首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro bile acid binding by rice bran, oat bran, dehulled barley, and β‐glucan enriched barley was determined using a mixture of bile acids at a duodenal physiological pH of 6.3. Six treatments and two blank incubations were conducted testing substrates on an equal protein basis. The relative in vitro bile acid binding of the cereal brans on an equal total dietary fiber (TDF) and insoluble dietary fiber (IDF) basis considering cholestyramine as 100% bound was rice bran 45 and 49%; oat bran 23 and 30%; dehulled barley 33 and 57%; and β‐glucan enriched barley 20 and 40%, respectively. Bile acid bindings on equal protein basis for the respective cereals were 68, 26, 41, and 49%. Bile acid binding by rice bran may account to a great extent for its cholesterol‐lowering properties, while bile acid binding by oat bran suggests that the primary mechanism of cholesterol lowering by oat bran is not due to the bile acid binding by its soluble fiber. Bile acid binding was not proportional to the soluble fiber content of the cereal brans tested. Except for dehulled barley, bile acid binding for rice bran, oat bran, and β‐glucan enriched barley appear to be related to their IDF content. Highest relative bile acid binding values for rice bran and β‐glucan enriched barley were observed on an equal protein basis, whereas highest values for dehulled barley were based on IDF. Data suggest that of all four cereals tested, bile acid binding may be related to IDF or protein anionic, cationic, physical and chemical structure, composition, metabolites, or their interaction with active binding sites.  相似文献   

2.
Brans from rice, oats, corn, and wheat were cooked in a twin-screw extruder at either high or low energy input, and their cholesterol-lowering effects were compared with those of unprocessed brans when fed to four-week-old male golden Syrian hamsters (n = 10 per treatment) for three weeks. Peanut oil was added to oat, corn, and wheat bran during the extrusion process to match the oil content of rice bran. Diets contained 10% total dietary fiber, 10.3% fat, 3% nitrogen, and 0.3% cholesterol. Plasma and liver cholesterol and total liver lipids were significantly lower with low-energy extruded wheat bran compared with unprocessed wheat bran. Extrusion did not alter the hypocholesterolemic effects of rice, oat, or corn brans. Plasma and liver cholesterol levels with corn bran were similar to those with oat bran. Relative cholesterol-lowering effects of the brans, determined with pooled (extruded and unextruded) bran data, were rice bran > oat bran > corn bran > wheat bran. Rice bran diets resulted in significantly lower levels of total plasma cholesterol and very low density lipoprotein cholesterol compared with all other brans. Total liver cholesterol and liver cholesterol concentrations (mg/g) were significantly lower with high-energy extruded rice bran compared with the cellulose control group. Plasma cholesterol and total liver cholesterol values with low-energy extruded wheat bran were similar to those with rice bran (unextruded or extruded) diets. Lowered cholesterol with rice bran diets may result in part from greater lipid and sterol excretion with these diets. Results with low-energy extruded wheat bran suggest that this type of processing may improve the potential for lowering cholesterol with wheat bran products.  相似文献   

3.
This study examined the effects of various cereal fibers and various amounts of β-glucan on cholesterol and bile acid metabolism. Hamsters were fed semisynthetic diets containing 0.12% cholesterol, 20% fat, and either 16% total dietary fiber (TDF) from wheat bran (control) or 10% TDF from oat bran, 13% TDF from oat bran concentrate or barley grains, 16% TDF from oat fiber concentrate, barley flakes, or rye bran. After five weeks, plasma total cholesterol and liver cholesterol concentrations were significantly lower (20 and 50%, respectively) only in hamsters fed rye bran. Diets containing any of the oat ingredients or barley had no effect on total cholesterol. Changes in the pattern of biliary bile acids occurred in hamsters fed 16% TDF from barley flakes or 10% TDF from oat bran. Hamsters fed rye bran had a significantly higher fecal bile acid excretion when compared with controls fed wheat bran. Because rye bran caused the most pronounced lowering effect of total cholesterol despite the lowest content of β-glucan and soluble fibers, components other than β-glucan and soluble fibers seem to be involved in its hypocholesterolemic action. Since the effects of the oat and barley ingredients were not solely correlated to the β-glucan content, structural changes occurring during processing and concentrating of the products may have impaired the hypocholesterolemic potential of the β-glucans, and other factors such as solubility and viscosity of the fiber components seem to be involved.  相似文献   

4.
The present study was performed to investigate calcium-binding characteristics of different brans under simulated gastrointestinal pH conditions and to explore the significance of dietary fiber, oxalate, and phytate for calcium binding. Different brans (rice, rye, soy, fine wheat, coarse wheat, and oat) and CaCl(2) solution containing (45)Ca were incubated at 37 degrees C at gastric pH (2.2) followed by buffering steps of 1 degree from pH 3.0 to pH 8.0. Total calcium binding and calcium-binding capacity of the pH 2.2 soluble bran fraction were determined. Additionally, oxalate and phytate contents of brans and solubility profiles of phytic acid were investigated. Calcium-binding capacities of brans showed a clear pH dependence. At gastric pH calcium binding was low in all brans, ranging from 0.022 to 0.040 mmol of calcium/g of bran. Soy bran, nearly phytate-free, showed higher binding values up to pH 4.0 and lower values between pH 5.0 and 8.0. In all other brans, binding values increased strongly with increasing pH in the quantitative order rice bran > coarse wheat bran > fine wheat bran > rye bran > oat bran. The solubility profiles indicate that in the cases of rye, wheat, and rice bran phytate accounts for 70-82% of their total calcium-binding capacities. The results suggest that dietary fiber makes no important contribution to calcium binding, except for soy and oat brans. Oxalate plays only a minor role in calcium binding by brans.  相似文献   

5.
The in vitro binding of bile acids of milled wheat bran (MWB) and milled extruded wheat bran (MEB) at five specific mechanical energy (SME) levels of 120 (MEB‐120), 177 (MEB‐177), 234 (MEB‐234), 291 (MEB‐291), and 358 (MEB‐358) Whr/kg on a fat‐free dry weight basis was determined using a mixture of bile acids secreted in human bile at duodenal physiological pH 6.3. Relative to cholestyramine (bile acid binding, cholesterol lowering drug) in vitro bile acid binding capacity on dry matter, total dietary fiber (TDF), and insoluble dietary fiber (IDF) basis was for MWB: 21, 43, 45%; the range for MEB was 18–21%, 34–41%, and 36–43%, respectively. MWB resulted in significantly higher bile acid binding than that of MEB at 120, 234, and 291 Whr/kg on a dry matter, TDF, and IDF basis. These results demonstrate the relative health‐promoting potential of MWB = MEB‐177 = MEB‐358 > MEB‐120 = MEB‐234 = MEB‐291 as indicated by the bile acid binding on a dry matter basis. Data suggest that significant improvement in health‐promoting (cholesterol‐lowering and cancer‐preventing) potential could be obtained in WB by milling (low‐cost processing) the bran to finer particle sizes and extruding (high‐cost technology). Milling WB to small particle size (weighted mean 0.508 mm) increased surface area, in addition it may have induced changes in the physical and chemical characteristics of WB or created new linkages, binding sites of the proteins, starches, and nonstarch polysaccharides, which significantly increased the bile acid binding ability of the MWB.  相似文献   

6.
This study was undertaken to evaluate the lipidemic response of rice bran and the possible enhancement of its healthful properties by using raw or processed white or brown rice in place of corn starch. All diets contained 10% total dietary fiber, 15% fat, and 0.5% cholesterol. Weanling male golden Syrian hamsters were fed cellulose control (CC), processed corn starch (PCS), cellulose with processed brown rice (CPBR), rice bran (RB), RB with white rice (RBWR), RB with processed white rice (RBPWR), RB with brown rice (RBBR), and RB with processed brown rice (RBPBR) diets. After three weeks, the PCS diet significantly lowered total plasma cholesterol (TC) compared with the CC, CPBR, RBWR, and RBPBR diets. RB and RBBR diets significantly lowered TC and LDL‐C compared with CPBR diet. All the RB‐containing and PCS diets significantly lowered liver cholesterol and liver lipid content. Processing white rice increased TDF content 240% and insoluble dietary fiber (IDF) 360%, whereas soluble dietary fiber (SDF) decreased by 25%. Uncooked brown rice contained 7 times as much TDF as uncooked white rice. Processing brown rice decreased its TDF, IDF and SDF contents by 12, 6, and 42%, respectively. The data suggest that a possible mechanism for cholesterol‐lowering by rice bran, with or without added raw or processed rice (white or brown), is by decreasing lipid digestibility and increasing neutral sterol excretion, whereas cholesterol‐lowering by processed corn starch is mediated through other mechanisms.  相似文献   

7.
Health benefits of consuming whole grains are reduced risk of heart disease, stroke, and cancer. The U.S. Health and Human Services and USDA dietary guidelines recommend consumption of 6–10 oz of grain products daily and one‐half of that amount should contain whole grains. Whole grains contain vitamins, minerals, fiber, and phytonutrients. Bile‐acid‐binding capacity has been related to cholesterol lowering potential of food fractions. Lowered recirculating bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of cancer. Bile‐acid‐binding potential has been related to lowering the risk of heart disease and that of cancer. It has been reported that bile‐acid‐binding of wheat bran is not related to its total dietary fiber (TDF) content. Whole (W) grain as well as pearled (P) hard red winter wheat (Hrw), hard white winter wheat (Hww), and durum wheat (DU) cooked grains were evaluated for in vitro, bile‐acid‐binding relative to cholestryramine (a cholesterol lowering bile‐acid‐binding drug). On dry matter basis (db) relative bile‐acid‐binding values were 7.7% WHrw; 7.5% WHww; 6.3% PHww; 6.0% PHrw; 5.5% WDU; and 5.4% PDU. On a TDF basis, binding values were 42–57% of that for cholestyramine for the whole and pearled wheat grains tested. Bile‐acid‐binding values (db) for WHrw and WHww were similar and significantly higher than those of PHww, PHrw, WDU and PDU. Similar bile‐acid‐binding of WHww to that of WHrw suggest that the red color commonly associated with whole grain may not necessarily indicate more healthful potential. Data suggest that cooked WHrw and WHww wheat have significantly higher health‐promoting potential than pearled grains. WDU or PDU wheat health‐promoting potential was similar to that of PHww or PHrw. Consumption of products containing WHrw and WHww are recommended.  相似文献   

8.
Several oat brans (crunchy oat bran, oat bran alone, and oat breakfast cereal) and wheat brans (wheat bran alone, wheat bran powder, wheat bran with malt flavor, bran breakfast cereal, tablet of bran, and tablet of bran with cellulose) used as dietary fiber supplements by consumers were evaluated as alternative antioxidant sources (i) in the normal human consumer, preventing disease and promoting health, and (ii) in food processing, preserving oxidative alterations. Products containing wheat bran exhibited higher peroxyl radical scavenging effectiveness than those with oat bran. Wheat bran powder was the best hydroxyl radical (OH*) scavenger. In terms of hydrogen peroxide (H2O2) scavenging, wheat bran alone was the most effective, while crunchy oat bran, oat bran alone, and oat breakfast cereal did not scavenge H2O2. The shelf life of fats (obtained by the Rancimat method for butter) increased most in the presence of crunchy oat bran. When the antioxidant activity during 28 days of storage was measured by the linoleic acid assay, all of the oat and wheat bran samples analyzed showed very good antioxidant activities. The Trolox equivalent antioxidant capacity (TEAC) assay was used to provide a ranking order of antioxidant activity. The wheat bran results for TEAC (6 min), in decreasing order, were wheat bran powder > wheat bran with malt flavor > or = wheat bran alone > or = bran breakfast cereal > tablet of bran > tablet of bran with cellulose. The products made with oat bran showed lower TEAC values. In general, avenanthramide showed a higher antioxidant level than each of the following typical cereal components: ferulic acid, gentisic acid, p-hydroxybenzoic acid, protocatechuic acid, syringic acid, vanillic acid, vanillin, and phytic acid.  相似文献   

9.
A collaborative study was conducted to determine the insoluble dietary fiber (IDF), soluble dietary fiber (SDF), and total dietary fiber (TDF) content of food and food products by using a combination of enzymatic and gravimetric procedures. The method was basically the same as that developed for TDF only, which was adopted official final action by AOAC, except for changing the concentration of buffer and base and substituting hydrochloric acid for phosphoric acid. These changes were made to improve the robustness of the method. Duplicate blind samples of soy isolate, white wheat flour, rye bread, potatoes, rice, corn bran, oats, Fabulous Fiber, wheat bran, and a high fiber cereal were analyzed by 13 collaborators. Dietary fiber values (IDF, SDF, and TDF) were calculated as the weight of residue minus the weight of protein and ash. The coefficients of variation (CVs) of both the independent TDF determination and the sum of IDF and SDF were better than 15 and 18%, respectively, with the exception of rice and soy isolate. These 2 foods, however, contained only about 1% TDF. The CVs of the IDF were equally good, except for Fabulous Fiber, for which filtration problems occurred. The CVs for the SDF were somewhat high, but these products had very low SDF content. There was excellent agreement between the TDF determined independently and the TDF determined by summing the IDF and SDF. The method for separate determination of IDF and SDF requires further study. The modifications (changes in concentration of buffer and base and the use of hydrochloric acid instead of phosphoric acid) to the official final action method for TDF have been adopted.  相似文献   

10.
《Cereal Chemistry》2017,94(4):654-658
The bile acid binding capacity of wheat bran with different particle sizes was determined. Unmilled wheat bran with an average particle size of 900 μm (WB‐900), milled wheat bran at two particle sizes, 500 and 200 μm (WB‐500 and WB‐200), and all three bran samples washed with water (WWB‐900, WWB‐500, and WWB‐200) were mixed with bile acids at pH 6.3 to determine their in vitro adsorption capacity. On a dry matter basis, the order of relative bile acid binding values was WB‐900 ∼ WB‐500 > WWB‐900 > WB‐200 > WWB‐500 > WWB‐200. Data suggests that the surface area as measured by the Brunauer–Emmett–Teller (BET) method and water holding capacity may significantly affect the bile acid binding capacity of wheat bran. As the BET surface area increased with decreasing particle size, the water holding capacity and bile acid binding decreased. Bile acid binding capacity of wheat bran appears to be linked to the ability of the samples to physically adsorb the bile acids. Bile acid binding capacity significantly decreased with reduction in particle size of wheat bran after water washing.  相似文献   

11.
Chemical composition and in vitro digestion properties of select whole grains, before and after processing, and their components were measured. Substrates included barley, corn, oat, rice, and wheat. In addition to whole grain flours, processed substrates also were tested as were corn bran, oat bran, wheat bran, and wheat germ. Processing of most substrates resulted in higher dry matter and digestible starch and lower resistant starch concentrations. Dietary fiber fractions varied among substrates with processing. Digestion profiles for most substrates correlated well with their chemical composition. Corn bran and rice substrates were the least fermentable. Extrusion rendered barley, corn, and wheat more hydrolytically digestible and barley and oat more fermentatively digestible. Except for corn bran, all components had greater or equal fermentability compared with their native whole grains. Understanding digestion characteristics of whole grains and their components will allow for more accurate utilization of these ingredients in food systems.  相似文献   

12.
The contents of free and total phenolic acids and alk(en)ylresorcinols were analyzed in commercial products of eight grains: oat (Avena sativa), wheat (Triticum spp.), rye (Secale cerale), barley (Hordeum vulgare), buckwheat (Fagopyrum esculentum), millet (Panicum miliaceum), rice (Oryza sativa), and corn (Zea mays). Avenanthramides were determined in three oat products. Free phenolic acids, alk(en)ylresorcinols, and avenanthramides were extracted with methanolic acetic acid, 100% methanol, and 80% methanol, respectively, and quantified by HPLC. The contents of total phenolic acids were quantified by HPLC analysis after alkaline and acid hydrolyses. The highest contents of total phenolic acids were in brans of wheat (4527 mg/kg) and rye (4190 mg/kg) and in whole-grain flours of these grains (1342 and 1366 mg/kg, respectively). In other products, the contents varied from 111 mg/kg (white wheat bread) to 765 mg/kg (whole-grain rye bread). Common phenolic acids found in the grain products were ferulic acid (most abundant), ferulic acid dehydrodimers, sinapic acid, and p-coumaric acid. The grain products were found to contain either none or only low amounts of free phenolic acids. The content of avenanthramides in oat flakes (26-27 mg/kg) was about double that found in oat bran (13 mg/kg). The highest contents of alk(en)ylresorcinols were observed in brans of rye (4108 mg/kg) and wheat (3225 mg/kg). In addition, whole-grain rye products (rye bread, rye flour, and whole-wheat flour) contained considerable levels of alk(en)ylresorcinols (524, 927, and 759 mg/kg, respectively).  相似文献   

13.
Wheat bran was extruded in a twin‐screw extruder at five specific mechanical energy (SME) levels (0.120, 0.177, 0.234, 0.291, and 0.358 kWh/kg, dwb) and the cholesterol‐lowering effects were compared with those of unprocessed wheat bran when fed to four‐week‐old male golden Syrian hamsters (n = 10/treatment) for three weeks. Diets contained 10% total dietary fiber, 10.3% fat, 3% nitrogen, and 0.4% cholesterol. Plasma total cholesterol and very‐low‐density lipoprotein cholesterol were significantly lower with 0.120 kWh/kg extruded wheat bran diet compared with the unextruded wheat bran control. Total triglycerides were significantly lower with 0.120 and 0.177 kWh/kg wheat bran diets compared with those fed 0.291 and 0.358 kWh/kg extruded wheat bran diets. Cholesterol digestibility, total liver cholesterol, and total liver lipids were significantly lower with all the extruded wheat bran diets compared with the unextruded wheat bran control. Cholesterol digestibility for the 0.291 kWh/kg wheat bran diet was also significantly lower than all other extruded diets. Significantly more sterols were excreted with diets containing 0.291 and 0.358 kWh/kg extruded wheat bran compared with the unextruded wheat bran control. Wheat bran extruded with 0.291 kWh/kg diet resulted in a 13% reduction in plasma cholesterol and a 29% reduction in low‐density lipoprotein cholesterol. Considering lowest cholesterol digestibility, significantly higher sterol excretion, desirable plasma lipo‐protein cholesterol profile, significantly lower liver weight, total liver lipids, and liver cholesterol, the wheat bran extruded at 0.291 kWh/kg appeared to have the most desirable healthful potential. Data suggest that cholesterol‐lowering potential of wheat bran could be enhanced by optimizing the energy input used in the extrusion process.  相似文献   

14.
Four-week-old male golden Syrian hamsters were fed diets containing cellulose (control, CC), cellulose + soy protein (CS), CS + vitamin E, (CSE), rice bran (RB), RB + vitamin E (RBE), oat bran (OB), and OB + vitamin E (OBE) for six weeks (n = 10/treatment). Diets contained (by weight) 10% total dietary fiber, 3% N, 20% fat, 0.5% cholesterol, and some diets had an additional 0.1% vitamin E. After six weeks, RB and OB diets resulted in significantly higher weight gain than the CC diet. Plasma low-density lipoprotein cholesterol (LDL-C) values and the LDL-C/high-density lipoprotein cholesterol ratio in hamsters fed CSE, RBE, OB, and OBE diets were significantly lower than in those fed CC diet. There were no significant differences in total plasma cholesterol values among the hamsters fed any of the diets. Liver cholesterol in animals fed OB and OBE diets was significantly lower than in all other groups. Foam cell areas in the inner bend of the aortic arch in animals fed all treatment diets were significantly reduced when compared with that in animals fed CC diet. The level of additional dietary vitamin E did not result in further significant reductions in foam cell area. The results of this study suggest that diets containing rice bran, oat bran, or soy protein significantly reduced the development of atherosclerosis in hypercholesterolemic hamsters.  相似文献   

15.
The metabolic responses to South American foods remain to be determined. Using glycemic index (GI) and insulinemic index (II) values as references for therapeutic potential of foods, this study investigated the glucose responses to a typical Venezuelan corn bread (arepa) and to an arepa supplemented with rice bran. Adding rice bran to the bread increased the content of resistant starch and dietary fiber measured as total, soluble, and insoluble dietary fiber. It also increased the protein content of the arepa. Three meals, white wheat bread, 100% corn meal arepa, and an arepa supplemented with 20% rice bran, were administered within a one‐week period. Available starch in the foods was determined to provide 50 g of available carbohydrate per meal. To calculate the indices, bread was used as the reference. The GI and II of the two arepa meals were significantly smaller than the GI and II of white wheat bread, although the differences between the two types of arepas were not significant. It is concluded that Venezuelan arepas (corn meal bread) may have potential health benefits and that the presence of 20% rice bran in the arepa meal did not produce a significant improvement in the glucose response. Due to the presence of antioxidant elements in the supplemented arepa and its higher protein, dietary fiber, and resistant starch content, it may have a potential preventive effect against the development of other pathologies.  相似文献   

16.
Whole grains contain all parts of the grain: the endosperm, germ, and bran. Whole grains are rich in fermentable carbohydrates that reach the gut: dietary fiber, resistant starch, and oligosaccharides. Most research that supports the importance of grains to gut health was conducted with isolated fiber fractions, rather than whole grains. Whole grains are an important source of dietary fiber and grain fibers such as wheat, oats, barley, and rye increase stool weight, speed intestinal transit, get fermented to short chain fatty acids, and modify the gut microflora. Wheat bran is particularly effective in increasing stool weight; wheat bran increases stool weight by a ratio of 5:1. In contrast, many novel fibers that are easily incorporated into beverages and foods increase stool weight only on a ratio of 1:1. In vitro fermentation studies with whole grains have been published. Carbohydrates of oat bran (rich in β‐glucan) were consumed by bacteria faster than those of rye and wheat brans (rich in arabinoxylan). Grain fibers were fermented more slowly than inulin, causing less gas production. Wheat is particularly high in fructo‐oligosaccharides, while wheat germ is high in raffinose oligosaccharides. Some in vivo studies show the prebiotic potential of whole grains. Whole grain breakfast cereal was more effective than wheat bran breakfast cereal as a prebiotic, increasing fecal bifidobacteria and lactobacilli in human subjects. Wheat bran consumption increased stool frequency. Thus, the gut enhancing effects of cereal fibers are well known. Limited data exist that whole grains alter gut health.  相似文献   

17.
Whole flours from four oat lines with different amounts of beta-glucan (4.8-8.1%) were examined for their antioxidant activity and total phenolic and lignin concentrations. These data, along with the beta-glucan percentages, were compared with bile acid (BA) binding. Only the lignin concentrations of the flours significantly (P < 0.01) correlated with the BA binding values. The oat flours also were fractionated into bran, protein concentrate, starch, layer above starch, and soluble beta-glucan (SBG)-free flour, and their BA binding capacities were evaluated. The bran fractions were the only fractions that bound greater BA than did the whole oat flours on dry matter basis. Extraction of the soluble beta-glucan to create the SBG-free flour significantly (P < 0.01) decreased the BA binding of the remaining flour. These data suggest that BA binding of the oat flours involves the synergistic interactions of the oat components, with beta-glucan and lignin (insoluble fiber) having a great impact.  相似文献   

18.
A collaborative study was conducted to determine the total dietary fiber (TDF) content of food and food products, using a combination of enzymatic and gravimetric procedures. The method was basically the same as published earlier (J. Assoc. Off. Anal. Chem. (1984) 67, 1044-1052), with changes in the concentration of alcohol and buffers, time of incubation, sample preparation, and some explanatory notes, all with the intent of decreasing the coefficient of variation (CV) of the method. Duplicate blind samples of soy isolate, white wheat flour, rye bread, potatoes, rice, wheat bran, oats, corn bran, and whole wheat flour were analyzed by 9 collaborators. TDF was calculated as the weight of the residue minus the weight of protein and ash. CV values of the data from all laboratories for 7 of the samples ranged from 1.56 to 9.80%. The rice and soy isolate samples had CV values of 53.71% and 66.25%, respectively; however, each sample contained only about 1% TDF. The enzymatic-gravimetric method for determining TDF has been adopted official first action.  相似文献   

19.
Rye bran and aleurone, wheat bran and aleurone, and oat bran and cell wall concentrate were compared in their in vitro gut fermentation patterns of individual phenolic acids and short-chain fatty acids, preceded by enzymatic in vitro digestion mimicking small intestinal events. The formation of phenolic metabolites was the most pronounced from the wheat aleurone fraction. Phenylpropionic acids, presumably derived from ferulic acid (FA), were the major phenyl metabolites formed from all bran preparations. The processed rye, wheat, and oat bran fractions contained more water-extractable dietary fiber (DF) and had smaller particle sizes and were thus more easily fermentable than the corresponding brans. Rye aleurone and bran had the highest fermentation rate and extent probably due to high fructan and water-extractable arabinoxylan content. Oat samples also had a high content of water-extractable DF, β-glucan, but their fermentation rate was lower. Enzymatic digestion prior to in vitro colon fermentation changed the structure of oat cell walls as visualized by microscopy and increased the particle size, which is suggested to have retarded the fermentability of oat samples. Wheat bran was the most slowly fermentable among the studied samples, presumably due to the high proportion of water-unextractable DF. The in vitro digestion reduced the fructan content of wheat samples, thus also decreasing their fermentability. Among the studied short-chain fatty acids, acetate dominated the profiles. The highest and lowest production of propionate was from the oat and wheat samples, respectively. Interestingly, wheat aleurone generated similar amounts of butyrate as the rye fractions even without rapid gas production.  相似文献   

20.
One hundred‐eighty hypercholesterolemic subjects following the National Cholesterol Education Program Step One Diet were randomly divided into six groups (30 ± 2/group). Group 1 served as the control and received no fiber supplements. The fiber supplemented groups received 50 g/day of oat bran or amaranth from various sources: Group 2 (oat bran muffins); Group 3 (amaranth muffins); Group 4 (Oat Bran O's); Group 5 (Oat Bran Flakes); and Group 6 (a variety of oat bran products). Fasting serum total cholesterol (FSTC), low density‐, very low density‐, and high density‐lipoprotein cholesterol (LDL‐C, VLDL‐C, and HDL‐C) and serum triacylglycerols were measured before and after the 28‐day intervention. Three‐day diet records were completed before and after intervention. Subjects reduced (P < 0.05) the mean intake of total and saturated fat, and cholesterol. FSTC dropped more than twice as much (P < 0.05) as was observed with fat modification alone (Group 1 = ‐0.31 mmol/L), when oat bran was provided as flakes (Group 5 = ‐0.86 mmol/L) or in a variety of forms (Group 6 = ‐0.75 mmol/L). If the initial ratio of HDL‐C to FSTC was low, then supplementation did not decrease FSTC to the extent observed when the initial ratio was high. Compliance with the dietary interventions was best when the subjects gave the product a rating of ≤2.0 (on a 1–4 hedonic scale, with 1 being excellent). We can conclude from these data that fiber supplementation to reduce serum cholesterol is most effective in hypercholesterolemic individuals that have a greater proportion of HDL‐C. In addition, not all the oat bran products evaluated were able to lower cholesterol to the same extent, indicating that the ability of soluble fiber to reduce FSTC can be compromised by other dietary factors such as insoluble fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号