首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Three factors (extent of chlorination, milling extraction rate, and particle‐size reduction) in cake‐baking functionality of Croplan 594W flour were explored using a Rapid Visco‐Analyser (RVA) and time‐lapse photography. The extent of chlorination and milling extraction rate showed dramatic effects, but postmilling to reduce flour particle size was a less significant factor. RVA results showed that starch pasting was accelerated, and both peak and set‐back viscosities were enhanced, with increasing extent of chlorination. These effects were exaggerated by the high sugar concentration relevant to cake baking, compared to the same effects in water. Cake baking with chlorinated flours, in a formulation with 50% sugar (%S) and 275 parts total solvent (TS), showed that, as the extent of chlorination increased, cake moisture content and edge height decreased. Cake center height and shape factor were curvilinear, with maxima near flour with pH 4.6. Dramatic collapse occurred for cakes baked with unchlorinated flour samples, due to delayed starch pasting, as documented by time‐lapse photography and comparison to the geometry of the final cooled cakes. Starch pasting and egg white setting occurred too early for the cakes baked with excessively chlorinated flour (pH ≤4.0), but too late for the cakes baked with unchlorinated or insufficiently chlorinated flours (pH ≥4.9), compared to the ideal starch pasting and egg white setting behavior with appropriately chlorinated flours (pH >4.0 and <4.9). Informal sensory texture evaluation showed that cake mouthfeel was related to both moisture content per se and the relationship between moisture content and cake relative humidity (%RH). Excessive flour chlorination resulted in unacceptably dry cake mouthfeel.  相似文献   

2.
Volume is an important characteristic in the evaluation of cakes and cake quality, relating to the underlying structural development of the cake. A method for evaluation of changes in contour and volume during the cake baking process is proposed: the height profile method. Volumes of baked cakes were determined using two standard methods, rapeseed displacement and cross‐sectional tracings, and compared with height profile analysis to determine the accuracy of the new method for cake volume analysis. Height analysis values did not significantly differ from rapeseed and tracing results. The height profile method was used to analyze and calculate changes in volume during the baking process for cakes made with chlorine‐treated and nonchlorine‐treated flours. The method was also able to depict changes in contour of the baking cakes, showing definite differences in contour development between chlorine‐treated and nonchlorinetreated flours. The height profile method of volume determination is a nonintrusive method that can be employed in the study of volumetric and contour changes of cakes while they bake.  相似文献   

3.
We evaluated the qualitative and quantitative effects of wheat starch on sponge cake (SC) baking quality. Twenty wheat flours, including soft white and club wheat of normal, partial waxy, and waxy endosperm, as well as hard wheat, were tested for amylose content, pasting properties, and SC baking quality. Starches isolated from wheat flours of normal, single‐null partial waxy, double‐null partial waxy, and waxy endosperm were also tested for pasting properties and baked into SC. Double‐null partial waxy and waxy wheat flours produced SC with volume of 828–895 mL, whereas volume of SC baked from normal and single‐null partial waxy wheat flours ranged from 1,093 to 1,335 mL. The amylose content of soft white and club wheat flour was positively related to the volume of SC (r = 0.790, P < 0.001). Pasting temperature, peak viscosity, final viscosity, breakdown, and setback also showed significant relationships with SC volume. Normal and waxy starch blends having amylose contents of 25, 20, 15, and 10% produced SCs with volume of 1,570, 1,435, 1,385, and 1,185 mL, respectively. At least 70 g of starch or at least 75% starch in 100 g of starch–gluten blend in replacement of 100 g of wheat flour in the SC baking formula was needed to produce SC having the maximum volume potential. Starch properties including amylose content and pasting properties as well as proportion of starch evidently play significant roles in SC baking quality of wheat flour.  相似文献   

4.
Wheat genotypes of wild type, partial waxy, and waxy starch were used to determine the influence of starch amylose content on French bread making quality of wheat flour. Starch amylose content and protein content of flours were 25.0–25.4% and 14.3–16.9% for wild type; 21.2 and 14.9% for single null partial waxy; 15.4–17.1% and 13.2–17.6% for double null partial waxy; and 1.8 and 19.3% for waxy starch, respectively. Wheat flours of double null partial waxy starch produced smaller or comparable loaf volume of bread than wheat flours of wild type and single null partial waxy starch. Waxy wheat flour, despite its high protein content, generally produced smaller volume of bread with highly porous, glutinous, and weak crumb than wheat flours of wild type and partial waxy starch. French bread baked from a flour of double null partial waxy starch using the sponge-and-dough method maintained greater crumb moisture content for 24 hr and softer crumb texture for 48 hr of storage compared with bread baked from a flour of wild type starch. In French bread baked using the straight-dough method, double null partial waxy wheat flours with protein content >14.3% exhibited comparable or greater moisture content of bread crumb during 48 hr of storage than wheat flours of wild type starch. While the crumb firmness of bread stored for 48 hr was >11.4 N in wheat flours of wild type starch, it was <10.6 N in single or double null partial waxy flours. Wheat flours of reduced starch amylose content could be desirable for production of French bread with better retained crumb moisture and softness during storage.  相似文献   

5.
Prime starch was extracted from soft and hard wheat flours and ballmilled to produce 100% damaged starch. Small amounts of the ball-milled starch or a pregelatinized starch were added to sugar-snap cookie formulations. Other cookie doughs were produced from prime starch only (no flour) with small amounts of the ball-milled starch added. Starch damages of the resulting substituted soft and hard wheat flours and soft and hard wheat prime starches were determined and compared to diameters of sugarsnap cookies produced from the control and treatments. Soft wheat flour and starches produced larger diameter cookies than their hard wheat counterpart at all levels of damaged starch. Both sources of damaged starch (ball-milled or pregelatinized starch) had similar effects on cookie diameter. Cookies produced from all starch (no flour) were similar to their respective flour controls at ≈8% damaged starch. To produce the same size cookie as that produced by soft wheat flour and starch, hard wheat flour and starch cookie formulations required less damaged starch and had lower alkaline water retention than did the soft wheat flour and starch cookie formulations. Other flours were treated with chlorine gas to pH 4.8. Pregelatinized starch (≈5%) was required to reduce the cookie diameter as much as chlorine treatment did. Results suggest unique quality differences between soft and hard wheat starch as they function in sugar-snap cookie baking. The functional results of those differences are not adequately quantified by the estimation of damaged starch level.  相似文献   

6.
Mineral content, as determined and expressed by ash content, serves as an index of wheat flour quality for flour millers and food manufacturers who prefer flour of low mineral content, even though the significance of mineral content on the functional properties of wheat flour is not well understood. We explored whether minerals have any influence on the functional properties of wheat flour and product quality of white salted noodles. Ash, obtained by incinerating wheat bran, was incorporated into two hard white spring wheat flours and their starches to raise the total ash content to 1, 1.5, or 2%. Pasting properties were determined using a rapid visco analyzer (RVA). Addition of ash increased the peak viscosity of the flours in both water and buffer solution but did not affect the peak viscosity of starch. Wheat flours with added ash showed lower pasting temperature by approximately 10°C in buffer solution. Mineral extracts (15.3% ash) isolated from wheat bran, when added to increase the ash content of wheat flour and starch to 2%, increased the peak viscosity and lowered the pasting temperature of flour by 13.2–16.3% but did not affect the pasting properties of the isolated starch. The mineral premix also increased peak viscosity of wheat flour but not in starch. Added ash increased noodle thickness and lowered water retention of cooked noodles while it exhibited no significant effect on cooked noodle texture as determined using a texture analyzer.  相似文献   

7.
Double‐null partial waxy wheat (Triticum aestivum L.) flours were used for isolation of starch and preparation of white salted noodles and pan bread. Starch characteristics, textural properties of cooked noodles, and staling properties of bread during storage were determined and compared with those of wheat flours with regular amylose content. Starches isolated from double‐null partial waxy wheat flours contained 15.4–18.9% amylose and exhibited higher peak viscosity than starches of single‐null partial waxy and regular wheat flours, which contained 22.7–25.8% amylose. Despite higher protein content, double‐null partial waxy wheat flours, produced softer, more cohesive and less adhesive noodles than soft white wheat flours. With incorporation of partial waxy prime starches, noodles produced from reconstituted soft white wheat flours became softer, less adhesive, and more cohesive, indicating that partial waxy starches of low amylose content are responsible for the improvement of cooked white salted noodle texture. Partial waxy wheat flours with >15.1% protein produced bread of larger loaf volume and softer bread crumb even after storage than did the hard red spring wheat flour of 15.3% protein. Regardless of whether malt was used, bread baked from double‐null partial waxy wheat flours exhibited a slower firming rate during storage than bread baked from HRS wheat flour.  相似文献   

8.
To alleviate the adverse effects (grittiness and high crumb firmness) caused by the inclusion of sorghum flour in composite breads, sorghum grain was malted with the aim of decreasing the gelatinization temperature and increasing the water‐holding capacity of sorghum flour. Four different heat treatments were investigated: drying the malt at high temperatures (50–150°C), stewing, steaming, and boiling before drying the malt at 80°C. Malting decreased the pasting temperature of sorghum to values approaching those of wheat flour, but the paste viscosity was very low. Increasing the malt drying temperature inactivated the amylases but gave malts of darker color and bitter taste. Stewing, steaming, and boiling the malt before drying almost completely inactivated the amylases and increased the enzyme‐susceptible starch content and the paste viscosity of malt flours. Bread made with boiled malt flour (30%) had an improved crumb structure, crumb softness, water‐holding capacity, and resistance to staling, as well as a fine malt flavor compared with the bread made with grain sorghum flour (30%). Consumers preferred the malted sorghum bread over the bread made with plain sorghum flour.  相似文献   

9.
The sum of wheat flour and corn starch was replaced by 10, 20, or 30% whole amaranth flour in both conventional (C) and reduced fat (RF) pound cakes, and the effects on physical and sensory properties of the cakes were investigated. RF presented 33% fat reduction. The increasing amaranth levels darkened crust and crumb of cakes, which decreased color acceptability. Fresh amaranth‐containing cakes had similar texture characteristics to the controls, evaluated both instrumentally and sensorially. Sensory evaluation revealed that replacement by 30% amaranth flour decreased C cakes overall acceptability scores, due to its lower specific volume and darker color. Amaranth flour levels had no significant effect on overall acceptability of RF cakes. Hence, the sum of wheat flour and corn starch could be successfully replaced by up to 20% amaranth flour in C and up to 30% in RF pound cakes without negatively affecting sensory quality in fresh cakes. Moisture losses for all the cakes were similar, ≈1% per day during storage. After six days of storage, both C and RF amaranth‐containing cakes had higher hardness and chewiness values than control cakes. Further experiments involving sensory evaluation during storage are necessary to determine the exact limit of amaranth flour replacement.  相似文献   

10.
目前蒸饼的制作大多采用传统的半烫面工艺,工序较为复杂,为解决这一问题,该研究采用不同热处理方式(蒸汽处理、微波处理、干热处理)对小麦粉进行热处理,研究了不同处理方式对小麦粉的糊化特性、热机械学特性、微观结构等的影响,并将处理后的小麦粉添加到未处理的小麦粉中制成蒸饼,考察了所制得的蒸饼的水分分布、质构特性及感官品质。结果表明:3种热处理的适当处理时间都可以提高小麦粉的黏度和回生值;经干热处理和微波处理后的小麦粉的破损淀粉含量高于经蒸汽处理的小麦粉。3种热处理小麦粉的添加均可以提高面团的吸水率,蒸汽处理小麦粉的添加使面团耐揉性降低、蒸煮稳定性提高,微波和干热处理小麦粉的添加使面团的耐揉性和内部结构稳定性提高。适当处理时间的热处理小麦粉的添加可以提高蒸饼的结合水含量、硬度、弹性和咀嚼性等。其中,经蒸汽处理40 min、微波处理2 min和干热处理30 min后的小麦粉的添加制得的蒸饼有相对适中的强韧性、较高的结合水含量和感官评分。该研究结果表明添加热处理后的小麦粉代替传统的烫面工艺制作高品质蒸饼具有可行性,同时能够为蒸饼的工业化生产提供相应的基础数据和一定的理论指导。  相似文献   

11.
A traditional waxy rice gel cake in Korea, Injulmi, was prepared with hydroxypropylated waxy rice and corn starches (molar substitutions 0.13 and 0.11, respectively), and the textural and retrogradation characteristics of the cake were compared with a conventional cake made of waxy rice flour. In the pasting viscogram, hydroxypropylated starches exhibited reduced pasting temperatures, but increased peak viscosities compared with the unmodified starches. Under differential scanning calorimetry, the Tg′ and ice melting enthalpy of the starch gel cakes were reduced by hydroxypropylation, which indicated that the modified starches had higher water‐holding capacity than the unmodified starches. The degree of retrogradation, as measured by the hardness of the gel cake and the melting enthalpy, was significantly reduced by hydroxypropylation and hydroxypropylated waxy rice starch was more effective in retarding the retrogradation than hydroxypropylated waxy corn starch  相似文献   

12.
Starch is a crucial component determining the processing quality of wheat‐based products such as Chinese steamed bread (CSB) and raw white noodles (RWN). Flour from wheat cultivar Zhongmai 175 was used for fractionation into starch, gluten, and water solubles by hand washing. The starch fraction was successfully separated into large (>10 μm diameter) and small starch granules (<10 μm diameter) by repeated sedimentation. Flour fractions were reconstituted to original levels in the flour by using constant gluten and water solubles and varying the weight ratio of large and small starch granules. As the proportion of small granules increased in the reconstituted flours, farinograph water absorption increased, and amylose content, pasting peak viscosity, trough, and final viscosity decreased. Starch granule size distribution significantly affected processing quality of CSB and RWN. Superior crumb structure score (12.0) was observed in CSB made from reconstituted flour with 35% small starch granules. CSB made from reconstituted flours with 30 and 35% small starch granules exhibited the highest total scores, with values of 85.4 and 83.3, respectively. Significant improvements in color, viscoelasticity, and smoothness of RWN were obtained with an increase in small starch granule content, and reconstituted flours with 30–40% small starch granules produced RWN with moderate firmness.  相似文献   

13.
14.
One commercial bread wheat flour with medium strength (11.3% protein content, 14% mb) was fractionated into starch, gluten, and water solubles by hand‐washing. The starch fraction was separated further into large and small granules by repeated sedimentation. Large (10–40 μm diameter) and small (1–15 μm diameter) starch fractions were examined. Flour fractions were reconstituted to original levels in the flour using composites of varying weight percentages of starch granules: 0% small granules (100% large granules), 30, 60, and 100% (0% large granules). A modified straight‐dough method was used in an experimental baking test. Crumb grain and texture were significantly affected. The bread made from the reconstituted flour with 30% small granules and 70% large granules starch had the highest crumb grain score (4.0, subjective method), the highest peak fineness value (1,029), and the second‐highest elongation ratio (1.55). Inferior crumb grain scores and low fineness and elongation ratios were observed in breads made from flours with starch fractions with 100% small granules or 100% large granules. As the proportion of small granules increased in the reconstituted flour, it yielded bread with softer texture that was better maintained than the bread made from the reconstituted reference flour during storage.  相似文献   

15.
Thirteen different wheat cultivars were selected to represent GBSS mutations: three each of wildtype, axnull, and bxnull, and two each of 2xnull and waxy. Starch and A‐ and B‐granules were purified from wheat flour. Hearth bread loaves were produced from the flours using a small‐scale baking method. A‐granules purified from wildtype and partial waxy (axnull, bxnull, and 2xnull) starches have significantly higher gelatinization enthalpy and peak viscosity compared with B‐granules. A‐ and B‐granules from waxy starch do not differ in gelatinization, pasting, and gelation properties. A‐ and B‐granules from waxy starch have the highest enthalpy, peak temperature, peak viscosity, breakdown, and lowest pasting peak time and pasting temperature compared with A‐ and B‐granules from partial waxy and wildtype starch. Waxy wheat flour has much higher water absorption compared with partial waxy and wildtype flour. No significant difference in hearth bread baking performance was observed between wildype and partial waxy wheat flour. Waxy wheat flour produced hearth bread with significantly lower form ratio, weight, a more open pore structure, and a bad overall appearance. Baking with waxy, partial waxy, and wildtype wheat flour had no significant effect on loaf volume.  相似文献   

16.
We evaluated the effect and magnitude of flour particle size on sponge cake (SC) baking quality. Two different sets of wheat flours, including flours of reduced particle size obtained by regrinding and flour fractions of different particle size separated by sieving, were tested for batter properties and SC baking quality. The proportion of small particles (<55 μm) of flour was increased by 11.6–26.9% by regrinding. Despite the increased sodium carbonate solvent retention capacity, which was probably a result of the increased starch damage and particle size reduction, reground flour exhibited little change in density and viscosity of flour‐water batter and produced SC of improved volume by 0.8–15.0%. The volume of SC baked from flour fractions of small (<55 μm), intermediate (55–88 μm), and large (>88 μm) particles of soft and club wheat was in the range of 1,353–1,450, 1,040–1,195, and 955–1,130 mL, respectively. Even with comparable or higher protein content, flour fractions of intermediate particle size produced larger volume of SC than flour fractions of large particle size. The flour fractions of small particle size in soft white and club wheat exhibited lower flour‐water batter density (102.6–105.9 g/100 mL) than did those of large and intermediate particle fractions (105.2–108.2 g/100 mL). The viscosity of flour‐water batter was lowest in flour fractions of small particle size, higher in intermediate particles, and highest in large particles. Flour particle size exerted a considerable influence on batter density and viscosity and subsequently on SC volume and crumb structure. Fine particle size of flour overpowered the negative effects of elevated starch damage, water absorption, and protein content in SC baking.  相似文献   

17.
The effects of xanthan gum, Novamyl (a type II α‐amylase), Instant Tender‐Jel C starch (a modified starch), and GMS‐90‐SSK (a hydrated monoglyceride) on the staling properties of bagels stored at 4 and 22°C from 0–7 days were studied. Texture analysis and moisture determination were conducted on the bagels before lyophilization. Analysis of percent soluble starch, crumb pasting (Rapid Visco Analyser) and degree of amylopectin recrystallization (differential scanning calorimeter) were conducted on lyophilized bagel crumb. Novamyl‐treated bagels appeared to be the most resistant to staling over time at both storage temperatures in relation to the enthalpy of gelatinization (ΔH). Bagels containing xanthan gum, Instant Tender‐Jel C starch, and GMS‐90‐SSK showed some improvements over the control bagels, although the effects of the additives on the characteristics of the bagels varied. Bagels made with xanthan gum or monoglyceride retained slightly higher crumb moisture percentages over most days of storage. The monoglyceride‐treated bagels had higher enthalpy values, lower percentages of soluble starch, and a higher pasting profile but had the softest texture. The apparent onset of increased staling of the monoglyceride‐ treated bagels was attributed to complexes formed with the starch fractions.  相似文献   

18.
The pasting properties of rice flours and reconstituted rice flours from mixing a common starch with proteins extracted from different rice cultivars at different total protein content levels were studied. Results showed that not only the total protein content but also the protein composition had an effect on the pasting properties of the rice flours. Among the different strands of rice proteins, globulin had the strongest influence on the pasting properties, followed by glutelin, whereas prolamin had the least influence. At the subunit level of the proteins, proteins with a molecular weight of 17,000, most likely from globulin, had the strongest effect on the peak viscosity of the rice flour, followed by those of 33,000. In comparison with that of the rice starch, the influence of proteins in rice was limited. The effect of interactions between the rice proteins and the starch, such as the role of starch‐granule‐associated proteins, was not isolated in this study, and further investigation is required to quantify this effect.  相似文献   

19.
The sponge cake baking test is accepted and routinely used as a standard quality evaluation tool of soft white wheat for Asian markets, but its lengthy and laborious procedure makes it unsuitable for the routine evaluation of a large number of wheat breeding lines. We simplified the sponge cake baking procedure in the egg‐whipping step and improved its consistency by replacement of the hand mixing of cake batter with mechanical mixing, using a wire whisk or a BeaterBlade paddle. Egg whipping and mechanical batter mixing conditions were optimized by comparing foam density, sponge cake volume, and crumb grain to those obtained by the conventional procedure. Foam density, sponge cake volume, and crumb grain comparable to the conventional 100 g flour procedure were obtained with modifications, including extension of whipping time without heat input using a 5 L KitchenAid mixer, one‐time water addition at 3 min before the completion of egg whipping instead of twice, as in the conventional procedure, and cake batter mixing with a KitchenAid wire whisk or a BeaterBlade paddle. For baking a 50 g flour cake, egg foam of appropriate density was obtained with increased whipping speed and shortened egg‐whipping time (8 min). The modified sponge cake baking procedure yielded egg‐foam density, cake volume, and crumb grain similar to the conventional procedure and effectively differentiated soft wheat flours of different quality. Sponge cake volume of 14 soft white wheat flours ranged from 1,134 to 1,426 mL with the conventional procedure, from 1,113 to 1,333 mL with the modified procedure of batter mixing with a wire whisk, from 1,108 to 1,360 mL with the modified procedure of batter mixing with a BeaterBlade paddle, and from 577 to 719 mL with the modified method of 50 g of flour and batter mixing with a wire whisk. The modified methods with the BeaterBlade paddle and wire whisk exhibited significant correlation in cake volume with a conventional procedure (r = 0.931, P < 0.001 and r = 0.925, P < 0.001, respectively).  相似文献   

20.
The objective of this study was to compare the structure and properties of flours and starches from whole, broken, and yellowed rice kernels that were broken or discolored in the laboratory. Physicochemical properties including pasting, gelling, thermal properties, and X‐ray diffraction patterns were determined. Structure was elucidated using high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). The yellowed rice kernels contained a slightly higher protein content and produced a significantly lower starch yield than did the whole or broken rice kernels. Flour from the yellowed rice kernels had a significantly higher pasting temperature, higher Brabender viscosities, increased damaged starch content, reduced amylose content, and increased gelatinization temperature and enthalpy compared with flours from the whole or the broken rice kernels. However, all starches showed similar pasting, gelling, thermal properties, and X‐ray diffraction patterns, and no structural differences could be detected among different starches by HPSEC and HPAEC‐PAD. α‐Amylase may be responsible for the decreased amylopectin fraction, decreased apparent amylose content, and increased amounts of low molecular weight saccharides in the yellowed rice flour. The increased amount of reducing sugars from starch hydrolysis promoted the interaction between starch and protein. The alkaline‐soluble fraction during starch isolation is presumed to contribute to the difference in pasting, gelling, and thermal properties among whole, broken, and yellowed rice flours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号