首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of increasing levels of eight commercial fungal enzymes enriched in four types of activity (α‐amylase, protease, xylanase, or cellulase) on Japanese‐style sponge and dough bread quality and processing characteristics have been studied using a Canadian red spring wheat straight‐grade flour. At optimum levels, the enriched α‐amylases, xylanases, and cellulases increased loaf volume and bread score and reduced crumb firmness, while the proteases only reduced crumb firmness. For α‐amylases, xylanases, and cellulases, optimum levels for crumb firmness were obtained at higher levels of addition than for loaf volume and bread score. At high levels of addition, all four enriched enzyme types reduced loaf volume and bread score and increased crumb firmness relative to optimum levels, with the proteases showing the most dramatic effects. α‐Amylases and cellulases had little impact on dough mixing requirements, while xylanases increased and proteases greatly reduced mixing requirements. All enzymes at optimum levels reduced sheeting work requirements, resulting in softer more pliable dough. Optimum bread properties for α‐amylases, xylanases, and cellulases were attained within a relatively narrow range of dough sheeting work values. This similarity in response suggests a dominant common nonspecific mechanism for their improver action, which is most likely related to water release and the resulting impact on physical dough properties.  相似文献   

2.
Thermostable mutant α‐amylases (21B, M111, and M77) with various degrees of thermostability were purified from Bacillus amyloliquefaciens F and used as improvers for breadmaking. Test baking with the mutant enzymes was conducted using the long fermentation sponge‐dough method. Addition of an appropriate amount of mutant α‐amylases to the ingredients distinctly increased the specific volume of the bread and improved the softness of breadcrumb as compared with the addition of Novamyl (NM), an exo‐type α‐amylase. M77 was the most effective in retarding the staleness of breadcrumb. The softness of breadcrumb during storage, however, was not correlated with the thermostability. All mutant α‐amylases weakened the mixing property of the dough, whereas they strengthened the property of fermented dough. Especially, M77 and NM had different effects on the dough properties, but their bread qualities were similar to each other. The strong tolerance of M77 dough to the long baking process might be due to the production of hydrolyzed starches, oligosaccharides in the range of maltopentaose to maltohexaose, as compared with NM. Therefore, in the light of present findings, these mutant α‐amylases are possible substitutes for NM as bread improvers.  相似文献   

3.
The present investigation aims at understanding the mechanism of bread firming during staling. Changes in the starch fraction due to the addition of amylases and their influence on the texture of bread crumb were studied during aging and after rebaking of stale bread. Pan bread was prepared by a conventional baking procedure. The influence of three different starch‐degrading enzymes, a conventional α‐amylase, a maltogenic α‐amylase, and a β‐amylase were investigated. The mechanical properties of bread were followed by uniaxial compression measurements. The microstructure was investigated by light microscopy, and starch transformations were assessed by differential scanning calorimetry (DSC) and wide‐angle X‐ray powder diffraction. Firming of bread crumb and crystallization of starch are not necessarily in agreement in systems with added amylases. Reorganization of both starch fractions, amylopectin and amylose, and the increase of starch network rigidity due to increase of polymer order are important during aging. Starch‐degrading enzymes act by decreasing the structural strength of the starch phase; for instance, by preventing the recrystallization of amylopectin or by reducing the connectivity between crystalline starch phases. On the other hand, starch‐degrading enzymes may also promote the formation of a partly crystalline amylose network and, by this, contribute to a kinetic stabilization of the starch network. Based on the results, a model for bread staling is proposed, taking into account the biphasic nature of starch and the changes in both the amylose and amylopectin fraction.  相似文献   

4.
The objective of this study was to determine the effects of flour type, baking absorption, variation in sheeting, and dough proofing time on the density, crumb grain (visual texture), and mechanical properties (physical texture) of bread crumb. All response variables were measured on the same bread crumb specimens. Bread loaves were prepared by a short‐time bread‐making process using four spring wheat flours of varying strength. After crumb density measurement, digital image analysis (DIA) was used to determine crumb grain properties including crumb brightness, cell size, cell wall thickness, and crumb uniformity. Tensile tests were performed on bone‐shaped specimens cut from the same bread slices used for DIA to obtain values for Young's modulus, fracture stress, fracture strain, and fracture energy. Proof time had the most profound influence on the bread with substantial effects on loaf volume, crumb density, crumb brightness, and grain, as well as crumb mechanical properties. Increasing proof time resulted in higher loaf volume, lower crumb density and brightness, coarser crumb with fewer and larger cells with thicker cell walls, and weaker crumb tensile properties. Varying flour type also led to significant differences in most of the measured crumb parameters that appeared to correspond to differences in gluten strength among the flour samples. With increasing flour strength, there was a clear trend to increasing loaf volume, finer and more uniform crumb grain, and stronger and more extensible bread crumb. Increasing baking absorption had virtually no effect on crumb structure but significantly weakened crumb strength and increased fracture strain. In contrast, varying the number of sheeting passes had a minor effect on crumb cellular structure but no effect on mechanical properties. The experimental data were consistent with a cause‐effect relationship between flour strength and the tensile strength of bread crumb arising as a result of stronger flours exhibiting greater resistance to gas cell coalescence, thereby having fewer crumb defects.  相似文献   

5.
Monoglycerides are widely used in the baking industry because of their antistaling effects, mainly suppressing crumb firming. Commercial monoglycerides are normally prepared from hydrogenated fats, with stearate being the most common fatty acid. In a previous study, monoglycerides such as monopalmitate (C16) and monostearate (C18) had positive effects on Canadian short process bread but no improvements on sponge‐and‐dough process (SDP) bread. The objective of this study was to investigate the effects of saturated monoglycerides of varying fatty acid chain length (C14–C22) on SDP breadmaking quality by using volume judgment, crumb image analysis, and texture measurements. Higher levels (1.00–1.50%) of all monoglycerides (C14, C16, and C18) significantly (P < 0.05) increased loaf volume and cell diameter. The larger cell diameter with increasing levels of these monoglycerides may have resulted from softer, more extensible dough handling properties and greater gas cell stability during baking. Addition of C16 and C18 caused the largest increase in crumb softness with increasing monoglyceride levels but showed relatively low resilience, which might be related to larger loaf volume (i.e., lower density of bread). However, addition of blended monoglycerides C14+C16 increased crumb softness and loaf volume while partially retaining resilience. Each monoglyceride had a different function in breadmaking quality and somewhat positive effects on SDP.  相似文献   

6.
Dough development using sheeting and mechanical dough development (MDD) were compared with respect to the effect the mixing method had on the molecular size distribution and degree of protein thiol exposure of the aggregated glutenin proteins. Although sheeting imparts a lower rate of work input on doughs than does MDD mixing, changes in protein aggregation patterns during mixing were similar for both methods of dough development, indicating that protein disaggregation was important in the process of dough development. In both systems, a reduced rate of change in the protein aggregation patterns was associated with optimum dough development. The MDD mixing was characterized by increasing exposure of the thiol groups on the SDS‐insoluble glutenin during mixing while the sheeting process resulted in fewer exposed thiol groups on both SDS‐soluble and SDS‐insoluble glutenin proteins. This suggested that disulfide bond rupture may not be a required process in dough development and that high effective stresses per se may not be required to develop doughs. This is consistent with a model for dough development that does not require extensive covalent bond rupture but instead involves mainly rupture and reformation of noncovalent interactions such as hydrophobic bonds and hydrogen bonds between protein chains.  相似文献   

7.
Dough processing is an important factor determining the quality of bread. The most important mechanical steps in industrial dough processing are kneading, extrusion, and molding. In all of these processing steps, considerable changes in the structure and properties of the dough can occur. On a laboratory‐scale level, these (structural) effects are well characterized but, so far, no systematic study has been performed at the level of a large‐scale industrial dough processing line. The molecular and microstructural changes that can take place during industrial dough processing were studied with the help of nuclear magnetic resonance (NMR), fundamental rheology, and scanning electron microscopy (SEM). After the kneading step, the dough shows a well‐developed gluten network with a homogeneous dispersion of starch particles (at optimum kneading time). After the extrusion step (a sheeting procedure), the structure of the dough becomes coarser and the dough gluten network is oriented and partially disrupted. This is accompanied with an increase in both rheological stress and water mobility. After molding, the network structure is restored and both the rheological stress and the mobility of water decrease. These findings provide a novel microstructurally‐lead approach to make recommendations for optimization of industrial dough processing lines.  相似文献   

8.
Barley is rich in nutritionally positive compounds, but the quality of bread made of wheat–barley composite flours is impaired when a high percentage of barley is used in the mixture. A number of enzymes have been reported to be useful additives in breadmaking. However, the effect of β‐glucanase on breadmaking has scarcely been investigated. In this paper, the influence of different levels (0.02, 0.04, 0.06, and 0.08%, based on composite flour) of β‐glucanase (100,000 U/g) on the properties of dough and bread from 70% wheat, 30% barley composite flour were studied. Although dough development time, dough stability, and protein weakening value decreased after β‐glucanase addition, dough properties such as softness and elasticity as well as bread microstructure were improved compared with the control dough. β‐Glucanase also significantly improved the volume, texture, and shelf life of wheat–barley composite breads. The use of an optimal enzyme concentration (0.04%) increased specific volume (57.5%) and springiness (21%), and it reduced crumb firmness (74%) and staling rate. Bread with added β‐glucanase had a better taste, softness, and overall acceptability of sensory characteristics compared with the control bread. Moreover, the quality of wheat–barley composite bread after addition of 0.04% β‐glucanase was nearly equal to the quality of pure wheat bread. These results indicate that dough rheological characteristics and bread quality of wheat–barley composite flour can be improved by adding a distinct level of β‐glucanase.  相似文献   

9.
We prepared bread dough A (a mixture of wheat flour, sugar, salt, and water), bread dough B (a mixture of bread dough A and yeast), and bread dough C (first‐proofed, molded, and second‐proofed bread dough B) and froze them at –20°C for six days. They were thawed at 4°C for 16 hr and subjected to their breadmaking processes. The results indicated that breadmaking properties (bread height [mm] and specific volume [cm3/g]) after bread dough A and B processes were the same as those of control bread dough (unfrozen dough). However, in the case of bread dough C, the resulting bread showed depression of the properties. The amount of centrifuged liquid from thawed bread dough C increased. Sugar was added to thawed bread dough C (bread dough C‐1), and then yeast was further added to bread dough C‐1 (bread dough C‐2), and they were subjected to the breadmaking process. The results showed that the breadmaking properties of bread dough C‐2 were the same as those of the control. It was further found that when the first proof step in the bread dough C‐2 process was omitted, the breadmaking properties were depressed. Frozen and thawed bread dough C was packed into a plastic tube, and extension of the dough was compared with that of control dough under reduced pressure. Bread dough C extended to 50 mm, compared with 70 mm for control dough. First proof, mold, and second proof steps of dough C‐2 caused it to extend to the same height as control dough. It was concluded that the increased amount of the separated liquid in thawed dough C caused depression of breadmaking properties resulting from lack of water in the appropriate places to provide the expected properties, but these properties could be restored to the levels of control bread dough by the addition of sugar and yeast following the first proof, mold, and second proof steps.  相似文献   

10.
A unifactorial approach was compared with a multifactorial approach, based on mixture theory, using bread optimization. The effects of dough weight and formula, as well as mixing time, on bread properties were investigated. The unifactorial approach indicated that increasing the weight of water added to flour increased bread weight. Changing the weight of water in dough also changed the proportion of all the ingredients and total dough weight. The unifactorial approach could not unequivocally indicate the variable responsible for increases in bread weight. Conversely, the multifactorial approach clearly indicated that increased dough weight increased bread weight.  相似文献   

11.
Pyranose oxidase (P2O) improves wheat flour dough stability and bread quality. We related its effect on dough spread behavior to that on dough and bread crumb structure. Increasing P2O addition levels gradually reduced dough flow. High P2O addition levels further increased dough strength, significantly increased dough cell wall thickness, and decreased bread loaf volume. Taken together, affecting dough spread behavior impacts dough and bread (crumb) structure, and dough structure largely determines bread crumb structure.  相似文献   

12.
Phytochemical profile (phenolic acids, carotenoids, and tocopherols) and antiproliferative properties of bread processing fractions, including the dough, crumb, and upper crust made from refined wheat and whole wheat flours were analyzed for two wheat cultivars. Ferulic acid, lutein, and α‐tocopherol were the predominant phenolic acid, carotenoid, and tocopherol, respectively, extracted from all fractions. The levels of all phytochemicals in whole wheat samples were over eightfold higher than their corresponding refined wheat samples. The concentrations of total phenolic acids (soluble and insoluble bound) were higher in the upper crust of refined (∼60–90%) and whole wheat (∼15–40%) breads than their corresponding dough fractions. However, the dough of whole wheat had higher levels of tocopherols and carotenoids compared with the crumb and upper crust, suggesting that phenolic acids were relatively stable during baking, whereas tocopherols (∼25–80%) and carotenoids (∼20–80%), were partially degraded. The antiproliferative activity of whole wheat bread extracts against HT‐29 cancer cells was weakly correlated with total phenolic acids but showed no correlations with total carotenoid and total tocopherol contents.  相似文献   

13.
In situ enrichment of bread with arabinoxylan‐oligosaccharides (AXOS) through enzymic degradation of wheat flour arabinoxylan (AX) by the hyperthermophilic xylanase B from Thermotoga maritima (rXTMB) was studied. The xylanolytic activity of rXTMB during breadmaking was essentially restricted to the baking phase. This prevented problems with dough processability and bread quality that generally are associated with thorough hydrolysis of the flour AX during dough mixing and fermentation. rXTMB action did not affect loaf volume. Bread with a dry matter AXOS content of 1.5% was obtained. Further increase in bread AXOS levels was achieved by combining rXTMB with xylanases from Pseudoalteromonas haloplanktis or Bacillus subtilis. Remarkably, such a combination synergistically increased the specific bread loaf volume. Assuming an average daily consumption of 180 g of fresh bread, the bread AXOS levels suffice to provide a substantial part of the AXOS intake leading to desired physiological effects in humans.  相似文献   

14.
Elucidating the mechanism of laccase and tyrosinase in wheat bread making   总被引:2,自引:0,他引:2  
Cross-linking enzymes generate covalent bonds in and between food biopolymers. These enzymes are interesting tools for tailoring dough and bread structures, as the characteristics of the biopolymers significantly determine the viscoelastic and fracture properties of dough and bread. In this study, the influence of oxidative cross-linking enzymes, tyrosinase from the filamentous fungus Trichoderma reesei and laccase from the white rot fungus Trametes hirsuta, on dough and bread were examined. Oxidation of low molecular weight phenolic model compounds of flour, cross-linking of gluten proteins, dough rheology, and bread making were characterized during or after the enzymatic treatments. In the dough and bread experiments, laccase and tyrosinase were also studied in combination with xylanase. Of the model compounds tyrosine, p-coumaric acid, caffeic acid, ferulic acid, and Gly-Leu-Tyr tripeptide, tyrosinase oxidized all except ferulic acid. Laccase was able to oxidize each of the studied compounds. The phenolic acids were notably better substrates for laccase than l-tyrosine. When the ability of the enzymes to cross-link isolated gliadin and glutenin proteins was studied by the SDS-PAGE analysis, tyrosinase was found to cross-link the gliadin proteins effectively, whereas polymerization of the gliadins by laccase was observed only when a high enzyme dosage and prolonged incubation were used. Examination of large deformation rheology of dough showed that both laccase and tyrosinase made doughs harder and less extensible, and the effects increased as a function of the enzyme dosage. In bread making, interestingly, the pore size of the breads baked with tyrosinase turned out to be remarkably larger and more irregular when compared to that of the other breads. Nevertheless, both of the oxidative enzymes were found to soften the bread crumb and increase the volume of breads, and the best results were achieved in combination with xylanase.  相似文献   

15.
The uniaxial elongational and shear rheology of doughs varying in either the protein content or glutenin‐to‐gliadin ratio were investigated. Increasing the protein content at constant glutenin‐to‐gliadin ratio increased the strain‐hardening properties of the dough, as shown by increasing elongational rupture viscosity and rupture stress. Glutenin and gliadin had a more complex effect on the elongational properties of the dough. Increased levels of glutenin increased the rupture viscosity but lowered the rupture strain, while elevated gliadin levels lowered the rupture viscosity but increased the rupture strain. These observations provide rheological support for the widely inferred role of gliadin and glutenin in shaping bread dough rheology, namely that gliadin contributes the flow properties, and glutenin contributes the elastic or strength properties. The shear and elongational properties of the doughs were quite different, reflecting the dissimilar natures of these two types of flow. Increasing protein content lowered the maximum shear viscosity, while increasing the glutenin‐to‐gliadin ratio increased maximum shear viscosity. Strong correlations between the results of basic and empirical rheology were found. These basic, or fundamental, rheological measurements confirmed prior empirical studies and supported baking industry experience, highlighting the potential of basic rheology for bread and wheat research.  相似文献   

16.
麦麸酚基木聚糖对发酵面团特性和馒头品质的影响   总被引:3,自引:1,他引:3  
王晓曦  范玲  马森  王瑞  陈成 《农业工程学报》2015,31(17):302-307
为了提高麦麸的附加值、馒头的品质以及增强馒头的营养价值,该试验以小麦粉为原料,采用2个分子量的麦麸酚基木聚糖(820、581 kD),研究不同添加量(0.25%、0.5%、1.0%、2.0%)对发酵面团特性以及馒头品质的影响。结果表明:随着麦麸酚基木聚糖添加量的增加,发酵面团的弹性模量、质子密度A22先增加后下降,黏性模量、质子密度A23增加,弛豫时间T22下降;馒头的亮度下降,红度和黄度增加,比容、黏聚性、回复性先增加后下降,硬度、咀嚼性先下降后上升,黏附性下降,馒头的感官得分先上升后下降。高分子量的麦麸酚基木聚糖,其发酵面团的弹性模量和黏性模量变幅较大,弛豫时间T22、T23较大、质子密度A21较小,低分子量的麦麸酚基木聚糖,其馒头比容和弹性较大,但馒头硬度和咀嚼性相对也较大。麦麸酚基木聚糖添加量在0.5%时,对发酵面团以及馒头品质改善效果最好。添加量在1.0%内,发酵面团特性以及馒头品质均可接受。高分子量的酚基木聚糖对发酵面团以及馒头品质改善效果高于低分子量的酚基木聚糖。研究结果为麦麸酚基木聚糖广泛应用于馒头中,提高馒头品质及营养价值提供理论依据。  相似文献   

17.
Polyols could prolong shelf life and improve the quality of white bread. But the effect of high contents of polyols on dough properties and bread qualities is not yet clearly known. Thus, the properties of dough and white bread with different addition of polyols were evaluated by means of selected physicochemical properties. Rheology experiment results showed that both glycerol and sorbitol decreased the G′ and G″ of the dough. The results of thermogravimetric analysis revealed that polyols hindered the evaporation of water and that glycerol had a greater capacity for water retention than did sorbitol. In the bread, they caused more water to be absorbed on the surface of the gluten–starch system. They decreased the water activity and mass loss of the bread, but the specific volume of the bread also decreased. We found when glycerol and sorbitol addition was higher than 8%, it could slightly increase the viscidity of dough, enhance the moisture content of bread, and reduce the water activity of bread. But the gluten strength of dough decreased, and shaping and proofing of dough were difficult, which resulted in the deterioration the quality of white bread. We conclude that the addition of glycerol or sorbitol below 8% would be beneficial to the properties of dough and white bread and that sorbitol is a better option than glycerol.  相似文献   

18.
The relationship between syruping in refrigerated doughs upon prolonged storage and different aspects of arabinoxylan (AX) hydrolysis was investigated using Triticum aestivum xylanase inhibitor (TAXI) and different xylanases in the dough formula. Dough characteristics were evaluated with strong emphasis on the AX population and its fate as a function of storage time. Selective reduction of part of the flour endogenous xylanase activity in dough by added TAXI reduced dough syruping after 12 and 20 days of storage by 50%, providing straightforward evidence for the involvement of xylanases and, thus, AX in the syruping phenomenon. Addition of xylanases with different inhibitor sensitivities [an inhibition-sensitive Bacillus subtilis xylanase (XBS(i)) as well as a noninhibited mutant (XBS(ni)) thereof] to dough confirmed the importance of xylanases in dough syruping, on one hand, and the power of wheat flour TAXI to constitute a significant barrier against xylanase-mediated dough syruping, on the other hand. Use of xylanases with different substrate selectivities [an Aspergillus aculeatusxylanase (XAA) versus XBS(ni)] showed degradation of water-extractable AX (WE-AX) and solubilized AX to low molecular weight molecules rather than the conversion of water-unextractable AX (WU-AX) to high molecular weight water extractable components to be the main factor influencing dough syruping.  相似文献   

19.
The effects of ferulic acid and transglutaminase (TG) on the properties of wheat flour dough and bread were investigated. Ferulic acid and TG were blended with hard wheat flour at levels of 250 and 2,000 ppm of flour weight, respectively. The addition of ferulic acid reduced the mixing time and mixing tolerance. The addition of TG did not obviously affect the mixing properties. Significant effects of ferulic acid plus TG on the rested dough texture were observed for overmixed dough. The maximum resistance (Rmax) of the dough was significantly reduced with the addition of ferulic acid but increased with the addition of TG. The addition of TG with ferulic acid restored the Rmax reduced by ferulic acid alone. The proportion of SDS‐soluble high molecular weight proteins in the dough increased with the addition of ferulic acid and decreased with TG, when assessed with size‐exclusion HPLC fractionation. Although the addition of TG improved the handling properties of the dough made sticky with added ferulic acid, it did not improve the quality of the bread with added ferulic acid as measured by loaf volume and firmness.  相似文献   

20.
Whole sorghum flour was fermented (a five‐day natural lactic acid fermentation) and dried under forced draught at 60°C, and evaluated for its effect on sorghum and wheat composite bread quality. In comparison with unfermented sorghum flour, fermentation decreased the flour pH from 6.2 to 3.4, decreased total starch and water‐soluble proteins, and increased enzyme‐susceptible starch, total protein, and the in vitro protein digestibility (IVPD). Fermentation and drying did not decrease the pasting temperature of sorghum flour, but slightly increased its peak and final viscosity. In comparison with composite bread dough containing unfermented sorghum flour, fermented and dried sorghum flour decreased the pH of the dough from 5.8 to 4.9, increased bread volume by ≈4%, improved crumb structure, and slightly decreased crumb firmness. IVPD of the composite bread was also improved. Mixing wet fermented sorghum flour directly with wheat flour (sourdough‐type process) further increased loaf volume and weight and reduced crumb firmness, and simplified the breadmaking process. It appears that the low pH of fermented sorghum flour inactivated amylases and increased the viscosity of sorghum flour, thus improving the gas‐holding capacity of sorghum and wheat composite dough. Fermentation of sorghum flour, particularly in a sourdough breadmaking process, appears to have considerable potential for increasing sorghum utilization in bread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号