different approaches: the establishment of empirical relationships, and the development of rule-based expert systems. Forecasts from deterministic expert systems have compared well with final estimates of recruitment strength, and indicate that environmental and biological variables may be used in a structured way to forecast anchovy recruitment. 相似文献
12.
Anomalous conditions in the south-eastern Bering Sea, 1997: nutrients, phytoplankton and zooplankton 总被引:7,自引:0,他引:7
Dean A. Stockwell Terry E. Whitledge Stephan I. Zeeman Kenneth O. Coyle Jeffrey M. Napp Richard D. Brodeur Alexei I. Pinchuk & George L. HuntJR 《Fisheries Oceanography》2001,10(1):99-116
Anomalies in the regional weather over the south-eastern Bering Sea during spring and summer of 1997 resulted in significant differences in nutrient availability, phytoplankton species composition, and zooplankton abundance over the continental shelf as compared with measurements in the 1980s. Calm winds and the reduction of cloud cover in spring and summer produced a very shallow mixed layer in which nitrate and silicate were depleted after an April diatom bloom. High submarine light levels allowed subsequent phytoplankton growth below the pycnocline and eventual depletion of nitrate from the water column to depths of 70 m or more. Thus, total new production during 1997 may have exceeded that of previous years when nitrate was not depleted below the pycnocline. A bloom of the coccolithophorid, Emiliania huxleyi , was observed in early July in the warm, nutrient-depleted waters over the middle and inner shelf. Emiliania huxleyi concentrations reached 4.5 × 106 cells L–1 by September, and the bloom persisted through the autumn. There was evidence for increased abundance of some species of copepods in 1997 as compared with data from the middle domain in June 1981. The abundance of adult and juvenile euphausiids in 1997 was statistically similar to values measured in 1980 and 1981. However, near-surface swarms were rarely observed on the inner shelf in August–September 1997. Lack of euphausiid availability in the upper water column may partially explain the August–September mass mortality of planktivorous short-tailed shearwaters ( Puffinus tenuirostris ) observed on the inner shelf. 相似文献
13.
Evidence for a substantial increase in gelatinous zooplankton in the Bering Sea, with possible links to climate change 总被引:21,自引:0,他引:21
Richard D. Brodeur Claudia E. Mills James E. Overland Gary E. Walters & James D. Schumacher 《Fisheries Oceanography》1999,8(4):296-306
We examined quantitative catches of large medusae from summer bottom trawl surveys that sampled virtually the same grid station on the eastern Bering Sea shelf using the same methodology every year from 1979 to 1997. This series shows a gradual increase in biomass of medusae from 1979 to 1989, followed by a dramatic increase in the 1990s. The median biomass increased tenfold between the 1982–1989 and 1990–1997 periods. Most of this biomass was found within the Middle Shelf Domain (50 < z < 100 m). The greatest rate of increase occurred in the north-west portion of this domain. Whether this dramatic increase in biomass of gelatinous zooplankton has resulted from some anthropogenic perturbation of the Bering Sea environment or is a manifestation of natural ecosystem variability is unclear. However, several large-scale winter/spring atmospheric and oceanographic variables in the Bering Sea exhibited concomitant changes beginning around 1990, indicating that a possible regime change occurred at this time. 相似文献
14.
TETSUICHIRO FUNAMOTO 《Fisheries Oceanography》2011,20(2):95-103
Recruitment of the northern Japan Sea stock (JSS) of walleye pollock has been decreasing since around 1990. In this study, I analyzed the factors causing this decrease in recruitment by investigating the relationship between recruitment, spawning stock biomass (SSB) and environmental factors using a generalized additive model (GAM). GAM fit to the data showed the importance of SSB, sea surface temperature (SST), ocean current strength (Tsushima Warm Current) and wind intensity (Asian monsoon) in determining the recruitment. Of these, the relationship between SSB and recruitment was positive and not negatively density‐dependent. On the other hand, the recruitment was negatively related to SST and ocean current strength, and a dome‐shaped relationship was observed between wind intensity and recruitment. Since around 1990, the values of SST and ocean current strength have mostly been high and that of wind intensity mostly low. In addition, SSB has been decreasing since the late 1990s. It is likely that the recruitment decline of JSS after approximately 1990 has been caused by warm water temperature, strong Tsushima Warm Current and weak Asian monsoon, and that the recent decrease in SSB has amplified this recruitment decline. According to the model’s estimation, a recruitment recovery due to environmental improvement will be highly restricted as long as SSB remains at its current low level. Significant recovery of SSB is urgently needed for JSS. 相似文献
15.
Juan Estrella‐Martínez Bernd R. Schne Ruth H. Thurstan Elisa Capuzzo James D. Scourse Paul G. Butler 《Fish and Fisheries》2019,20(3):537-551
Understanding the recruitment variability of the Atlantic herring North Sea stock remains a key objective of stock assessment and management. Although many efforts have been undertaken linking climatic and stock dynamic factors to herring recruitment, no major attempt has been made to estimate recruitment levels before the 20th century. Here, we present a novel annually resolved, absolutely dated herring recruitment reconstruction, derived from stable carbon isotope geochemistry (δ13C), from ocean quahog shells from the Fladen Ground (northern North Sea). Our age model is based on a growth increment chronology obtained from fourteen shells. Ten of these were micromilled at annual resolution for δ13C analysis. Our results indicate that the anthropogenically driven relative depletion of 13C, the oceanic Suess effect (oSE), became evident in the northern North Sea in the 1850s. We calculated a regression line between the oSE‐detrended δ13C results (δ13C?) and diatom abundance in the North Sea, the regression being mediated by the effect of phytoplankton on the δ13C of the ambient dissolved inorganic carbon. We used this regression to build an equation mediated by a nutritional link to reconstruct herring recruitment using δ13C?. The reconstruction suggests that there were five extended episodes of low‐recruitment levels before the 20th century. These results are supported by measured recruitment estimates and historical fish catch and export documentation. This work demonstrates that molluscan sclerochronological records can contribute to the investigation of ecological baselines and ecosystem functioning impacted by anthropogenic activity with implications for conservation and stock management. 相似文献
16.
Anomalous conditions in the south-eastern Bering Sea 1997: linkages among climate, weather, ocean, and Biology 总被引:14,自引:0,他引:14
In 1997, the Bering Sea ecosystem, a productive, high-latitude marginal sea, demonstrated that it responds on very short time scales to atmospheric anomalies. That year, a combination of atmospheric mechanisms produced notable summer weather anomalies over the eastern Bering Sea. Calm winds, clear skies, and warm air temperatures resulted in a larger-than-normal transfer of heat to surface waters and the establishment of a shallow mixed layer. In spring, significant new production occurred below the shallow pycnocline over the Middle Shelf, depleting the subpycnocline nutrient reservoir that normally exists during summer. Following the depletion of nitrate and silicate from the system, a sustained (≥ 4 months) bloom of coccolithophores ( Emiliania huxleyi ) was observed – a phenomenon not previously documented in this region. Summer Middle Shelf Domain copepod concentrations were higher for some species in 1997 than in the early 1980s. Warmer surface water and lack of wind mixing also changed the basic distribution of hydrographic regimes on the south-eastern shelf and altered the strength and position of fronts or transition zones where apex predators seek elevated food concentrations. The Inner Front was well inshore of its normal position, and adult euphausiids (the primary prey of short-tailed shearwaters, Puffinus tenuirostris ) were unavailable at, and shoreward of, the front in autumn. High shearwater mortality rates followed the period of low euphausiid availability. Some, but not all, of these anomalous conditions re-occurred in 1998. These observations are another demonstration that the structure and function of marine ecosystems are intimately tied to forcing from the atmosphere. Alteration of climatological forcing functions, expressed as weather, can be expected to have large impacts on this ecosystem and its natural resources. 相似文献
17.
大眼金枪鱼(Thunnus obesus)是东太平洋最重要的商业性金枪鱼鱼种,其资源评估采用的是结构复杂的Stock Synthesis 3模型(SS3).模型简化是提高资源评估效率的必要手段,但对大眼金枪鱼简化模型的效果尚未开展研究.本研究尝试从渔业数据结构的角度,将SS3复杂模型的23个渔业简化为仅含围网和延绳钓2个渔业,从而比较简化模型的评估能力.结果显示,简化模型能较为准确地描述大眼金枪鱼补充量、亲体量、捕捞死亡系数等主要时间序列的历史动态变化,对传统生物学参考点FMSY的估计也较为准确,且受陡度和自然死亡系数的影响较小,但对其他参考点的估算误差较大.陡度参数对简化模型基于Kobe图判断资源状态的准确性有重要影响,陡度较低时,简化模型能较为准确地判断资源状态.研究表明,权衡模型的评估能力和降低模型结构的复杂性,是大眼金枪鱼资源评估今后需要重点研究的任务之一.此外,对模型简化的效果评价,与采用的生物学参考点和资源状况判断标准的选择有关. 相似文献
18.
Stefan Neuenfeldt 《Fisheries Oceanography》2002,11(1):11-17
Environmental heterogeneity can create boundary conditions for the co-occurrence of marine predators and their prey. If one or both are spatially constrained by their tolerance to environmental variables, then spatial differences in the availability of possible habitats define the volume of distributional overlap. Cod ( Gadus morhua L.) and its prey, herring ( Clupea harengus L.), in the vertically stratified Bornholm Basin of the Baltic Sea are presented as an example. A non-linear model was used to estimate oxygen avoidance thresholds for both species. Herring avoided oxygen saturation levels below 50%, while cod tolerated oxygen saturation down to 16%. The threshold of 50% oxygen saturation, below which cod could not encounter its prey, herring, was applied to a time series of vertical oxygen profiles from the centre of the Bornholm Basin to estimate the size of the overlap volume during the winter period from 1958 to 1999. Dependent on the oxygenation of the deep-water, the overlap volume varied between 57 km3 and 250 km3 . 相似文献
19.
Copepod dynamics across warm and cold periods in the eastern Bering Sea: Implications for walleye pollock (Gadus chalcogrammus) and the Oscillating Control Hypothesis 下载免费PDF全文
David G. Kimmel Lisa B. Eisner Matthew T. Wilson Janet T. Duffy‐Anderson 《Fisheries Oceanography》2018,27(2):143-158
Differences in zooplankton populations in relation to climate have been explored extensively on the southeastern Bering Sea shelf, specifically in relation to recruitment of the commercially important species walleye pollock (Gadus chalcogrammus). We addressed two research questions in this study: (i) Does the relative abundance of individual copepod species life history stages differ across warm and cold periods and (ii) Do estimated secondary production rates for copepods differ across warm and cold periods? For most copepod species, warmer conditions resulted in increased abundances in May, the opposite was observed in colder conditions. Abundances of smaller‐sized copepod species did not differ significantly between the warm and cold periods, whereas abundances of larger‐sized Calanus spp. increased during the cold period during July and September. Estimated secondary production rates in the warm period were highest in May for smaller‐sized copepods; production in the cold period was dominated by the larger‐sized Calanus spp. in July and September. We hypothesize that these observed patterns are a function of temperature‐driven changes in phenology combined with shifts in size‐based trophic relationships with primary producers. Based on this hypothesis, we present a conceptual model that builds upon the Oscillating Control Hypothesis to explain how variability in copepod production links to pollock variability. Specifically, fluctuations in spring sea‐ice drive regime‐dependent copepod production over the southeastern Bering Sea, but greatest impacts to upper trophic levels are driven by cascading July/September differences in copepod production. 相似文献
20.
TAKESHI OKUNISHI SHIN‐ICHI ITO DAISUKE AMBE AKINORI TAKASUKA TAKAHIKO KAMEDA KAZUAKI TADOKORO TAKASHI SETOU KOSEI KOMATSU ATSUSHI KAWABATA HIROSHI KUBOTA TADAFUMI ICHIKAWA HIROYA SUGISAKI TAKETO HASHIOKA YASUHIRO YAMANAKA NAOKI YOSHIE TOMOWO WATANABE 《Fisheries Oceanography》2012,21(1):44-57
A two‐dimensional individual‐based fish movement model coupled with fish bioenergetics was developed to simulate the observed migration and growth of Japanese sardine (Sardinops melanostictus) in the western North Pacific. In the model, derived from the observed ocean–environmental data as the driving force, fish movement was adapted as a kinesis behavior. The model successfully simulated the observed transport patterns during the egg and larval stages and the northward migrations during the juvenile stage in 2005, 2006 and 2007. The model results showed that both temperature during the larval stage in the Kuroshio Extension and the prey availability during the early juvenile stage in the Kuroshio–Oyashio transitional area are important factors for growth of Japanese sardine. In autumn, the observed juvenile sardine were mainly distributed in the subarctic water region off the Kuril Islands, which is an area (158–165°E, 43–47°N) with a high chlorophyll‐a (Chl‐a) concentration. The model reproduced the fish distribution, which has a high density in this region. The high Chl‐a concentration area in autumn may contribute to increasing the survival rate of Japanese sardine by cascading up the food chain, from the high primary production, and is an important habitat for recruitment success of Japanese sardine. 相似文献