首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Plant need-based N management approaches may increase the efficiency of N fertilizer application in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). The leaf chlorophyll concentration estimated through the SPAD-502 meter gives a relative assessment of N status in crop. Field trials were conducted near St John's, Newfoundland, between 1997 and 2000 to describe the relationship between winter wheat and spring barley grain yield, protein content, protein yield and SPAD measurements, as affected by differential stage of crop growth, seeding rate and topdress N fertilizer. Grain yield, protein content, and protein yield of winter wheat and spring barley exhibited linear responses to increasing N topdress application rate. SPAD-502 values were moderately to highly positively correlated with grain yield, protein content, and protein yield as a result of increasing topdress N fertilization, and moderately negatively correlated as a result of increasing seeding rate. It may be difficult to make an N-application rate recommendation based on SPAD measurements, as a critical SPAD value may vary among years, locations, cultivars and soil characters.  相似文献   

2.
Knowledge of optimum fertilization for com production is required to increase crop yields while minimizing fertilizer costs. Field experiments were carried out from 1988 to 1993 to study the effects of fertilizer N rates on yield and N concentration of corn ( Zea mays L.) grain on a clay soil in Quebec. Grain yields and grain N concentrations generally followed a exponential relationship with increasing N fertilizer rates. The critical grain N concentration, defined as that associated with the highest grain yield, occurred at 285 kg N ha-1 for all years except 1969 when it occurred at 170 kg N ha-1. The critical grain N concentrations and grain yields over the years were found to be linearly related. The relationship between the critical grain N concentration and grain yield could serve as a diagnostic tool for N applications.  相似文献   

3.
Newfoundland's climate is marginal for agricultural production. The availability of locally grown cereal grain and high‐quality forage are major limitations to successful animal agriculture in this region. Here, our overall objective was to compare several spring cereal species for both annual forage and grain production in Newfoundland's cool Maritime climate. Several varieties of barley (Hordeum vulgare L.), wheat (Triticum aesitivum L.), oats (Avena sativa L.) and pea (Pisum sativum L.)–cereal mixtures for forage yield and quality, as well as grain yield and maturity, were compared in field trials on the east and west coasts in both 1999 and 2000. Barley headed earliest, yielded greatest forage dry matter, had lowest forage protein and acid detergent fibre (ADF) percentages, and had neutral detergent fibre (NDF) mean values greater than those of pea–cereal mixtures, but less than those of oats and wheat. Forage harvested from pea–cereal mixtures was similar to that of barley for yield, ADF and NDF, while P and protein percentage were much greater. Barley matured 10–15 days earlier than both wheat and oats. In general terms, all three spring cereals exhibited similar grain yield potential. Oats tillered less, but compensated by producing more kernels spike?1. Days to maturity for cereal grains in western Newfoundland were roughly similar to those reported for the Maritime provinces of Canada. Yield and maturity results for both forage and grain production suggest that eastern Newfoundland is a unique agro‐ecoregion in North America, and agronomic recommendations specific to other regions may not be applicable in this region.  相似文献   

4.
Nitrogen management for production of bread quality wheat ( Triticum aestivum L.) in eastern Canada has received little research attention. An experiment was conducted for 2 years at each of two sites in Québec to study the effect of level and timing of nitrogen (N) fertilizer application on grain protein concentration, protein content per seed, non-protein seed dry matter, grain protein yield and nitrogen harvest index (portion of plant N in the grain) of four hard red spring wheat cultivars known to have potential as bread wheats in eastern Canada. The soil types were Bearbroock clay (fine, mixed, non-acid, frigid, Humaquept) and Ste-Rosalie clay (typic, non-acid, frigid, Humaquept). The experiment was a 4 × 4 × 2 factorial. Four cultivars were used: Columbus, Katepwa, Max and Hege 155–85. In both years 0, 60, 120 and 180 kg Nha−1 were applied either all at seeding or 60 % at seeding and 40 % at heading. Grain protein concentration and grain protein yield increased consistently with increasing N fertilizer and with split N application. Nitrogen harvest index was not increased by increasing applications of N fertilizer. Protein content per seed was more critical in determining grain protein concentration than non-protein seed dry matter content. The western Canadian cultivars Columbus and Katepwa generally had greater grain protein concentration than the European cultivars Max and Hege 155–85, With reasonable N fertility the grain protein concentration of spring wheats grown in eastern Canada are sufficient for bread production.  相似文献   

5.
Most methods used to estimate N status require collection, processing and analysis of soil and/or plant tissue samples. In this study, leaf chlorophyll content of cereals, determined in the field with a portable chlorophyll meter (Minolta SPAD-502), was used to predict N availability of wheat ( Triticum aestivum L.), barley ( Hordeum vulgare L.), oats ( Avena sativa L.) and rye ( Secale cereale L.). The results indicated that accurate nitrogen (N) fertilizer recommendations based on chlorophyll content have both environmental and economic advantages. Determination of leaf chlorophyll content with a chlorophyll meter accurately indicated plant N status allowing N fertilizer requirement to be accurately determined and resulting in increased N uptake efficiency. Applying N fertilizer on this basis improved production economics and improved physical input-output ratio during grain yield formation. Using a chlorophyll meter, responsive and non-responsive categories can be determined at the stage of maximum number of florets per ear primordium (Zadoks' GS 37-41) and at pollination (i.e. pollen grains on well-developed stigmatic hairs, GS 52-58).  相似文献   

6.
Crops generally utilize nitrogen (N) from slurries less efficiently than from mineral fertilizers. In order to compare the effects of slurry and mineral N application on yield and residual fertilization effects, a long-term field trial was established in autumn 1994, where pig slurry was applied to oilseed rape (OSR), winter wheat and winter barley at the same application dates as mineral N fertilizer. N amounts ranged from 0 to 240 kg total N ha−1. The same treatment regimes were applied to the same plots in each year. Starting in 2010 (2011), wheat (barley) received no N fertilization in order to allow for testing residual fertilizer effects. Every year seed yield and N offtake by the seeds were determined.Accounting only for ammonia N of pig slurry, similar seed yields in OSR and slightly higher grain yields in wheat and barley compared to mineral N fertilizer were achieved. This indicates that mineralization of organically bounded slurry N compensated gaseous ammonia losses. In plots without N fertilization, OSR showed no yield trends during the experimental period, whereas wheat (barley) yield started to decrease after 10 (13) years without N fertilization. In the highly fertilized treatments, no significant trend in seed yield or N amount required for maximum yield could be detected. In the subsequent unfertilized wheat crop, accumulated slurry effects increased grain yield more than those of mineral N fertilizer. Barley grown in the second year without N supply remained unaffected by the previous slurry N application.  相似文献   

7.
Nitrogen fertilizer management from different sources and annual crop rotations are important components of wheat (Triticum aestivum L.) production systems, especially where air and soil quality issues have prompted a search for alternatives to wheat straw burning. This study examined the effects of two different wheat straw management options (burning and incorporation by tillage), three crop rotations [wheat-sesbania (Sesbania spp.), wheat–maize (Zea mays L.), and wheat-clean fallow] and three N sources (urea, chicken manure, and urea plus chicken manure) on wheat grain yield and N use efficiency. The experiment was conducted as split–split plot treatment arrangement with three replications for eight wheat cropping seasons in the state of Sonora, Mexico. Results indicated that both wheat grain yield and N use efficiency were higher with burning than incorporation of wheat straw and with fertilization with urea or urea plus chicken manure than chicken manure alone. As shown by the crop rotation-by-straw management interaction, planting sesbania following incorporation of the straw by tillage produced comparable grain yields to straw burning treatment. In contrast, wheat in annual rotation with maize produced the lowest wheat grain yield and N use efficiency irrespective of the wheat straw management and N source applied.  相似文献   

8.
Lysimeters and neighbouring fields were used from 1998 to 2000 to assess parameters of N use efficiency of three Swiss spring wheat (Triticum aestivum L.) genotypes. An old (Albis), a new (Toronit) and an experimental genotype (L94491) were compared with no and ample (250 kg N ha?1) N fertilizer supply. N fertilization increased biomass, grain yield and grain N concentration of all genotypes in all years and in both testing systems (field, lysimeters) but only a few genotype × N interactions were observed. Generally, Toronit was superior in producing biomass and grain yield and L94491 in accumulating N in the grain resulting in identical N biomass yields. Albis showed the lowest and Toronit the highest fertilizer recovery, irrespective of the method of calculation (15N or difference method). The medium yielding L94491 recovered similar amounts of fertilizer N as Toronit, mainly due to the high N concentration in the biomass. The ranking of the genotypes for the investigated traits was similar in both testing systems and results comparable with those reported in the literature, indicating that the lysimeter facility is suitable for investigations of agronomic traits on soil–plant relationships, where a constant recording of the soil properties is required.  相似文献   

9.
From all plant nutrients N fertilizer rates deserve highest attention as too high rates may result in nitrate leaching, volatilisation of N2O (greenhouse gas) and affect the farmers’ profit. Too low rates will also depress the profit. The problem is accentuated by the fact that crops not only feed from soil inorganic but also from organic soil N. Most soil N tests do not consider the available organic soil N. The Electro-Ultra-Filtration (EUF) method applied by us takes into account the EUF extractable inorganic and organic soil N for calculating the N fertilizer rate. This method developed at the Liebig University Giessen is called Giessen model (sampling in autumn out of the upper soil layer, 0–30 cm). We compared it with the standard soil N test the “Nmin method” recommended by German officials which method does not consider the available organic soil N (sampling in spring out of three or two soil layers, depending on soil depth). The investigation was carried out on farmers’ fields on five different sites with winter cereals (wheat, barley) in 1989/1990, 1990/1991 and 1991/1992. Recommended fertilizer application rates differed somewhat for both methods. Of the 23 cases, significantly higher grain yields were obtained five times by Nmin and four times by EUF; otherwise grain yields did not differ significantly between both methods. Grain yield and crude protein concentration were increased by fertilizer N compared with the plots without N fertilizer. On the site Giessen, however, there were some cases in which the N fertilizer did not increase grain yield. The soil of the Giessen site was rich in interlayer NH4+ which is not recovered by the EUF and Nmin method, but which obviously contributed to the N supply of the crop, and therefore the N rates were too high. Grain crude protein concentration were higher with Nmin for Wernborn and Bruchkobel sites because of higher N fertilizer rates. For the Giessen site in 1989/1990 the reverse was true. Nitrogen agronomic efficiency (AE) ranged from 0 to 35.6. Apparent N recovery (ANR) ranged from 0 to 111. The gross profit differed from −88 to 489 Euro/ha. Negative values (three cases out of 23) were found on the Giessen site where no yield increase was obtained by the N fertilizer because of interlayer NH4+. This interpretation is supported by the finding that interlayer NH4+ significantly decreased from autumn to spring. Apart from the results found in 1 year on the Giessen site, the gross profit calculation showed that a precise N fertilizer application based on soil analysis yields a high profitability of cereal production.  相似文献   

10.
Plant growth regulators (PGR) have potential to increase grain yield and may also alter grain protein levels of cereal crops. A 3-yr field experiment with spring barley ( Hordeum vulgare L.) and wheat ( Triticum aestivum L.) cultivars was conducted to determine whether ethephon treatment increased protein concentration, protein yield, and grain yield. A greenhouse experiment was also conducted to evaluate the response of barley grain protein concentration to gradual addition of ethephon (2.2 × 10-3 mM) or chlormequat (5.8 × 10-3 mM) solution after an thesis. Under field conditions, ethephon treatment increased barley and wheat grain protein concentrations by as much as 16 % but decreased grain yield so that protein yield increases were small or did not occur. For Laurier barley, total gram N content was increased by up to 20 % in one year of this study. However, over the 3 years, an inverse relation existed between grain protein and yield. Greenhouse data showed that i) the gradient in grain size and protein concentration among spikelets of a spike, which is established before anthesis, was not affected by either chlormequat or ethephon; and ii) chlormequat increased grain protein by 7 to 11 % whereas ethephon increased protein concentration by up to 13 % in one of the two experiments. Our data indicate that PGR can alter protein accumulation in the grain, and thus, the quality of bread wheat and feed barley crops can be increased m regions with a short crop-growing season. However, a portion of the increase in gram protein concentration is due to decreased starch deposition, which is associated with yield reductions. The greenhouse data confirmed that a portion of the increase in grain protein concentration due to PGR application is caused by increased protein accumulation in the barley grain.  相似文献   

11.
Due to the high cost of fuel and labour associated with conventional tillage, and because of their advantageous environmental consequences, interest in reduced and zero tillage systems has increased. Direct drilling into zero tilled (ZT) soil of two spring barley (Hordeum vulgare L.) cultivars (six-rowed Rolfi and two-rowed Saana), spring oats (Avena sativa L., cultivar Roope), and spring wheat (Triticum aestivum L., cultivar Kruunu) was compared with conventional tillage (CT) and drilling into ploughed soil. Two field experiments were conducted on clay soils (clay content > 50%) between latitudes 60° and 61° N. Seed and fertilizer were placed in the same row in ZT and in separate rows in CT. Oats was the most productive spring cereal species in ZT. Establishment of spring wheat was often poor. Barley was most vulnerable to water surplus during early growth and drought during late growth. High levels of crop residues caused problems in soil drying in spring and growth of monocultures of oats and wheat. A higher seeding rate was advantageous in zero tilled clay soil. The substantial grain yield decrease suggests need for improving ZT.Long-term trials are required to determine whether ZT suits clay soils as soil structure can change over time and weather conditions play a major role in the productivity of differently tilled soils.  相似文献   

12.
Crop losses caused by environmental stresses might be reduced by applying osmoprotectans to crop canopies. Glycinebetaine is endogenously accumulated by some halophytes under stress conditions and represents such a compound. Glycinebetaine was applied exogenously to barley ( Hordeum vulgare L.), oat ( Avena sativa L.), spring wheat ( Triticum aestwum L.), and summer turnip rape ( Brassica rapa ssp. oleifera DC.) canopies and its optimal concentration was monitored in the greenhouse. In field experiments the response of crop plants to betaine applications was assessed by measuring accumulation of above ground biomass, leaf area index (LAI), leaf chlorophyll, and yield. The optimum betaine concentration producing advantageous effects on growth and crop physiology in turnip rape was close to 0.1 M and for wheat 0.3 M. Such concentrations promoted accumulation of betaine similar to that of halophytes under stress conditions [ca. 200 μmol (g DM)−1]. In the 1993 field experiment peak LAIs were recorded in irrigated wheat and barley treated with 17.5 kg ha−1 betaine applied at 300 1 ha−1. Green leaf area was slightly more persistent in wheat treated twice with 1 kg ha−1 betaine applied at 200 1 ha−1 in 1994, although it was not associated with increased grain yield. Our results indicated that betaine has no actual potential in Finland for the principal grain crops but further studies are needed in stress prone environments to assess the potential of betaine treatments for preventing crop failures.  相似文献   

13.
Effects of Long-term Fertilizer N Reduction on Winter Grain and Sugar Beet Yields
The results of recent field experiments concerning the effect of long-term N-reduction on the yield and quality of sugar beet, winter wheat and winter barley on plots which had previously had received ample amounts of N are studied in this paper.
The yield and quality of crops harvested on plots where N-dressings had been reduced for 6–8 years were similar to those of crops grown on plots where N-application had been reduced for only 1 year. Grain yield of winter wheat and winter barley grown without any N-application decreased to about 60 % of amounts normally harvested under local conditions with recommended N dressings, whereas the white sugar yield still remained at 90 %. The yields decreased slightly with an increase in the duration of the experiments. Yields of both cereals and beets remained constant within each level of fertilization, even 6 years after inition of trials with 50, 75 and 125 % of locally recommended N dressings.
On plots that did not receive nitrogen fertilization, N-contents of grain were between 1.5 and 1.7 % for winter wheat and 1.0 and 1.6 % N for winter barley. These contents remained constant over a trial period of 6 years. The amount of annual export of 55–91 kg N/ha also remained constant. Limited N availability causes a decrease in grain protein content rather than in grain yield.
Compared to winter grain species, sugar beet (with 74–117 kg N/ha in the beet body) could realize the highest annual export of nitrogen from the plot. Differences in annual N export existing between the various locations of the plots cannot be explained by differences in soil quality. Continuous high yields that were found even without any N-dressings may be explained by asymbiotic N-fixation, deposition of atmospheric N and a progressive decrease in soil N with 17–56 kg N/ha removed from soil resources annually.  相似文献   

14.
为探讨不同施肥方式对土壤养分含量和春小麦产量的影响,设置不施肥(T)、化学氮肥(N)、有机肥(M)、有机肥和氮肥配施(NM)4个处理,分析不同施肥方式下陇中黄土丘陵区土壤养分含量和春小麦产量的变化特征。结果表明,不同施肥处理下土壤有机碳(SOC)、全氮(TN)、全磷(TP)含量及化学计量特征有一定差异。NM处理下SOC、TN含量及碳磷比(C:P)、氮磷比(N:P)均为最高,显著高于N和M处理;土壤碳氮比(C:N)和TP含量在各施肥处理间无显著差异。春小麦产量在不同施肥处理下有一定差异。NM处理下春小麦产量最高,显著高于N和M处理。春小麦产量与土壤SOC、TN、C:P、N:P和C:N呈显著或极显著相关关系,产量与TP含量无显著相关性。综上,在黄土高原丘陵区,有机肥和氮肥配施可以有效增加土壤养分含量和春小麦产量。  相似文献   

15.
In intensive farming systems, farmers split up and apply the N fertilization to winter cereals and oilseed rape (OSR) at several dates to meet the need of the crop more precisely. Our objective was to determine how prior fertilizer N application as slurry and/or mineral N affects contributions of fertilizer‐ and soil‐derived N to N uptake of barley (1997), oilseed rape (OSR; 1998) and wheat (1999). In addition, residual fertilizer N effects were observed in the subsequent crop. Since autumn 1991, slurry (none, slurry in autumn, in spring, in autumn plus in spring) and mineral N fertilizer (0, 12 and 24 g N m−2) were applied annually. Each year, the treatments were located on the same plots. In 1997–1999, the splitting rates of the mineral N fertilization were labelled with 15N. Non‐fertilizer N uptake was estimated from the total N uptake and the fertilizer 15N uptake. All three crops utilized the splitting rates differently depending on the time of application. Uptake of N derived from the first N rate applied at the beginning of spring growth was poorer than that from the second splitting rate applied at stem elongation (cereals) or third splitting rate applied at ear emergence or bud formation (all three crops). In contrast, N applied later in the growing season was taken up more quickly, resulting in higher fertilizer N‐use efficiency. Mineral N fertilization of 24 g N m−2 increased significantly non‐fertilizer N uptake of barley and OSR at most of the sampling dates during the growing season. In cereals, slurry changed the contribution of non‐fertilizer N to the grain N content only if applied in spring, while OSR utilized more autumn slurry N. In OSR and wheat, only small residual effects occurred. The results indicate that 7 years of varying N fertilization did not change the contribution of soil N to crop N uptake.  相似文献   

16.
Two field experiments were carried out in northern Greece during the 1993–94 and 1994–95 growing seasons to investigate the effect of nitrogen (N) supply on interspecific competition between wild mustard (Sinapis arvensis L.) and wheat (Triticum aestivum L.), barley (Hordeum vulgare =distichum L.) and triticale (Triticosecale). The presence of 140 S. arvensis plants m−2 until early March (averaged over N levels) did not have any adverse effect on the dry weight of all crops. However, its further presence significantly reduced the dry weight of wheat and triticale, but not that of barley. N fertilization (150 kg N ha−1 regardless of application time) slightly increased the dry weight of wheat and triticale grown without weed competition compared with that of control (0 kg N). On the contrary, the presence of wild mustard, until harvest, reduced dry weight of wheat and triticale by 31 and 26 %, respectively, while the corresponding reduction for barley was only 1.5 %. Furthermore, N fertilization (150 kg N ha−1) increased dry weight of wild mustard grown with wheat and triticale by 10 and 16 %, respectively, compared with that of control (0 kg N). Grain yield of wheat and triticale was reduced to 26 and 27 % by the competition of wild mustard, respectively, while the corresponding reduction for barley was only 3.5 %. Moreover, the wild mustard presence reduced total N content of wheat and triticale by 20 and 19 %, respectively, but this was not the case for barley.  相似文献   

17.
Winter wheat (Triticum aestivum L.) represents almost 50% of total cereal production in the European Union, accounting for approximately 25% of total mineral nitrogen (N) fertilizer applied to all crops. Currently, several active optical sensor (AOS) based systems for optimizing variable N fertilization are commercially available for a variety of crops, including wheat. To ensure successful adoption of these systems, definitive measurable benefits must be demonstrated. Nitrogen management strategies developed based on small-scale plot research are not always meaningful for large-scale farm conditions. In 2010–2012 (5 site-years) on-farm study was implemented in northern Poland utilizing a strip-trial design. The objective was to evaluate the performance of AOS in combination with a built-in algorithm for variable N rate fertilization. In this study, the reference uniform N rates (farmer’s practice) were comparable to optimum variable N rate recommendations. Side-by-side comparisons of uniform and variable N application revealed inconsistent benefits in terms of grain yield, grain protein content (GPC), N use and N use efficiency (NUE). Anticipated yield increases and/or reduced N rates are typical drivers for AOS adoption. Significant yield increases are not easily attained on farms with winter wheat yields already close to maximum yield potential. Thus, sensor-based variable N rate recommendations for fields previously fertilized with relatively low uniform N rates would often entail more appropriate allocation (redistribution) of the same amount of total N. This would minimize N surplus in areas of lower productivity and to improve the sustainability of N management overall.  相似文献   

18.
High rates of nitrogen (N) fertilizer may increase N leaching with drainage, especially when there is no further crop response. It is often discussed whether leaching is affected only at levels that no longer give an economic return, or whether reducing fertilization below the economic optimum could reduce leaching further. To study nitrate leaching with different fertilizer N rates (0–135 kg N ha−1) and grain yield responses, field experiments in spring oats were conducted in 2007, 2008 and 2009 on loamy sand in south-west Sweden. Nitrate leaching was determined from nitrate concentrations in soil water sampled with ceramic suction cups and measured discharge at a nearby measuring station. The results showed that nitrate leaching per kg grain produced had its minimum around the economic optimum, here defined as the fertilization level where each extra kg of fertilizer N resulted in a 10 kg increase in grain yield (85% DM). There were no statistically significant differences in leaching between treatments fertilized below this level. However, N leaching was significantly elevated in some of the treatments with higher fertilization rates and the increase in nitrate leaching from increased N fertilization could be described with an exponential function. According to this function, the increase was <0.04 kg kg−1 fertilizer N at and below the economic optimum. Above this fertilization level, the nitrate leaching response gradually increased as the yield response ceased and the increase amounted to 0.1 and 0.5 kg kg−1 when the economic optimum was exceeded by 35 and 100 kg N ha−1, respectively. The economic optimum fertilization level depends on the price relationship between grain and fertilizer, which in Sweden can vary between 5:1 and 15:1. In other words, precision fertilization that provides no more or no less than a 10 kg increase in grain yield per kg extra N fertilizer can be optimal for both crop profitability and the environment. To predict this level already at fertilization is a great challenge, and it could be argued that rates should be kept down further to ensure that they are not exceeded due to overestimation of the optimum rate. However, the development of precision agriculture with new tools for prediction may reduce this risk.  相似文献   

19.
在高肥力条件下,研究了不同氮肥运筹模式对冬小麦籽粒产量、品质、氮肥利用率和土壤中硝态氮累积量的影响。结果表明,在本试验条件下,施用氮肥对籽粒产量、籽粒蛋白质含量和湿面筋含量无显著影响,而作为籽粒蛋白质质量指标的沉淀值、面团形成时间和面团稳定时间均明显改善。与分次施用(50%作底肥,50%作追肥)比较,拔节  相似文献   

20.
The contribution of improvements in morphophysiological traits to increased gram yield in spring wheat (Triticum aestivum L.) and the achievements of breeding for high bread-making quality in Finland since the 1930s were assessed. Ten wheat cultivars released in Finland between 1939 and 1990 were evaluated in Held experiments at the Viikki Experimental Farm, University of Helsinki, Finland (60°13′N) in 1991 and 1992. Twenty-two traits representing maturity, plant architecture, plant stand structure and N accumulation, and nine quality traits, including protein concentration and protein quality, were assessed. A 20 % increase in grain yield arising from cultivar improvement was associated with a 7 % reduction in height, an 80 % improvement in lodging resistance, and a 15 % higher harvest index (HI). Ear weight was 30 % higher in the modern cultivars. The higher ear weight of the modern cultivars was a result of more grains per ear and a higher spikelet weight. No decrease in vegetative phytomass in modern cultivars was recorded in this study. Grain yield and total N accumulation increased simultaneously and a positive correlation between year of cultivar release and nitrogen index was established. Although use of high N fertilizer application rates resulted in significantly improved baking quality of the flour, no trend between baking quality and year of cultivar release was recorded. The relatively low HI recorded in this study suggests that further yield increases art-likely to be achieved by selecting for higher HI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号