首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Starch pasting properties and amylose content from 17 waxy barley lines (waxy gene originating from indigenous lines and an artificial mutant) were analyzed using rapid viscosity analysis (Rapid Visco Analyser [RVA]). Amylose contents varied from 0% (Shikoku‐hadaka 97) to 9.5% (Shikoku‐hadaka 96) compared with 30% for normal barley. Eight parameters were obtained from RVA profiles of these lines and correlation between each of these parameters and amylose content were evaluated. These parameters include pasting temperature (PT), peak viscosity (PV), temperature at PV, minimum viscosity (MV), final viscosity (FV), breakdown (BD), setback (SB), and time maintained at >80% PV (hot paste stability [HPS]). Significant correlations (0.64 and 0.61) were found between amylose content and FV and SB, respectively. High correlation (0.72) was found between amylose content and temperature at PV. HPS calculated from RVA profiles showed the highest correlation (0.79) to amylose content. Outer part of barley grains contained higher amounts of amylose than the inner part. There was a tendency that both PT and FV positively correlated to the amylose content of these parts.  相似文献   

2.
The increases in storage modulus (G′), retrogradation enthalpy change (ΔH) and ΔH‐related Avrami kinetic parameters of gelatinized rice starch dispersions at 25% (w/w) were investigated with respect to storage period, amylose content (AC), and molecular properties. Three high‐AC and five low‐AC rice cultivars were compared for understanding the multiple influences of AC and molecular properties involved. After refining the results of correlation analysis, the G′ of just‐cooled samples changed positively, mainly with AC and additionally with the average chain length of amylose (CLAM) and the weight ratio of extra‐long plus long chains to short chains of amylopectin (AP) (rAPchain). The developed ΔH on short‐term storage (10 days) elevated with increasing AC and CLAM and decreasing degree of polymerization of AP (DPAP), but after long‐term aging for one to three months with increasing rAPchain, especially for the low‐AC cultivars examined. Greater Avrami rate constants for retrogradation could be attributed to the combination of a lower DPAP and rAPchain or AP chain length and a greater CLAM. The polynomials using these critical factors to describe the retrogradation parameters were elucidated and could account for 85–99.6% of data deviations.  相似文献   

3.
Structures and properties of starches isolated from different botanical sources were investigated. Apparent and absolute amylose contents of starches were determined by measuring the iodine affinity of defatted whole starch and of fractionated and purified amylopectin. Branch chain-length distributions of amylopectins were analyzed quantitatively using a high-performance anion-exchange chromatography system equipped with a postcolumn enzyme reactor and a pulsed amperometric detector. Thermal and pasting properties were measured using differential scanning calorimetry and a rapid viscoanalyzer, respectively. Absolute amylose contents of most of the starches studied were lower than their apparent amylose contents. This difference correlated with the number of very long branch chains of amylopectin. Studies of amylopectin structures showed that each starch had a distinct branch chain-length distribution profile. Average degrees of polymerization (dp) of amylopectin branch chain length ranged from 18.8 for waxy rice to 30.7 for high-amylose maize VII. Compared with X-ray A-type starches, B-type starches had longer chains. A shoulder of dp 18–21 (chain length of 6.3–7.4 nm) was found in many starches; the chain length of 6.3–7.4 nm was in the proximity of the length of the amylopectin crystalline region. Starches with short average amylopectin branch chain lengths (e.g., waxy rice and sweet rice starch), with large proportions of short branch chains (dp 11–16) relative to the shoulder of dp 18–21 (e.g., wheat and barley starch), and with high starch phosphate monoester content (e.g., potato starch) displayed low gelatinization temperatures. Amylose contents and amylopectin branch chain-length distributions predominantly affected the pasting properties of starch.  相似文献   

4.
压热-冻融循环处理对甘薯淀粉结构及物化特性的影响   总被引:1,自引:0,他引:1  
为了探索压热冻融循环处理对甘薯淀粉结构及物化性质的影响,以甘薯淀粉为原料,并在不同淀粉乳浓度(5%、10%、20%,w/w)条件下进行重复的压热-冻融循环处理。结果表明,与甘薯原淀粉相比,经重复的压热-冻融处理后,甘薯淀粉颗粒形态消失,破裂熔融,最终呈不规则形状;甘薯淀粉衍射吸收峰强度减弱,晶型由A型向B型转化。随着淀粉乳浓度以及压热-冻融循环次数的增加,甘薯淀粉的膨胀势和溶解度均有所降低。在淀粉乳浓度为10%、压热-冻融循环1次处理后,甘薯淀粉中缓慢消化淀粉与抗性淀粉含量达到最高,分别为29.83%和39.82%。本研究为甘薯缓慢消化及抗性淀粉的制备提供了科学依据,为其在功能性食品领域中的应用提供了基础数据。  相似文献   

5.
The viscoelastic properties and molecular structure of the starch isolated from waxy (amylose-free) hexaploid wheat (WHW) (Triticum aestivum L.) were examined. WHW starch generally had lower gelatinization onset temperature, peak viscosity, and setback than the starch isolated from normal hexaploid wheat (NHW). Differential scanning calorimetry (DSC) showed that WHW starch had higher transition temperatures (To, Tp, and Tc) and enthalpy (ΔH) than NHW starch. However, when compared on the basis of amylopectin (AP) content, ΔH of WHW starch was almost statistically identical to that of its parental varieties. Typical A-type X-ray diffraction patterns were observed for the starches of WHW and its parental varieties. Somewhat higher crystallinity was indicated for WHW starch. WHW starch was also characterized by having greater retrogradation resistance. The high-performance size-exclusion chromatography (HPSEC) of amylopectin showed that each amylopectin yielded two fractions after debranching. Although WHW amylopectin had somewhat long B chains, little difference was observed in the ratio of Fr.III/ Fr.II between WHW and its parental varieties.  相似文献   

6.
Sweetpotato starch is high yielding but has very limited uses. It is possible to expand its application by blending it with other starches to obtain novel properties. In this study, functional properties of the blends of native sweetpotato starch with native, acid‐thinned, and hydroxypropylated wheat starch were studied at different ratios (75:25, 50:50, 25:75). The swelling factor, extent of amylose leaching, pasting, and gel textural properties of the blends were nonadditive of their individual components, and could be mathematically modeled by quadratic equations in relation to the ratios. Two peaks during pasting were observed for some starch mixtures studied by Rapid ViscoAnalyser (RVA). The gelatinization and retrogradation enthalpies (ΔH) of the blends were additive of their individual components and could be modeled by linear equations. All starch mixtures exhibited two peaks during differential scanning calorimetry (DSC) scan for gelatinization, but a single peak for retrograded starches. This study may provide basis for formulation of mixtures using starch from diverse sources to develop more natural starch systems with a range of physicochemical properties.  相似文献   

7.
A waxy spring wheat (Triticum aestivum L.) genotype was fractionated into flour and starch by roller and wet‐milling, respectively. The resultant flour and starch were evaluated for end‐use properties and compared with their counterparts from hard and soft wheats and with commercial waxy and nonwaxy corn (Zea mays L.) starches. The waxy wheat flour had exceptionally high levels of water absorption and peak viscosity compared with hard or soft wheat flour. The flour formed an intermediate‐strength dough that developed rapidly and was relatively susceptible to mixing. Analysis by differential scanning calorimetry and X‐ray diffractometry showed waxy wheat starch had higher gelatinization temperatures, a greater degree of crystallization, and an absence of an amylose‐lipid complex compared with nonwaxy wheat. Waxy wheat and corn starches showed greater refrigeration and freeze‐thaw stabilities than did nonwaxy starches as demonstrated by syneresis tests. They were also similar in pasting properties, but waxy wheat starch required lower temperature and enthalpy to gelatinize. The results show analogies between waxy wheat and waxy corn starches, but waxy wheat flour was distinct from hard or soft wheat flour in pasting and mixing properties.  相似文献   

8.
Differential scanning calorimetry (DSC) was used to study the effect of sucrose on wheat starch glass transition, gelatinization, and retrogradation. As the ratio of sucrose to starch increased from 0.25:1 to 1:1, the glass transition temperature (Tg, Tg′) and ice melting enthalpy (ΔHice) of wheat starch‐sucrose mixtures (with total moistures of 40–60%) were decreased to a range of −7 to −20°C and increased to a range of 29.4 to 413.4 J/g of starch, respectively, in comparison with wheat starch with no sucrose. The Tg′ of the wheat starch‐sucrose mixtures was sensitive to the amount of added sucrose, and detection was possible only under conditions of excess total moisture of >40%. The peak temperature (Tm) and enthalpy value (ΔHG) for gelatinization of starch‐sucrose systems within the total moisture range of 40–60% were increased with increasing sucrose and were greater at lower total moisture levels. The Tg′ of the starch‐sucrose system increased during storage. In particular, the significant shift in Tg′ ranged between 15 and 18°C for a 1:1 starch‐sucrose system (total moisture 50%) after one week of storage at various temperatures (4, 32, and 40°C). At 40% total moisture, samples with sucrose stored at 4, 32, and 40°C for four weeks had higher retrogradation enthalpy (ΔH) values than a sample with no sucrose. At 50 and 60% total moisture, there were small increases in ΔH values at storage temperature of 4°C, whereas recrystallization of samples with sucrose stored at 32 and 40°C decreased. The peak temperature (Tp), peak width (δT), and enthalpy (ΔH) for the retrogradation endotherm of wheat starch‐sucrose systems (1:0.25, 1:0.5, and 1:1) at the same total moisture and storage temperature showed notable differences with the ratio of added sucrose. In addition, Tp increased at the higher storage temperature, while δT increased at the lower storage temperature. This suggests that the recrystallization of the wheat starch‐sucrose system at various storage temperatures can be interpreted in terms of δT and Tp.  相似文献   

9.
Waxy rice starches from three japonica cultivars (Taichung Waxy 1 [TCW1], Taichung Waxy 70 [TCW70], Tachimemochi) and one indica cultivar (Tainung Sen Waxy 2 [TNSW2]) were characterized for chemical and physicochemical properties. The amylopectin structures were different for the four waxy rice starches in terms of degree of polymerization (DP), average chain length (CL), exterior chain lengths (ECL), and distribution of chains, indicating the existence of varietal differences. The order of swelling power was TCW1 > TCW70 > TNSW2 > Tachimemochi; the order of water solubility index was TCW70 > TNSW2 > Tachimemochi > TCW1. The low water solubility index of TCW1 might be ascribed to a high DP. All starches shared similar gelatinization temperatures and enthalpies but showed distinct retrogradation patterns. TNSW2 showed the highest retrogradation rate, followed by TCW2, Tachimemochi, and TCW70. TCW70 exhibited the highest overall pasting viscosity, followed by TNSW2, TCW1, and Tachimemochi. The hardness of waxy rice starch pastes from a Brabender amyloviscograph increased rapidly after storage at 5°C for one day and remained the same or slightly increased after seven days of storage, whereas the opposite trend was observed for adhesiveness. The lower degree of retrogradation of TCW70 was probably a result of a larger amount of A chain and a shorter ECL. The changes in hardness correlated with the amount of A and B1 chains. The texture attributes of waxy rice starch pastes were significantly affected by amylopectin retrogradation during storage.  相似文献   

10.
Carboxymethyl rice starches (CMRS) were prepared from nine strains of native rice starches with amylose contents of 14.7–29.1%. The reaction was conducted at 50°C for 120 min using monochloroacetic acid as a reagent under alkaline conditions and 1-propanol as a solvent. After determining the degree of substitution (DS), the physicochemical properties including water solubility, pH, and viscosity of 1% (w/v) solution, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses of the granules, as well as some pharmaceutical properties of CMRS powders and pastes were investigated. The DS range was 0.25–0.40. All CMRS dissolved in unheated water and formed viscous gel. A good positive correlation was observed between amylose content and DS (r = 0.9278) but not viscosity. SEM and XRD concurrently revealed significant physical alteration of CMRS granules compared with those of native starches, which reflected the changes in the properties of CMRS. At 3% (w/w), CMRS can function as tablet binder in the wet granulation of both water-soluble and water-insoluble diluents. The tablets compressed from these granules showed good hardness with fewer capping problems compared with those prepared using the pregelatinized native rice starch as a binder. In addition, most CMRS pastes formed clear films with varying film characteristics, depending upon the amylose content of the native starches. This type of modified rice starch can potentially be employed as a tablet binder and film-former for pharmaceutical dosage formulations.  相似文献   

11.
The starch of wheat (Triticum aestivum L.) flour affects food product quality due to the temperature-dependent interactions of starch with water during gelatinization, pasting, and gelation. The objective of this study was to determine the fundamental basis of variation in gelatinization, pasting, and gelation of prime starch derived from seven different wheat cultivars: Kanto 107, which is a partial waxy mutant line, and six near-isogenic lines (NILs) differing in hardness. Complete pasting curves with extended 16-min hold at 93°C were obtained using the Rapid Visco Analyser (RVA). Apparent amylose content ranged from 17.5 to 23.5%; total amylose content ranged from 22.8 to 28.2%. Starches exhibited significant variation in onset of gelatinization. However, none of the parameters measured consistently correlated with onset or other RVA curve parameters that preceded peak paste viscosity. Peak paste viscosity varied from 190 to 323 RVA units (RVU). Higher peak, greater breakdown, lower final viscosity, negative setback, and less total setback were associated with lower apparent and total amylose contents. Each 1% reduction in apparent or total amylose content corresponded to an increase in peak viscosity of about 22 and 25 RVU, respectively, at 12% starch concentration. Of the seven U.S. cultivars, the lower amylose cultivars Penawawa and Klasic were missing the granule-bound starch synthase (GBSS; ADPglucose starch glycosyl transferase, EC 2.4.4.21) protein associated with the Waxy gene locus on chromosome 4A (Wx-B1 locus). Kanto 107 was confirmed as missing both the 7A and 4A waxy proteins (Wx-A1 and Wx-B1 loci). The hardness NIL also were shown to be null at the 4A locus. Apparent and total amylose contents of prime starch generally corresponded well to the number of GBSS proteins; although the hardness NIL tended to have somewhat higher amylose contents than did the other GBSS 4A nulls. We concluded that reduced quantity of starch amylose due to decreased GBSS profoundly affects starch gelatinization, pasting, and gelation properties.  相似文献   

12.
In the present study, the relationships of soybean 11S globulin content, thermal properties, and retrogradation properties of nonwaxy maize starch in starch–globulin mixtures were investigated by differential scanning calorimetry. The onset and peak temperatures of maize starch were positively related to soybean 11S globulin content, whereas the thermal enthalpy was negatively related to it. However, the onset temperature, peak temperature, and thermal enthalpy of soybean 11S globulin were negatively related to maize starch content of mixtures. On the other hand, the onset and peak temperatures of retrograded maize starch were positively related to soybean 11S globulin content, whereas the retrogradation enthalpy was negatively related to it during storage. Therefore, adding soybean 11S globulin was an effective method to control maize starch gelatinization and retrogradation properties, which will be helpful for the food industry to produce high‐quality products based on starch and soybean protein.  相似文献   

13.
Effects of heat-moisture treatment (HMT) and lipids on the structure and gelatinization of maize and potato starches were studied, and the retrogradation process of 20% HMT starch gels was also investigated. Maize starch was physically modified by HMT or by defatting. Potato starch was physically modified by HMT or by adding monoglycerides. The X-ray pattern of the HMT maize starch was assigned to a combination of A and V patterns, which indicated that HMT formed crystallized amylose complexes and recrystallized amylose in maize starch granules. However, the X-ray pattern of defatted maize starch did not change for HMT, so the lipids originally existing in starch granules were important to the formation of new crystallites during this treatment. Differential scanning calorimetry (DSC) results suggested that weaker structures in amylopectin crystallites were more susceptible to degradation after HMT, while crystallized amylose complexes developed thermal stability after treatment. The amylose contents increased with increasing degree of HMT, which suggested that the newly created amylose arose from exterior linear chains of amylopectin degraded by the treatment. Investigation of retrogradation process showed that HMT significantly promoted retrogradation of starch gels, especially the initiation of recrystallization.  相似文献   

14.
Some mutant wheat lines with low‐amylose content were grown in a field and greenhouse (15 or 20°C) to compare apparent amylose content and starch pasting properties. The apparent amylose content of flour and starch increased and starch pasting parameters as measured by a Rapid Visco Analyser (RVA) changed in the greenhouse (at cool temperatures) during seed maturation. Densitometric analysis of the protein band separated by electrophoresis suggested that the increase in amylose content by cool temperature was related to the amount of Wx‐D1 protein. This data suggests that the Wx‐D1 gene was responsible for these changes. In wheat starch from Tanikei A6099 and Tanikei A6598 at 15°C, the value of final viscosity and total setback was higher than that from the field. In wheat starch from Tanikei A6599‐4 (waxy mutant with stable hot paste viscosity), the peak viscosity temperature was higher and time maintained >80% of the peak was shorter at 15°C than that from the field. Genetic analysis using doubled‐haploid (DH) lines from a combination of Tanikei A6599‐4 and Kanto 118 (low‐amylose line) showed that apparent amylose content increased and the starch pasting curve and properties changed in waxy progenies similar to Tanikei A6599‐4.  相似文献   

15.
Chemical treatments in wet milling could improve the physico‐chemical properties of starch isolated from high‐tannin sorghums. Sorghums Chirimaugute (medium‐tannin), DC‐75 (high‐tannin), and SV2 (tannin‐free) were steeped in water, dilute HCl (0.9%, v/v), formaldehyde (0.05%, v/v), and NaOH (0.3%, w/v) solutions before wet milling and starch separation. Pasting, textural, and thermal properties of starch were determined. Steeping in NaOH resulted in starches with higher peak viscosity (PV), cool paste viscosity (CPV), and setback than when water, HCl, and formaldehyde were used. The time to PV (Ptime) and PV temperature (Ptemp) were markedly reduced by treatment with NaOH. NaOH could have caused a degree of pregelatinization. HCl treatment gave starches with higher Ptemp and P time, presumably due to delayed granule swelling. Gel hardness was largely determined by the starch amylase content. The low hardness of DC‐75 starch gels was slightly improved in NaOH‐treated grains. Gelatinization temperatures of sorghum starches were generally low, regardless of steeping treatment. Starch from NaOH‐treated grain generally had slightly higher gelatinization temperatures than when water, HCl, or HCHO was used. Chemical treatments during steeping of sorghum grains greatly affected starch properties. Dilute alkali steeping during wet milling could be used to improve properties of starch isolated from tannin‐containing sorghums.  相似文献   

16.
The pasting properties of rice flours and reconstituted rice flours from mixing a common starch with proteins extracted from different rice cultivars at different total protein content levels were studied. Results showed that not only the total protein content but also the protein composition had an effect on the pasting properties of the rice flours. Among the different strands of rice proteins, globulin had the strongest influence on the pasting properties, followed by glutelin, whereas prolamin had the least influence. At the subunit level of the proteins, proteins with a molecular weight of 17,000, most likely from globulin, had the strongest effect on the peak viscosity of the rice flour, followed by those of 33,000. In comparison with that of the rice starch, the influence of proteins in rice was limited. The effect of interactions between the rice proteins and the starch, such as the role of starch‐granule‐associated proteins, was not isolated in this study, and further investigation is required to quantify this effect.  相似文献   

17.
Four rice starches were isolated from waxy and nonwaxy rice cultivars collected from different places in China. Individual rice starches were examined, along with their corresponding mixtures in different ratios, in terms of pasting and hydration properties. Analysis by micro‐viscoamylography (MVAG) showed that waxy rice starch and its blends had higher peak viscosity (PV), breakdown (BD), and setback (SB) than the remaining starches and mixtures. Apparent amylose content (AC) was 16.95–29.85% in nonwaxy individual rice starches and 13.69–25.07% in rice starch blends. Incorporating waxy rice starch (25%) significantly decreased the AC. AC correlated negatively with swelling power (SP) (r = ‐0.925, P < 0.01). SP exhibited nonlinear relationship (r2 = 0.8204) with water solubility (WS) and both increased with temperature. The correlation showed that WS is also an index of starch characteristics and the granules rigidity affected the granule swelling potential. The results show that turbidity of gelatinized starch suspensions stored at 4 ± 0.5°C generally increased during storage up to five days.  相似文献   

18.
Efforts are being made to identify sources of starches with unique end-use properties, such as thermal properties, within a wide array of maize germplasm. Because redundancy may exist when evaluating these traits, it would be useful to know the pattern of correlation among traits involved to focus the expensive stage of evaluation of germplasm on traits that do not provide redundant information. The objectives of this study were to analyze the pattern of correlations between starch gelatinization and retrogradation-associated traits in a group of 12 Argentine maize inbred lines and to develop predictive models among traits when possible. Traits measured by differential scanning calorimetry included gelatinization and retrogradation properties. Pearson correlation coefficients among starch thermal properties were determined from univariate analyses, and canonical correlations were determined from multivariate analyses. Canonical correlation analyses were more sensitive in detecting associations between starch gelatinization and retrogradation parameters than univariate analyses. Multiple regression equations to estimate the change in enthalpy of starch gelatinization and retrogradation traits, especially for change in enthalpy and percentage of retrogradation, were obtained and validated with an independent data set.  相似文献   

19.
The dough properties and baking qualities of a novel high‐amylose wheat flour (HAWF) and a waxy wheat flour (WWF) (both Triticum aestivum L.) were investigated by comparing them with common wheat flours. HAWF and WWF had more dietary fiber than Chinese Spring flour (CSF), a nonwaxy wheat flour. Also, HAWF contained larger amounts of lipids and proteins than WWF and CSF. There were significant differences in the amylose and amylopectin contents among all samples tested. Farinograph data showed water absorptions of HAWF and WWF were significantly higher than that of CSF, and both flours showed poorer flour qualities than CSF. The dough of WWF was weaker and less stable than that of CSF, whereas HAWF produced a harder and more viscous dough than CSF. Differential scanning calorimetry data showed that starch in HAWF dough gelatinized at a lower temperature in the baking process than the starches in doughs of WWF and CSF. The starch in a WWF suspension had a larger enthalpy of gelatinization than those in HAWF and CSF suspensions. Amylograph data showed that the WWF starch gelatinized faster and had a higher viscosity than that in CSF. The loaves made from WWF and CSF were significantly larger than the loaves made from HAWF. However, the appearance of bread baked with WWF and HAWF was inferior to the appearance of bread baked with CSF. Bread made with WWF became softer than the bread made with CSF after storage, and reheating was more effective in refreshing WWF bread than CSF bread. Moreover, clear differences in dough and bread samples were revealed by scanning electron microscopy. These differences might have some effect on dough and baking qualities.  相似文献   

20.
Wheat lines with reduced amylose content were recently produced by single and double mutation from a low‐amylose line, Kanto 107. They are appropriate for clarifying the influence of amylose content on starch gel properties because of their similar genetic background. When measured using the concanavalin A method (ConA), the total amylose content of isolated starches from Kanto 107 and three mutants (K107Afpp4, Tanikei A6599‐4, K107Wx2) was 24.8, 18.5, 7.1, and 1.7%, respectively. Results of differential scanning calorimetry (DSC) showed that the difference in amylose content strongly affected gelatinization conclusion temperature and enthalpy. We prepared 30 and 40% starch gels and measured their dynamic shear viscoelasticity using a rheometer with parallel plate geometry. Compressive and creep‐recovery tests were conducted under uniaxial compression. The storage shear modulus correlated highly with the amylose content of starch in 30 and 40% starch gels. The creep‐recovery test showed a clear distinction in creep curves among starch samples. When the compressive force required for 50, 80, and 95% strains was compared, starch gels with lower amylose content showed lower compressive force at 50% strain. Waxy starch gel (K107Wx2) showed higher compressive force at strain >80% than other samples due to its sticky property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号