首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High molecular weight (HMW) or low molecular weight (LMW) subunits of different chemical state (reduced, reoxidized with KBrO3, or KIO3) or gliadins were added in 1% amounts to a base flour of the wheat cultivar Rektor and mixed with water. The corresponding doughs were then characterized by microscale extension tests and by microbaking tests and were compared to doughs from the base flour without additives. The maximum resistance of dough was strongly increased by HMW subunits in a reduced state and by HMW subunits reoxidized with KBrO3. A moderate increase of resistance was caused by HMW subunits reoxidized with KIO3 and by LMW subunits reoxidized with KBrO3 or KIO3. This resistance was strongly lowered by LMW subunits in a reduced state and by gliadins. The extensibility of dough was significantly increased only by gliadins and reduced HMW subunits; HMW subunits reoxidized with KBrO3 had no effect, and all other fractions had a decreasing effect. In particular, glutenin subunits reoxidized with KIO3 induced marked decrease of extensibility, resulting in bell‐shaped curve extensigrams, which are typical for plastic properties. The effect of reoxidized mixtures (2:1) of HMW and LMW subunits on maximum resistance depended on the oxidizing agent and on the conditions (reoxidation separated or together); extensibility was generally decreased. Bread volume was increased by addition of HMW subunits (reduced or reoxidized with KBrO3) and decreased by LMW subunits (reoxidized with KBrO3 or KIO3) and by a HMW‐LMW subunit mixture (reoxidized with KBrO3). The volume was strongly decreased by addition of reduced LMW subunits. A high bread volume was related to higher values for both resistance and extensibility.  相似文献   

2.
J. Zhu  K. Khan 《Cereal Chemistry》2001,78(6):737-742
The use of capillary electrophoresis in SDS (SDS‐CE) for separation and quantification of HMW glutenin subunits (HMW‐GS) was investigated. HMW‐GS were precipitated with 40% acetone from 50% 1‐propanol extract of flour under reducing conditions after removal of monomeric proteins with 50% 1‐propanol. Poly (ethylene oxide) was used in the running buffer (3% w/v) for SDS‐CE. The results indicated that HMW‐GS could be well separated by SDS‐CE, including subunits 7+8, 7+9, 2+12, 5+10, and 17+18. However, HMW‐GS showed delayed migration times compared with molecular weight protein standards. Some HMW‐GS were reversed in their mobilities in SDS‐CE compared with their mobility and molecular weights by SDS‐PAGE. Therefore, the SDS‐CE was unsuitable for MW determination of HMW‐GS. A linear response was obtained from SDS‐CE of a plot of the concentration of HMW‐GS of the 40% acetone precipitate versus corrected areas for absorbance at 214 nm. Quantification of HMW‐GS for the two biotypes (subunits 5+10 vs. 2+12) of an Australian wheat cultivar Warigal confirmed the differences between the two biotypes in their quantity of HMW‐GS. Therefore, the technique could be used to quantify HMW‐GS in conjunction with SDS‐PAGE.  相似文献   

3.
The ability of HMW and LMW subunits of wheat glutelin to form a polymeric gluten network by intermolecular disulfide bonds is responsible for the unique rheological properties and baking quality of wheat dough. Because the mechanism of gluten formation is not fully understood, the reoxidation behavior of HMW and LMW subunits of wheat glutelin and HMW subunits of rye glutelin was studied. The subunits were isolated from wheat flour cv. Rektor (REK) and from rye flour cv. Danko (DAN) with a selective extraction and precipitation method. For reoxidation, different oxidants (KBrO3 and KIO3), protein concentrations (0.5, 1.0, and 2.0%), solvent compositions, pH values (2.0 and 8.0), and reaction times (0–360 min) were compared. The characterization of reoxidized products was achieved by the determination of the thiol content with the Ellman's reagent, and of the Mr distribution by gel‐permeation chromatography. The results demonstrated that both HMW and LMW subunits could be slowly reoxidized with KBrO3 to polymers with Mr up to several millions. Yield and Mr distribution of polymers were dependent both on the protein concentration and on the molar ratio of oxidants to thiol groups. The HMW subunits of wheat glutelin (HMW‐REK) yielded slightly higher quantities of polymeric proteins than did the HMW subunits of rye (HMW‐DAN). Reoxidation with KIO3 proceeded much faster than with KBrO3 and led to lower proportions of polymerized proteins for HMW‐REK and HMW‐DAN. Obviously, more intra‐ and fewer intermolecular disulfide bonds were formed by reoxidation with KIO3 compared with KBrO3. In contrast, LMW‐REK was reoxidized with KIO3 to higher amounts of polymeric aggregates, which indicated that LMW subunits formed intermolecular disulfide bonds with both KIO3 and KBrO3. Independent of the protein type and the oxidant used for reoxidation, more inter‐ and fewer intramolecular disulfide bonds were formed when the protein concentration was increased. Single subunits 5, 7, and 10 were isolated from HMW‐REK by preparative acid‐PAGE and were reoxidized with KBrO3 for 360 min. The Mr distribution indicated that x‐type subunit 5 had a greater tendency to form polymers than x‐type subunit 7. The y‐type subunit 10 was characterized by a lower proportion of polymers after reoxidation than x‐type subunits 5 and 7.  相似文献   

4.
J. Zhu  K. Khan 《Cereal Chemistry》2002,79(6):783-786
The objective of this study was to investigate the quantitative variation of HMW glutenin subunits in relation to glutenin polymers and hence breadmaking quality across different environments. Six genotypes of hard red spring (HRS) wheat were grown at seven locations in North Dakota in 1998 in a randomized complete‐block experimental design with three replicates at each location. Unreduced SDS‐soluble glutenins of flour were fractionated by multistacking SDS‐PAGE into different sized glutenin polymers, followed by SDS‐PAGE and imaging densitometry to determine the quantitative variation of HMW glutenin subunits. SDS‐insoluble glutenin polymers also were examined for their quantitative composition of HMW glutenin subunits. The results showed that the percentage of HMW glutenin subunits was significantly affected by growing locations. The quantity of HMW glutenin subunits in SDS‐insoluble glutenins was significantly and positively correlated with loaf volume. SDS‐insoluble glutenin polymers had a higher percentage of HMW glutenin subunits than did SDS‐soluble glutenins. SDS‐insoluble glutenin polymers in flour were positively and significantly correlated in proportions of both total and individual HMW glutenin subunits in total SDS glutenins. SDS‐insoluble glutenin polymers also were positively and significantly correlated with the combined proportion of HMW glutenin subunits 2* + 5. The results of this study indicated that either subunit 2* or 5 might be more important in forming a greater quantity of larger SDS‐insoluble glutenin polymers than other subunits. SDS‐insoluble glutenin polymers from different cultivars or locations could have different quantities of HMW glutenin subunits in their composition. SDS‐insoluble glutenin polymers with more HMW glutenin subunits might be larger sized than those with less HMW glutenin subunits. Environment significantly influenced the quantitative variation of HMW glutenin subunits, which in turn affected the size distribution of glutenin polymers, and hence breadmaking quality.  相似文献   

5.
An in vitro method for preparative‐scale production of artificial glutenin polymers utilizes a controlled environment for the oxidation of glutenin subunits (GS) isolated from wheat flour to achieve high polymerization efficiency. The functionality of in vitro polymers was tested in a 2‐g model dough system and was related to the treatment of the proteins before, during, and after in vitro polymerization. When added as the only polymeric component in a reconstituted model dough (built up from gliadin, water solubles, and starch fractions), in vitro polymers could mimic the behavior of native glutenin, demonstrating properties of dough development and breakdown. Manipulating the high molecular weight (HMW)‐GS to a low molecular weight (LMW)‐GS ratio altered the molecular weight distribution of in vitro polymers. In functional studies using the 2‐g mixograph, simple doughs built up from homopolymers of HMW‐GS were stronger than those using homopolymers of LMW‐GS. These differences may be accounted for, at least in part, by different polymer size distributions. The ability to control the size and composition of glutenin polymers shows the potential of this approach for investigating the effects of glutenin polymer size on dough function and flour end‐use quality.  相似文献   

6.
In order to study the functional properties of glutenin subunits added to a dough, they must be incorporated into the glutenin polymer. This requires partial reduction to open up the polymer, followed by oxidation to incorporate the added monomer into the polymer. Existing methods for incorporating glutenin subunits were suitable only for studies on mixing properties and needed to be modified for use in studies on extension and baking. A range of concentrations and of reaction times was therefore tested for both the reductant and the oxidant. In addition, mixing time as well as relaxation time before extension were varied. Extension curves and loaf heights were used to evaluate the treatments. Optimum conditions were developed that provided extension curves of normal dimensions but with altered shape. The conditions were reduction with 0.2 mg/mL of dithiothreitol (DTT) solution for 1 min followed by oxidation with 5 mg/mL of KIO3 solution, then mixing the dough to 70% of the peak dough development time. For microbaking, the conditions of 2 mg/mL of DTT for 1 min, 2.5 mg/mL of KIO3 for 5 min, and mixing the dough to peak development time allowed loaf height to be retained. The size distribution of the glutenin polymer was analyzed using size‐exclusion HPLC and field‐flow fractionation methods. This showed that the monomers were incorporated into the polymer and that polymer size was restored to control levels following reduction and oxidation.  相似文献   

7.
Three samples of Nekota (hard red winter wheat) were milled, and six mill streams were collected from each sample. The 18 mill streams were analyzed separately as well as recombined to form three patent flours. The methods of multistacking (MS)‐SDS‐PAGE and SDS‐PAGE were used to separate the unreduced SDS‐soluble glutenins and the total reduced proteins, respectively. The separated proteins were quantified by densitometry. The quantity of unreduced SDS‐soluble proteins was significantly different among the mill streams at the 4% (largest molecular weight polymeric glutenins) and at the 10 and 12% (smaller molecular weight polymeric glutenins) origins of the MS‐SDS‐PAGE gels. The quantities of total HMW‐GS, LMW‐GS, 2*, 7+9, and 5+10 subunits and the ratio of HMW‐GS to LMW‐GS in polymeric protein samples isolated using preparative MS‐SDS‐PAGE and in total reduced protein extracts were significantly different among mill streams. The quantities of HMW‐GS, LMW‐GS, 2*, 7+9, and 5+10 subunits from total reduced proteins were positively and significantly correlated with loaf volume. The quantities of glutenin subunits (both HMW‐GS and LMW‐GS) from unreduced SDS‐soluble proteins were positively or negatively correlated with loaf volume at the various MS‐SDS‐PAGE gel origins but the levels of correlation were not significant. These results showed that the glutenin protein composition was different among the various mill streams and demonstrated that electrophoretic analysis of the proteins in these fractions is a useful tool for studying the variation in functional properties of flour mill streams.  相似文献   

8.
Grains of two wheat (Triticum aestivum L.) cultivars, Sunco and Sunsoft, were stored at 4°C and 30°C for 270 days to examine changes in proteins during storage. When whole meal flour extracted from the grains was analyzed using an unfractionated protein extraction procedure, no significant changes were found in protein content or SDS‐PAGE profile for either cultivar in samples stored at 30°C compared with those stored at 4°C. Fractionation of the flour samples from stored grain into soluble and insoluble proteins revealed increases in soluble protein content for both cultivars stored at 30°C compared with 4°C. The soluble protein content, expressed as a percentage of the total protein, increased by 1.5% (P = 0.032) for Sunco and by 8.0 % (P = 0.158) for Sunsoft during storage at 30°C compared with those samples stored at 4°C. Analysis by SDS‐PAGE and subsequent protein identification revealed that the most evident change that occurred during storage at 30°C was an increase in the content of high molecular weight glutenin subunits (HMW‐GS) in the soluble fraction. The potential effect of changes in solubility of HMW‐GS on functional properties is discussed.  相似文献   

9.
High molecular weight glutenin subunits (HMW‐GS) from three hexaploid wheat species (AABBDD, 2n=6x=42, Triticum aestivum L., T. spelta L., and T. compactum L.) were separated and identified by acidic capillary electrophoresis (A‐CE) with phosphate‐glycine buffer (pH 2.5) in uncoated fused‐silica capillaries (50 μm, i.d. × 25.5 cm) at 12.5 kV and 40°C. The rapid separations (<15 min) of HMW‐GS with good repeatability (RSD < 2%) were obtained using a fast capillary rising protocol. All 17 HMW‐GS analyzed could be well separated and their relative migration orders were ranked. In particular, the good quality subunit pair 5+10 could be differentiated from poor quality subunit pair 2+12. In addition, the other three allelic pairs of 13+16, 17+18, and 7+8 subunits that were considered to have positive effects on dough properties, as well as three pairs of novel subunits 13+22*, 13*+19*, and 6.1+22.1 detected from spelt and club wheat, can also be readily separated and identified. An additional protein subunit presented in Chinese bread wheat cultivar Jing 411 and club wheat TRI 4445/75, respectively, was detected by both A‐CE and 2‐D gel electrophoresis (A‐PAGE × SDS‐PAGE), for which further identification is needed.  相似文献   

10.
Ten glutenin fractions were separated by sequential extraction of wheat gluten protein with dilute hydrochloric acid from defatted glutenin‐rich wheat gluten of the Canadian hard red spring wheat (HRSW) cultivar Glenlea. The molecular weight distribution (MWD) of 10 different soluble glutenin fractions was examined by multistacking SDS‐PAGE under nonreduced conditions. Also, the subunit composition of the different glutenin fractions was determined by SDS‐PAGE under reduced conditions. The MWD of the fractions (especially HMW glutenins) varied from fraction to fraction. From early to later fractions, the MWD shifted from low to high. The early extracted fractions contained more LMW glutenin subunits (LMW‐GS) and less HMW glutenin subunits (HMW‐GS). The later extracted fractions and the residue fraction contained much more HMW‐GS (2*, 5, and 7 subunits) than the early extracted fractions. The trend in the amounts of 2*, 5, and 7 subunits in each fraction from low to high matched the extraction solvent sequence containing from lower to higher levels of HCl. The influence of glutenin protein fractions from the extra‐strong mixing cultivar, Glenlea, on the breadmaking quality of the weak HRSW, McVey, was assessed by enriching (by 1%) the McVey base flour with isolated glutenin protein fractions from Glenlea. The mixograph peak development times and loaf volumes of enriched flour were measured in an optimized baking test. The results indicated that the higher content in Glenlea glutenin of HMW‐GS with higher molecular weight, such as 2*, 5, and 7, seem to be the critical factor responsible for the strong mixing properties of Glenlea. Our results confirmed that subunit 7 occurred in the highest quantity of all the HMW‐GS. Therefore, it seems that the greater the content of larger molecular weight glutenin subunits, the larger the glutenin polymers and the stronger the flour.  相似文献   

11.
Twenty‐seven durum wheat genotypes originating from different geographical areas, all expressing LMW‐2 at Glu‐B3, and five bread wheats were evaluated for flour mixing properties, dough physical characteristics, and baking performance. Gluten polymeric composition was studied using size‐exclusion HPLC of unreduced flour protein extracts. As a group, durum wheats had poorer baking quality than bread wheats in spite of higher protein and total polymer concentrations. Durum wheats exhibited weaker gluten characteristics, which could generally be attributed to a reduced proportion of SDS‐unextractable polymer, and produced less extensible doughs than did bread wheats. However, substantial variation in breadmaking quality attributes was observed among durum genotypes. Better baking performance was generally associated with greater dough extensibility and protein content, but not with gluten strength related parameters. Extensibility did not correlate with gluten strength or SEHPLC parameters. Genotypes expressing high molecular weight glutenin subunits (HMW‐GS) 6+8 exhibited better overall breadmaking quality compared with those expressing HMW‐GS 7+8 or 20. Whereas differences between genotypes expressing HMW‐GS 6+8 and those carrying HMW‐GS 7+8 could only be attributed to variations in extensibility, the generally inferior baking performance of the HMW‐GS 20 group relative to the HMW‐GS 6+8 group could be attributed to both weaker and less extensible gluten characteristics.  相似文献   

12.
The progenies of four intervarietal durum wheat crosses were used to determine the effects of glutenin variants coded at Glu‐1 and Glu‐3 loci on durum wheat quality properties. The F2 lines were analyzed for high molecular weight (HMW) and low molecular weight (LMW) glutenin composition by electrophoresis. Whole grain derived F3 and F4 samples were analyzed for vitreousness, protein, and dry gluten contents, gluten index, SDS sedimentation volume, mixograph, and alveograph properties. Allelic variation at the Glu‐B1 and Glu‐B3 loci affected gluten quality significantly. Comparisons among the Glu‐B3 and Glu‐B1 loci indicated that the LMW glutenin subunits controlled by Glu‐B3 c and j made the largest positive contribution, followed by the alleles a, k, and b. HMW glutenin subunits 14+15 gave larger SDS values and higher mixing development times than subunits 7+8 and 20. The positive effects of the glutenin subunits LMW c and HMW 14+15 were additive. Flour protein content, vitreousness, and mixograph peak height values were positively correlated with each other as well as with Dglut values, whereas the SDS sedimentation highly correlated with mixing development time, alveograph strength, and extensibility but was not correlated with the other parameters. The results of quality analysis, together with the results of the genetic analysis, led to the conclusion that SDS sedimentation, mixograph mixing development time, and peak breakdown are the tests more influenced by allelic variation of prolamin. The uses of the results in durum wheat quality breeding programs are discussed.  相似文献   

13.
An online coupling of high‐performance size‐exclusion chromatography (HPSEC) combined with multiangle laser‐light scattering (MALLS) and a reverse‐phase HPLC procedure were used to characterize and reveal the polydispersity of the glutenin polymers of doughs during mixing and resting. Experiments involved doughs prepared from several samples of a common French wheat cultivar (Soissons) differing in total amount of SDS‐unextractable glutenin polymers. During dough mixing, the amounts, size distribution of protein, and glutenin subunit composition within the SDS‐unextractable polymers changed. However, the major changes in SDS‐unextractable glutenin content and size distribution occurred before the peak mixing time (MT) was reached, whereas detectable changes in subunit composition also occurred after the peak MT. Even if sonication, which was used to solubilize the total wheat glutenin, can narrow the glutenin size distribution, HPSEC‐MALLS revealed a close relationship between the SDS solubility of the glutenin polymers and size distribution, confirming a depolymerization and repolymerization hypothesis. During the depolymerization of the SDS‐unextractable polymers, glutenin subunits were released in nonrandom order, which indicated that the polymers have a hierarchical structure. Some HMW glutenin subunits (HMW‐GS), especially 1D×5, were particularly resistant to the depolymerization mechanism. This suggested that the subunit plays a major role in forming the backbone of the SDS‐unextractable polymers, consistent with the potential to form branched structure. These studies suggest that the SDS‐unextrac‐table polymers in flours have a well‐ordered structure that can be modified by dough mixing and resting.  相似文献   

14.
The primary goal of this study is to improve our understanding of the extent of influence of climatic factors in Serbia and high‐molecular‐weight glutenin subunit (HMW‐GS) composition upon wheat end‐use quality. In‐depth analyses were performed on four bread wheat cultivars that are the most common in agricultural practice in Serbia. Total glutenin content showed significant difference between the production years, in opposition to gliadins. Cluster analysis of different percentages of glutenin and gliadin subunit molecular weight ranges (<40,000, 40,000–80,000, 81,000–120,000, and >120,000) indicated that the year of production and the cultivar did not have a significant effect on the percentage ranges for glutenins. However, they had a considerable impact on the percentage ranges for gliadins. Production year and the interaction of year and cultivar had the strongest influences on the percentage of SDS‐unextractable polymeric proteins. A synergistic effect of the HMW‐GS composition and climatic conditions revealed that all eight samples with HMW‐GS composition 2*, 5 + 10, 7 + 9 along with the highest Glu 1 score of 9 (out of a maximum of 10) produced in the year 2011 belonged to two clusters with the best wheat end‐use quality. Furthermore, the climate conditions in 2011 made it possible for the wheat cultivars with HMW‐GS composition –, 2 + 12, 7 + 9 to possess similar qualities as cultivars with HMW‐GS composition 2*, 5 + 10, 7 + 9 produced in 2012.  相似文献   

15.
J. Zhu  K. Khan 《Cereal Chemistry》2004,81(6):681-685
Gluten proteins from two cultivars of hard red spring (HRS) wheat with good and poor breadmaking quality were fractionated into 13 fractions by sequential extraction with dilute hydrochloric acid. Each subfraction was characterized by multistacking (MS) SDS‐PAGE under nonreducing conditions, followed by imaging densitometry. The glutenin polymers from the origins of MS‐SDS‐PAGE were analyzed by SDSP‐PAGE under reducing conditions to determine the composition of high and low molecular weight subunits. The results showed that fractions differed significantly in glutenin‐to‐gliadin ratios and in the size distribution of glutenin polymers. The earlier precipitated fractions were composed of more gliadins but fewer glutenin polymers. However, the glutenin polymers gradually increased in their relative quantities with the residue having the largest glutenin‐to‐gliadin ratio. The size distribution of glutenin polymers differed significantly from early precipitated to later fractions. The relative quantities of glutenin aggregates at the 4% origins increased significantly. The ratio of high molecular weight (HMW) to low molecular weight (LMW) glutenin subunits increased significantly from early to intermediate fractions. Between the two cultivars, significant differences were found in the ratio of HMW to LMW glutenin subunits and quantity of SDS insoluble glutenin polymers in the residue fraction with the better breadmaking quality cultivar ND706 having a greater ratio than the cultivar Sharp. It was concluded that the size distribution of glutenin polymers played an important role in determining the differences in breadmaking quality between the good and poor HRS wheat cultivars.  相似文献   

16.
《Cereal Chemistry》2017,94(3):508-512
The difference in accumulation of high‐molecular‐weight glutenin subunits (HMW‐GS) in superior (basal) and inferior (distal) grains results in the nonuniformity of grain quality in a winter wheat (Triticum aestivum L. ‘Yangmai 158’). The HMW‐GS accumulation and glutenin macropolymer (GMP) content were studied in superior and inferior grains during the grain‐filling period. Compared with inferior grains, HMW‐GS was formed earlier and total accumulation amount was higher in superior grains. The total HMW‐GS content was higher in superior grain than inferior grain, except at maturity. For individual HMW‐GS types, the accumulation and content of subunit 7 were the highest, followed by subunit 12, and those of subunit 8 were the lowest, followed by subunit 2 in superior grain. In contrast, the accumulation and content of subunit 7 at maturity were significantly higher than subunit 8 but similar between subunit 2 and subunit 12 in inferior grain. Moreover, the accumulation of subunit 7 and 12 in superior grain was significantly higher than in inferior grain. However, compared with the inferior grain, the GMP accumulation was higher but content was lower in superior grain at maturity.  相似文献   

17.
Knowledge of composition of high molecular weight glutenin subunits (HMW‐GS) and low molecular weight glutenin subunits (LMW‐GS) and their associations with pan bread and noodle quality will contribute to genetically improving processing quality of Chinese bread wheats. Two trials including a total of 158 winter and facultative cultivars and advanced lines were conducted to detect the allelic variation at Glu‐1 and Glu‐3 loci by SDS‐PAGE electrophoresis and to understand their effects on dough properties, pan bread, and dry white Chinese noodle (DWCN) quality. Results indicate that subunits/alleles 1 and null at Glu‐A1, 7+8 and 7+9 at Glu‐B1, 2+12 and 5+10 at Glu‐D1, alleles a and d at Glu‐A3, and alleles j and d at Glu‐B3 predominate in Chinese germplasm, and that 34.9% of the tested genotypes carry the 1B/1R translocation (allelic variation at Glu‐D3 was not determined because no significant effects were reported previously). Both variations at HMW‐GS and LMW‐GS/alleles and loci interactions contribute to dough properties and processing quality. For dough strength related traits such as farinograph stability and extensigraph maximum resistance and loaf volume, subunits/alleles 1, 7+8, 5+10, and Glu‐A3d are significantly better than those of their counterpart allelic variation, however, no significant difference was observed for the effects of d, b, and f at Glu‐B3 on these traits. For extensigraph extensibility, only subunits 1 and 7+8 are significantly better than their counterpart alleles, and alleles d and b at Glu‐B3 are slightly better than others. For DWCN quality, no significant difference is observed for HMW‐GS at Glu‐1, and Glu‐A3d and Glu‐B3d are slightly better than other alleles. Glu‐B3j, associated the 1B/1R translocation, has a strong negative effect on all quality traits except protein content. It is recommended that selection for subunits/alleles 1, 7+8, 5+10, and Glu‐A3d could contribute to improving gluten quality and pan bread quality. Reducing the frequency of the 1B/1R translocation will be crucial to wheat quality improvement in China.  相似文献   

18.
A total of 162 doubled haploid (DH) lines were produced from a cross between Triticum aestivum L. ‘AC Karma’ and line 87E03‐S2B1 to study the genetic contribution of high molecular weight (HMW) glutenin subunits to gluten strength. HMW glutenin subunit composition of each DH line was determined by SDS‐PAGE. The population was grown in the field at one location in 1999 and at three locations in 2000. Gluten strength and dough mixing properties were measured by mixograph test and SDS‐sedimentation test. Variance components were estimated for each measurement to determine the variability contributed by HMW glutenin subunits. Results indicated significant environmental impact on tested mixograph parameters, SDS‐sedimentation volumes and grain and flour protein concentration. Significant main effects of Glu‐1D loci encoded subunits were obtained for mixograph development time, energy to peak, slope after peak, and first minute slope. Lines containing 5+10 combination of subunits had higher values for mixograph development time and energy to peak, while slope after peak and first minute slope were lower as compared with 2+12 containing lines. Low intergenomic interactions were observed for bandwidth energy (BWE), total energy (TEG), and SDS‐sedimentation test, involving B and D genomes only. A portion of the genetic variability for gluten strength was accounted for overexpression of Bx7 subunit originating from the cultivar Glenlea derived line 87E03‐S2B1. There was no significant effect of Glu‐A1 encoded subunits on any of the tested parameters. Estimated genetic variability for gluten strength contributed by Glu‐B1 and Glu‐D1 encoded HMW glutenins was 55% for mixing development time and 51% for energy to peak.  相似文献   

19.
Understanding the relationship between basic and applied rheological parameters and the contribution of wheat flour protein content and composition in defining these parameters requires information on the roles of individual flour protein components. The high molecular weight glutenin subunit (HMW‐GS) proteins are major contributors to dough strength and stability. This study focused on eight homozygous wheat lines derived from the bread wheat cvs. Olympic and Gabo with systematic deletions at each of three HMW‐GS encoding gene loci, Glu‐A1, Glu‐B1, and Glu‐D1. Flour protein levels were adjusted to a constant 9% by adding starch. Functionality of the flours was characterized by small‐scale methods (2‐g mixograph, microextension tester). End‐use quality was evaluated by 2‐g microbaking and 10‐g noodle‐making procedures. In this sample set, the Glu‐D1 HMW‐GS (5+10) made a significantly larger contribution to dough properties than HMW‐GS coded by Glu‐B1 (17+18), while subunit 1 coded by Glu‐A1 made the smallest contribution to functionality. These differences remained after removing variations in glutenin‐to‐gliadin ratio. Correlations showed that both basic rheological characteristics and protein size distributions of these flours were good predictors of several applied rheological and end‐use quality tests.  相似文献   

20.
This study involved screening of wild species of wheat in search of functionally useful seed storage proteins for improvement of breadmaking quality of wheat (Triticum aestivum). After screening of 177 disomic addition lines (DALs) of wheat belonging to different wild species, Aegilops searsii DALs were selected and studied in detail. These DALs of Ae. searsii were from chromosome 1Ss to 7Ss in the background of cultivated wheat cv. Chinese Spring (CS). By analyzing these addition lines, genetic loci of actively expressed genes for the high molecular weight glutenin subunits (HMW‐GS) and gliadin were found on the chromosome 1Ss for the first time and have been designated as Glu‐Ss1 and Gli‐Ss1, respectively. Disomic addition line of chromosome 1Ss (DAL1Ss) showed improved dough strength in different generations compared with CS. SDS sedimentation value and specific sedimentation of DAL1Ss were higher than CS. Mixograph peak height and band width were higher, with no difference in mixing peak time from CS. All these factors indicate a positive effect of quantity as well as quality of gluten proteins of Ae. searsii. This was further supported by increased polymer formation in DAL1Ss because the ratio of unextractable polymeric protein to total polymeric protein (UPP/TPP%) of DAL1Ss was significantly higher than CS. Genes for HMW‐GS (major determinant of end‐product quality in wheat) of Ae. searsii were cloned and sequenced from the DAL1Ss. Phylogenetic analysis of deduced amino acid sequences showed that both x and y HMW‐GS were more similar to that of D genome rather than B genome of wheat. Although S genome is structurally more similar to B genome of wheat, functionally it is more similar to the D genome of wheat and possesses good quality HMW‐GS required for improvement of breadmaking quality of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号