首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
This study was conducted to improve yields and qualities of corn protein co‐products produced by the sequential extraction process (SEP), a process using ethanol to fractionate corn in producing fuel ethanol. A two‐stage extraction protocol was evaluated to recover zein and subsequently recover a glutelin‐rich fraction (GRF). After the simultaneous oil‐extraction and ethanol‐drying step of SEP, zein was extracted from the anhydrous‐ethanol‐defatted, flaked corn by using 70% (v/v) ethanol at 60°C for 1.5 hr in a shaking water bath. Zein was recovered by ultrafiltering and then drying in a vacuum‐oven. Zein yield was 65% of the available zein in the flaked corn. SDS‐PAGE band patterns of the recovered zein closely resembled that of commercial zein. After zein extraction, the GRF was extracted using 45% ethanol and 55% 0.1M NaOH at 55°C for 2 hr. The extract was concentrated by ultrafiltration and then freeze‐dried. GRF yield was ≈65% of the available protein. Freeze‐dried GRF contained 90% crude protein (db), which classified the protein as a protein isolate. As with the protein concentrate from the original SEP, the GRF isolate was highly soluble in water at pH ≥ 7, had good emulsifying and foaming properties, formed stable emulsions, and was heat‐stable.  相似文献   

2.
An improved means of isolating zein is needed to develop new uses for corn zein. We have measured the yield of zein and evaluated the ability of acetic acid to remove zein from corn gluten meal, distillers dried grains, and ground corn using acetic acid as solvent. Acetic acid removed zein more quickly, at lower temperatures, and in higher yields when compared with alcoholic solvents. After 60 min at 25°C, ≈50% of the zein in corn gluten meal was removed. A step change in yield from 43 to 50% occurs as the extraction temperature is increased from 40 to 55°C after mixing for 30 min at 25% solids. The protein composition of the zein removed from corn gluten meal using acetic acid is very similar to that of commercial zein by SDS‐PAGE. The zein obtained from corn gluten meal using acetic acid had higher amounts of fatty acids and esters according to IR analysis, leading to slightly lower protein content. Films made from zein extracted from corn gluten meal using acetic acid had lower tensile strength (≈60% lower) than films produced from commercial zein. Fibers with very small diameter (0.4–1.6 μm) can be produced by electrospinning using the AcOH solution obtained after corn gluten meal extraction.  相似文献   

3.
Traditionally, zein is isolated and recovered from corn gluten meal (GCM) using aqueous alcohol as the solvent. Recovery of zein from this solvent is inconvenient and costly. Zein is insoluble in 100% ethanol at room temperature, but it is soluble at 120°C in ethanol. Absolute ethanol effectively extracted zein from CGM, distillers dried grains (DDG), and ground corn. Zein was extracted from CGM with absolute ethanol in a high‐pressure reactor at 130°C. After extracting at 130°C for 45 min, the solution was pumped out of the extractor and allowed to cool. Upon cooling, the zein precipitated from solution. The precipitate was removed from the solution and air‐dried, resulting in 14% recovery of the starting material. The recovered precipitate had an average protein content of >90% on a dry basis, accounting for ≈20% of the CGM protein and recovered ≈35% of its zein. No differences were seen in the amount of zein extracted from CGM samples that were hand‐collected off the dewatering screen and gently dried, versus commercial CGM samples. The commercial CGM did produce a greater amount of solubles. The extraction procedure also worked at temperatures as low as 90°C. The lower temperature did produce lower yields of extracted zein. The zein extracted at the lower temperatures was less brown, but zein extracted at either temperature was almost fully soluble in traditional zein solvents.  相似文献   

4.
A modified procedure for the extraction of α‐zein from corn gluten meal was developed and compared against a commercial extraction method. The modification involved raising the concentration of alcohol in solvent and removing the precipitate by centrifugation. Five organic solvent mixtures were compared using the modified extraction procedure developed along with the reductant sodium bisulfite and NaOH. The modified procedure precipitated most of the non‐α‐zein protein solids by increasing the concentration of alcohol. The supernatant had α‐zein‐rich fraction, resulting in higher yield of α‐zein than the commercial method when cold precipitated. The commercial extraction procedure had a zein yield of 23% and protein purity of 28% using 88% 2‐propanol solvent. The three best solvents, 70% 2‐propanol, 55% 2‐propanol, and 70% ethanol, yielded ≈35% of zein at protein purity of 44% using the modified extraction procedure. Zeins extracted using the novel method were lighter in color than the commercial method. Densitometry scans of SDS‐PAGE of α‐zein‐rich solids showed relatively large quantities of α‐zein with apparent molecular weights of 19,000 and 22,000 Da. The α‐zein‐rich solids also had small amounts of δ‐zein (10,000 Da) because it shares similar solubility properties to α‐zein. A solvent mixture with 70% 2‐propanol, 22.5% glycerol, and 7.5% water extracted significantly less zein (≈33%) compared to all other solvents and had α‐zein bands that differed in appearance and contained little to no δ‐zein.  相似文献   

5.
Sequential extraction processing (SEP) is a new approach to fractionating dried, flaked corn using 95% ethanol. In the original process, corn oil was extracted at 76°C in a countercurrent mode while simultaneously dehydrating the ethanol. This resulted in 20% of the protein (predominantly zein) coextracting with the oil. The process was modified to reduce the amount of coextracted protein. One modification (mSEP1) was to use a blend of 30% hexane and 70% ethanol at 56°C. A second modification (mSEP2) used a longer extraction column (L/D ratio 15) to replace the column with L/D 2 used in the original SEP system. To determine the effect of the modifications on oil quality, the quality of the crude corn oils produced from the modified SEP processes were compared with the quality of oil from the original SEP. To evaluate the quality of the three crude oils produced by SEP with the process typically used in industry, they were compared with the quality of laboratory hexane‐extracted corn oil. The results of the three SEP oils exhibited larger concentrations of fatty acids, phospholipids, and carotenoids, smaller concentrations of triacylglycerols, and darker red color than the hexane‐extracted oil. The oils from the two modified SEP processes contained smaller concentrations of free fatty acids and phospholipids and larger concentrations of triacylglycerols and carotenoids than the original SEP oil. In spite of the improvements to the oil through process modifications, the mSEP1 and mSEP2 oils exhibit greater refining losses than hexane‐extracted oil.  相似文献   

6.
为进一步提高超声辅助提取黑米黑色素的效果,研究探讨了双频超声协同强化提取的方法。通过对pH值、提取时间、提取温度、液料比、乙醇浓度进行单因素试验,考察各因素对黑色素提取效果的影响,利用正交试验,优化其工艺条件。试验结果表明:各因素对黑米黑色素提取的影响大小依次为:pH>乙醇浓度>液料比>温度>时间。优化后的提取工艺条件为:pH值为2、超声时间为30?min、提取温度为50℃、液料比为30?mL/g、乙醇浓度为70%。在此条件下,得出平均提取率为6.85%。对比浸渍法、加热回流提取法,超声法提取黑米黑色素具有工艺简单、节省提取时间、溶剂用量少、提取效率高、减少黑色素损失的优点。  相似文献   

7.
Dry-milled yellow corn and freshly ground food and nonfood grade yellow and white hybrid corn kernels were pretreated in a solution of lactic acid and sodium metabisulfite followed by extraction with 70% ethanol. Zein was precipitated from the extract by reducing the ethanol content of the extract to 40%. Lipid associated with the zein isolates was between 15 and 20% and contained mostly endogenous free fatty acids. The effect of the endogenous free fatty acids on zein isolate films, with and without free fatty acids, was determined by measuring various film properties. Stress-strain measurements indicated 40-200% greater elongation for zein films containing endogenous free fatty acids. Films prepared from zein isolated from preground corn stored for approximately 4 months (27 degrees C, 17% relative humidity) had approximately 3 times greater elongation values than zein films prepared from freshly ground corn.  相似文献   

8.
Preliminary calculations showed that recovery of fiber before fermentation in the dry grind ethanol facilities known as the Quick Fiber process increases fermenter capacity and reduces ethanol production cost by as much as 4 ¢/gal. The objective of the current research was to evaluate the effect of mash temperature, dry solids, and residual germ on fiber yield and purity when using the quick fiber process. Fiber was recovered by flotation and skimming, while maintaining a specified temperature, dry solids, and residual germ in the mash. Varying temperature and dry solids in the mash resulted in a statistically significant effect on the fiber yield, neutral detergent fiber (NDF) content, and weight of NDF/100 g of dry corn. Varying residual germ in the mash resulted in statistically significant differences for NDF through dilution and the weight of NDF/100 g of dry corn. The highest fiber yield was 10.9% at 45°C, 23% dry solids, and 15% residual germ; the highest NDF was 50.9% at 30°C, 21% dry solids, and 0% residual germ. The highest weight of NDF/100 g of dry corn was observed at 45°C, 23% dry solids, and 0% residual germ.  相似文献   

9.
《Cereal Chemistry》2017,94(4):693-698
The high cost of kafirin and zein restricts their use for bioplastic and food applications. Effective, simple, and rapid kafirin/zein isolation processes are required. Here a percolation‐type aqueous ethanol solvent extraction process from coarse meals (grits) and coarse sorghum distillers dried grains and solubles (DDGS) for kafirin and zein isolation employing a low ratio of extractant to meal (2.5:1) was investigated, which is potentially applicable in the grain bioethanol industry. Postextraction filtration times were more than twice as fast using coarse meals compared with fine flours. Washing the meals prior to extraction to remove starch improved protein preparation purity to 73–85% compared with 68–72% for unwashed meals. Hence, no subsequent filtration or centrifugation step is required to clean up the kafirin/zein solution prior to solvent evaporation. With a single extraction step, kafirin/zein yields were 48% (protein basis) for DDGS and 53–70% for washed sorghum/maize meals. Cast films were used as a model bioplastic system to evaluate extracted kafirin/zein functional properties. DDGS kafirin films had rough surfaces but had the lowest water uptake and in vitro digestibility, owing to heat‐induced disulfide crosslinking during DDGS processing. Extraction by percolation using coarse meal/DDGS has potential to improve kafirin/zein viability.  相似文献   

10.
Corn particles were extracted in an agitated vessel with a 4:1 mass ratio of 70% ethanol to corn for periods of 1–6 hr at ambient temperature. The extract solution was filtered and centrifuged to remove suspended particles after extraction and then diluted to 40% ethanol to precipitate extracted solute. Measurements of the mass of suspended particles separated by centrifugation indicate that mixing the corn particles with the ethanol dissolves and weakens the protein between cells and between starch granules within cells near the particles' surface. Under the conditions of this study, corn particles release starch granules more rapidly than the protein bodies dissolve, as indicated by analysis of the centrifuged particles. The diffusion coefficient for ethanol solution in corn was estimated and compared with a coefficent derived from a fit of the trend in the rate of release of fine particles from the milled corn. The diffusion coefficient of pure zein in a stagnant 70% ethanol solution was estimated from the measurement of weight loss by a ball of zein. Analysis of the ambient temperature protein extraction rate indicates that 2-mm particles exhibit more convective mass transfer than 20-μm particles.  相似文献   

11.
Zein isolation by aqueous ethanol extraction from dry-milled corn produces a mixture of zeins, covalently linked polymers (dimers, tetramers, etc.) and higher-molecular-weight aggregates, some of which were not soluble in aqueous alcohol. The insoluble particles were identified as protein aggregates which form when the extraction solution is heated, particularly under alkaline conditions. The insoluble protein aggregates were not present in zein isolated by the same method from corn gluten meal. Zeins extracted from corn gluten meal and dry-milled corn were fractionated (by differential solubility) to identify differences in their polypeptide compositions. Using polyacrylamide gel electrophoresis, beta- and gamma-zeins were detected in dry-milled corn, but only trace amounts of beta-zein were found in corn gluten meal. Treatment of dry-milled corn with 0.55% lactic acid and 0.2% sulfur dioxide at 50 degrees C for 6 h before ethanol extraction resulted in a 50% increase in zein isolate yield with high solubility (98%). This pre-extraction treatment cleaved disulfide linkages of the beta- and gamma-zeins and significantly reduced insoluble aggregates in zein isolates.  相似文献   

12.
Corn distillers' grains with solubles (CDGS), the major coproduct of fermentation of corn to produce ethanol, were extracted with 0.1M NaOH, 0.1% dithiothreitol (DTT), and 0.5% SDS yielding 35% of the total nitrogen and ≈25% of the protein nitrogen. Gel electrophoresis revealed that the extractable proteins contained zein plus other proteins similar to the extractable proteins from corn flour. Although difficult to extract, the proteins isolated from the fermentation coproducts appeared undegraded and apparently survived gelatinization, fermentation, distillation, and drying during the production of ethanol. Extraction of CDGS with 60% ethanol at 60°C yielded 1.5–3.9% of crude zein. When the ethanol contained DTT, yields of crude zein were increased to 3.2–6.6%. Protein contents of the crude zeins were only 37–57%, indicating that lipids and pigments were coextracted with the ethanol. Gel electrophoresis showed that the protein fractions extracted by ethanol contained primarily α-zein whereas the proteins extracted by ethanol + DTT contained α- + β-zein. Further confirmation of the presence of zein in the crude prolamin preparations was obtained by amino acid analyses. The amino acid compositions of the crude zeins paralleled those of commercial zein and α-zein.  相似文献   

13.
The effects of ground corn particle size on ethanol yield and soluble solids in thin stillage was evaluated using a 2‐L laboratory dry‐grind procedure. The procedure was optimized for grinding, liquefaction, sacchari‐fication, and fermentation parameters. The optimized procedure was reproducible with a coefficient of variation of 3.6% in ethanol yield. Five particle size distributions of ground corn were obtained using a cross‐beater mill equipped with five screens (0.5, 2, 3, 4, and 5 mm). Particle size had an effect on ethanol yield and on soluble solids concentration in thin stillage. The highest ethanol yield of 12.6 mL/100 mL of beer was achieved using a 0.5‐mm screen in the cross‐beater mill. Treatment using the 0.5‐mm mill screen resulted in soluble solids concentration of 25.1 g/L and was higher than soluble solids concentrations obtained with other screens. No differences in soluble solid concentrations were observed in samples of thin stillage obtained from 2, 3, 4, and 5‐mm screens which had a mean yield of 16.2 g/L. By optimizing particle size for maximum ethanol yield and minimum solids in thin stillage, dry‐grind corn plants could realize reduced capital and operating costs.  相似文献   

14.
In 2008, the United States produced ethanol at a rate of 39.5 billion L/year; an additional 8.5 billion L/year capacity was under construction. Kernel composition and physical properties are not correlated with ethanol yield. A procedure that measured the potential of hybrids to produce ethanol would benefit corn seed companies, corn producers, and ethanol processors. The objective was to develop a laboratory procedure to measure ethanol yield from corn samples and evaluate the developed procedure for accuracy and precision. To determine parameters for routine analyses, effects of mill type, dry solids, and yeast addition were investigated separately followed by effects of fermentation time (Tf), glucoamylase dose, and yeast addition. Measurement of ethanol using HPLC and gravimetric (change in weight due to CO2 loss) methods were compared. Using the procedure developed, ethanol yields for five diverse hybrids (dent, waxy, white, high oil, and high amylose) were measured. Effects of mill type, dry solids, Tf, glucoamylase dose, and yeast addition were significant (P < 0.05). The gravimetric method estimated higher yields (428 ± 10 L/tonne) than HPLC (405 ± 15 L/tonne) and had a higher level of precision. Both methods had coefficients of variations of <4% and gave similar conclusions. In the final procedure, we used corn (25 g/batch) liquefied with α‐amylase (60 min at 90°C) in 75 mL of distilled water. Simultaneous saccharification and fermentation was used (64 hr at 32°C) with glucoamylase and yeast. Gravimetric and HPLC methods measured differences in ethanol yield for the five hybrids (158–435 L/tonne). The method is suitable for routine testing of ethanol yield potential and as a reference method for verifying more rapid measurement techniques.  相似文献   

15.
The Sequential Extraction Process (SEP), a process that uses ethanol to fractionate corn into high‐value co‐products when producing fuel ethanol, was evaluated using high‐oil corn (HOC). Oil and protein recoveries, ethanol‐drying capability, and oil and protein properties were compared with those produced from normal soft dent corn (SDC) using SEP. Moisture adsorption capacities (≈24 g of water/kg of corn) and oil recoveries (>95%) were nearly identical for both corn types. However, oil yield from HOC (7.1 g of oil/100 g of corn) was 65% more than that of SDC (4.3 g of oil/100 g of corn). HOC crude oil was less red and contained lower free fatty acid and phosphatide contents than did SDC oil. HOC zein contained higher crude protein content (86% db) than did SDC zein (79% db). The freeze‐dried glutelin‐rich fractions (GRF) from both types of corn contained >90% (db) crude protein, which meet the criteria of protein isolates. SEP GRF protein isolates had >85% protein soluble in water at pH ≥ 7. Both GRF protein isolates from HOC and SDC were heat‐stable, had good emulsifying capacities, and produced highly stable emulsions. They also had substantial foaming capacities, but the foam from HOC GRF protein isolate was significantly more stable than the foam from SDC GRF protein isolate. SEP is a suitable process for recovering oil and protein products from HOC corn when producing fuel ethanol and, if competitively priced, HOC is a preferred feedstock to SDC because of higher yields and qualities of valuable co‐products when using HOC.  相似文献   

16.
Optimization of the solid-liquid extraction conditions for trans-resveratrol, trans--viniferin, ferulic acid, and total phenolics from milled grape canes has been investigated. The temperature and ethanol concentration were found to be major process variables for all responses, whereas the solvent to solid ratio was found not to be significant for any of the responses studied. The yields of trans-resveratrol, trans--viniferin, and total phenolics increased with increasing temperature. Maximum yields of trans-resveratrol (4.25 mg/g dw), trans--viniferin (2.03 mg/g), and total phenolics (9.28 mg/g dw) were predicted from the combination of a moderate ethanol concentration (50-70%) and the highest temperature (83.6 degrees C), whereas an ethanol concentration of 35% at the lowest temperature studied (16.4 degrees C) was optimal for the extraction of ferulic acid (1.05 mg/g dw). Effective diffusivity values of resveratrol in the solid phase, D eff for different extraction conditions, were calculated by fitting the experimental results to a model derived from the Fick's second law. Effective diffusivity of resveratrol in the solid phase varied from 3.1 x 10 (-13) to 26.6 x 10 (-13) m (2) s (-1) with changing extraction conditions. The increase in effective diffusivity of resveratrol was observed with increasing temperature, and the highest predicted level was obtained when using 54% ethanol/water mixture at 83.6 degrees C. The increase in ethanol concentration exhibited the favorable effect up to 50-55%, thereafter effective diffusivity decreased with a further increase in concentration.  相似文献   

17.
A total of 36 compounds, which comprised 99.4% of the extract, were identified by gas chromatography and mass spectrometry (GC-MS) in the volatile dichloromethane extract obtained from Egyptian corn silk. The main constituents of the volatile extract were cis-alpha-terpineol (24.22%), 6,11-oxidoacor-4-ene (18.06%), citronellol (16.18%), trans-pinocamphone (5.86%), eugenol (4.37%), neo-iso-3-thujanol (2.59%), and cis-sabinene hydrate (2.28%). Dried Egyptian corn silk was also directly extracted with petroleum ether, ethanol, and water. All extracts from solvent extraction and the volatile extract described above exhibited clear antioxidant activities at levels of 50-400 microg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH)/linoleic acid assay. The ethanol extract inhibited DPPH activity by 84% at a level of 400 microg/mL. All samples tested via the beta-carotene bleaching assay also exhibited satisfactory antioxidant activity with clear dose responses. This study indicates that corn silk could be used to produce novel natural antioxidants as well as a flavoring agent in various food products.  相似文献   

18.
Total phenolic and tocopherol contents and free radical scavenging capability of wheat bran extracted using conventional and microwave-assisted solvent extraction methods were studied. Three different solvents (methanol, acetone, and hexane) were used in the conventional solvent extraction. Methanol was the most effective solvent, producing higher extraction yield (4.86%), total phenolic compound content (241.3 μg of catechin equivalent/g of wheat bran), and free radical scavenging capability (0.042 μmol of trolox equivalent/g of wheat bran) than either acetone or hexane. However, there was no significant difference in the total tocopherol contents (13.6–14.8 μg/g of wheat bran) among the three different solvent extraction methods. Microwave-assisted solvent extraction using methanol significantly increased the total phenolic compound content to 467.5 and 489.5 μg of catechin equivalent; total tocopherol content to 18.7 and 19.5 μg; and free radical scavenging capability to 0.064 and 0.072 μmol of trolox equivalent/g of wheat bran at extraction temperatures of 100 and 120°C, respectively. However, extraction yields of conventional methanol solvent and microwave-assisted methanol extractions at different temperatures were not significantly different.  相似文献   

19.
Zein, the prolamin of corn, is attractive to the food and pharmaceutical industries because of its ability to form edible films. It has also been investigated for its application in encapsulation, as a drug delivery base, and in tissue scaffolding. Zein is actually a mixture of proteins, which can be separated by SDS-PAGE into α-, β-, γ-, and δ-zein. The two major fractions are α-zein, which accounts for 70-85% of the total zein, and γ-zein (10-20%). γ-Zein has a high cysteine content relative to α-zein and is believed to affect zein rheological properties. The aim of this study was to investigate the effect of γ-zein on the often observed phenomena of zein gelation. Gelation affects the structural stability of zein solutions, which affects process design for zein extraction operations and development of applications. The rheological parameters, storage modulus (G') and loss modulus (G″), were measured for zein solutions (27% w/w solids in 70% ethanol). β-Mercaptoethanol (BME) was added to the solvent to investigate the effect of sulfhydryl groups on zein rheology. Modulus data showed that zein samples containing γ-zein had measurable gelation times under experimental conditions, contrary to samples with no γ-zein, where gelation was not detected. Addition of BME decreased the gelation time of samples containing γ-zein. This was attributed to protein unfolding. SEM images of zein microstructure revealed the formation of microspheres for samples with relatively high content of α-zein, whereas γ-zein promoted the formation of networks. Results of this work may be useful to improve understanding of the rheological behavior of zein.  相似文献   

20.
This study investigates a semicontinuous hot pressurized fluid extraction process and the scavenging activity on the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical of the extract from Taiwan yams (Dioscorea alata). Liquid-liquid extractions were preliminarily employed to generate six fractions, initially extracted by ethanol. Then, the aqueous solution of dried crude ethanol extract was sequentially fractionated by hexane, chloroform, ethyl acetate, and n-butanol. The EC50 value was defined as the UV absorption of DPPH concentrations sufficiently decreased to 50% of the original value. It was found that all peel portions have a better effect on scavenging of the DPPH free radical than meat portions, especially for the ethyl acetate partition of the peel portion of Tainung #2 yam. Its EC50 value (14.5 microg mL(-1)) was even lower than that of ascorbic acid (21.4 microg mL(-1)). Furthermore, semicontinuous hot pressurized ethanol was superior to hot pressurized water in extracting the compound scavenging the DPPH radical from the Purpurea-Roxb peel. The recovery of four unknown compounds corresponded to the scavenging ratio of DPPH free radical in the hot pressurized ethanol extract. Finally, three-level and four-factor experimental design revealed that ethanol ratio and temperature were the most effective factors in order. Conditions of 80% of aqueous ethanol, 20.0 kg/kg solid ratio, 180 psig (1.342 MPa), and 100 degrees C were preferred to extract those antioxidants from the yam peel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号