首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Eight Scandinavian oat cultivars were studied as grains, groats before and after kiln drying, rolled oats, and oatmeal for 62 physical, chemical, and sensory parameters over three consecutive crop years. The objectives were to study cultivar and year differences, and the relationships between parameters to find out the cultivars most suitable for rolled oats production and to understand how grain parameters are reflected on groat, rolled oat, and oatmeal characteristics. The cultivars and crop years differed (P < 0.05) in most of the parameters. In addition, many groat, rolled oats, and oatmeal variables showed a significant year by crop interaction. Several grain variables were significantly interrelated but only two, moisture and amount of dark and damaged grains, had a strong correlation (r > 0.70) to rolled oat parameters, the former correlating negatively to crude fat and the latter positively with maximum viscosity value. However, some weaker (r < 0.70) negative associations were found such as those between kernel size value and β‐glucan content and water binding capacity of rolled oats. In general, the variables analyzed at different processing stages correlated strongly, indicating good retention of groat properties during processing. Various associations were found between the physicochemical parameters of rolled oats and sensory properties of oatmeal. In principal component analysis, factor 1 mostly represented rolled oat parameters such as crude fat, color values L and a, and oatmeal parameters such as toasted aromatics, coarseness, and size of swollen particles. Factor 2 represented properties that pertain to structure and water and rolled oats interactions. The cultivars were also grouped according to these properties. The results suggest that the rolled oat process deserves optimization on a cultivar basis, particularly when specific product properties such as good water binding capacity are required.  相似文献   

2.
Flour was obtained from oats fermented with lactic acid bacteria (LAB) to study the effect of fermentation on the physical properties and the suitability of fermented oats for use in starch noodle production. The results showed that fermented samples had a significantly lower pH than control samples. Gel strength and amylose content initially increased and then decreased (P < 0.05) with fermentation time. The peak viscosity, breakdown, final viscosity, and setback value decreased with fermentation time. Fermented noodles showed a higher hardness and springiness. In particular, Lactobacillus plantarum (LP) induced the highest springiness, cohesiveness, gumminess, chewiness, and resilience over 12 hr of fermentation. The cooking quality evaluation indicated that fermentation improved the quality of oat starch noodles. Fermented oats resulted in noodles with low cooking loss and higher cooking weight compared to noodles made from fresh flour. The use of LP for 12 hr of fermentation time yielded noodles of the best quality.  相似文献   

3.
One oat cultivar grown in Idaho (three field sites) was pin-milled and separated by sieving to investigate whether starch from oat bran differs from the remainder of kernel. Ground oat particles were classified into three sieve fractions: 300–850 μm, 150–300 μm and <150 μm). β-Glucan content in sieve fractions was analyzed and starch was extracted from kernels without milling and from kernels of each sieve fraction. β-Glucan contents of 300–850, 150–300, and <150 μm sieve fractions were 4.2, 2.3, and 0.8%, respectively. Therefore, starch in bran (300–850 μm sieve fraction) and endosperm (<150 μm sieve fraction) were separated. Starch isolated from entire kernels had significantly higher apparent and absolute amylose content than starch from the 300–850 μm sieve fraction. Starch from different sieve fractions was not significantly different in the apparent amylose, absolute amylose, amylopectin molecular weight, gyration radii, starch gelatinization, and amylose-lipid complex thermal transition temperatures. Starch from the 150–300 μm sieve fraction had significantly lower peak, final, and setback viscosity compared with the starch isolated from the 300–850 μm and <150 μm sieve fractions. Starch removed from the oat bran fraction during β-glucan enrichment may have different applications compared with starch obtained from other kernel compartments. Because pin-milling decreased apparent amylose content and shortened amylopectin branch chains, its potential to alter starch structure should be considered.  相似文献   

4.
Successful quantification of the glucose produced by enzyme hydrolysis of starch was achieved by a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) protocol, using sorbitol as an internal standard. The starch contents measured by MALDI-TOF MS of corn starch, fiber-enriched oat flour derivatives, oat and barley flours, and barley flour/corn starch composites were evaluated in comparison to a widely accepted and validated method of starch determination, which relies on enzyme colorimetry (EC). The average starch content measured in a series of corn starch samples of different masses was 93 and 101% for EC and MALDI-TOF MS, respectively, values that represent the estimated purity of the sample. There was an agreement of 99% between the starch contents determined by the two analytical methods for complex flour-derived samples. Starch values estimated by MALDI-TOF MS consistently showed a greater degree of variability than those determined by EC, but this limitation was readily compensated by rapid acquisition of multiple mass spectra. This study is the first to report the quantification of glucose by MALDI-TOF MS, and it offers new perspectives into the potential utility of MALDI-TOF MS as a definitive tool for monosaccharide analysis and rapid starch determination in complex samples.  相似文献   

5.
Samples of an Australian oat cultivar, Echidna, were pilot-scale processed. At each stage of the processing (raw oats, groats, kiln dried dehulled oats (KDHO), and rolled (flaked)) samples were removed for later sensory and GC-MS analysis of the flavor components. Mean taste panel scores from a trained taste panel were calculated according to attributes (cereal, burnt, toasted, floury, and yeasty). Attributes were generally similar for both KDHO and flaked oats except in the yeasty attributes. Panelists were able to differentiate between groats, KDHO, and flaked oats (raw oats were not included). The largest effects of heat processing were found for the attributes toasted and yeasty aroma; toasted, cereal, and yeasty flavor; and toasted and yeasty aftertaste. A multi-organoleptic sensor analyzer was able to differentiate all samples when the output was subjected to discriminant function analysis. A reintroduced sample was recognized with a confidence level better than 96%. Solid-phase microextraction (SPME) of headspace followed by GC--MS was used to identify volatiles after either dry or slurry heating. Several SPME fiber types were evaluated as to their ability to sorb oat volatiles. A 100-microm poly(dimethylsiloxane) SPME fiber was found to provide the best adsorption profile as measured by number of compounds sorbed and peak area response. A range of alcohols, aldehydes, alkyl benzenes, dienes, and ketones was identified in the processed samples.  相似文献   

6.
Sprout damage of oats can occur when mature grain is left in the field after maturity and rainfall induces the germination process in the seeds. Although characteristics of sprout damage have been described thoroughly in many grains including wheat, rye, triticale, and barley, such characteristics have not been identified in oats. During a field study of oat quality, one site exhibited much higher rates of groat breakage during dehulling than other sites. Determination of falling number values on groat flour and a visual inspection of the grain suggested that the higher rates of groat breakage were associated with sprout damage. This hypothesis was confirmed with artificially sprouted oats, where sprouted grain exhibited lower falling numbers and lower stirring number values, suggesting increased α‐amylase activity in the sprouted oats. Sprouted oats exhibited much more breakage during dehulling, decreased β‐glucan concentration, and decreased β‐glucan integrity, as evaluated from the viscosity of steamed groat flour slurries. We suggest that the increased breakage was a result of the weakening of cell walls, as evidenced by the loss of β‐glucan concentration and integrity.  相似文献   

7.
Drying process plays a fundamental role in pasta making. The greatest number of studies have been focused on the optimization of drying conditions for semolina pasta, and the obtained results have been applied in a similar way on pasta made up of nonconventional raw materials without considering a processing optimization. The aim of this research was to evaluate the influence of different drying treatments (low, medium, and high temperature) on the quality of uncooked and cooked soft wheat pasta enriched with oat flour. Results of total organic matter and dried residue showed no significant difference between samples dried by medium and high temperature treatments. Moreover, these last samples showed a slight improvement in cooking quality over samples dried at low temperature (total organic matter results were 1.31 versus 1.66 g/100 g of dried pasta). This study revealed that the improvement of cooking quality of pasta enriched with oat flour did not require the application of high drying temperature (>80°C) that involves a considerable consumption of energy and could favor the development of a Maillard reaction, decreasing quality characteristics of this kind of product.  相似文献   

8.
Following a period of declining food use, oats are now increasing in importance because of perceived nutritional benefits. The pasting properties of oat starch were regarded as similar to those of other cereal starches until the development of instruments with a more rapid mixing system than the amylograph showed characteristic differences in oats. These differences in pasting properties offer opportunities for novel products in both food and industrial areas. The structure, composition, and pasting properties of oat starch are reviewed, with particular emphasis on methods of measurement. Future directions of research in this area are suggested.  相似文献   

9.
The baking properties of oats are poor, mainly due to the lack of gluten matrix and hence the surface properties of the aqueous phase are crucial for the gas retention in oat dough. Our aim was to study the composition and foaming properties of the water‐soluble fraction from differently processed oats. A water extract from kilned oats contained nonpolar triglycerides and had poor foaming properties, whereas removing lipids with hexane extraction improved the foaming capacity and foam stability. A water extract from supercritical carbon dioxide extracted oats (CO2‐oats) was free from nonpolar lipids and had good foam stability and excellent foaming capacity. Moreover, oat lipid‐binding proteins, tryptophanins, were highly concentrated in the CO2‐oats‐derived foam and apparently played an important role in the foam structure. Supplementing CO2‐oats extract with small quantities (<0.05%) of nonpolar lipids of oats destructed its foaming properties. In a preliminary baking trial, the addition of the nonpolar lipids to CO2‐oats and wheat‐starch‐based baking recipes resulted in baked goods with reduced volume. The study showed that nonpolar triglycerides were present in the aqueous phase of oat in a quantity that impaired foaming. Moreover, this was the first study showing that tryptophanins, lipid‐binding proteins of oats, were highly concentrated in foams prepared of oats free of water‐extractable nonpolar lipids. In conclusion, tryptophanins can be considered as the foam‐active proteins of oats that prevent the lipid‐induced destabilization of foam structures which could improve the baking properties of oats.  相似文献   

10.
While consumption of diets high in fiber is perceived to result in undesirable gastrointestinal symptoms, the fermentation of undigested carbohydrate in the large intestine may, in fact, have beneficial health effects. In this study, we compared the effects of oats, barley, and their extracts with a glucose control for 24 hr on breath hydrogen and methane production as a marker of colonic fermentation and also assessed gastrointestinal symptoms. Nine men and 11 women (35–57 yr) consumed 1 g/kg of body weight of carbohydrate as glucose or 0.66 g/kg of body weight sugar and 0.33 g/kg of body weight as oat bran, barley flour, oat extract, or barley extract (Nu‐trimX) in a Latin square design. Expired alveolar breath samples were collected after instruction at fasting, 2, 4, 5, 6, 7, 8, 9, 10, and 24 hr after consumption of the test meals. All test meals increased breath hydrogen and methane (both P < 0.0001). Hydrogen, but not methane, responses to barley, oats, and extracts of each were higher (barley > oats, P < 0.05) than responses to glucose (P < 0.0001). Reported gastrointestinal symptoms were not related to specific test meals. Oats and barley, as well as their extracts, can be consumed in greater amounts by Americans to increase soluble fiber and lower fat intake, and thus lower risk factors for chronic disease.  相似文献   

11.
The extractability and molecular weight of β-glucan in oat bran, oat bran muffins, and oat porridge and the changes taking place during processing and storage were studied. The β-glucan was extracted using hot water and a thermostable α-amylase and by an in vitro system that simulated human digestion. Molecular weight (MW) of the extracted β-glucan was determined using high-performance size-exclusion chromatography. Hot-water treatment extracted 50–70% of total β-glucan in oat bran samples and rolled oats. The chromatographic peak MW of extracted β-glucan was in the 1.4–1.8 × 106 range. Using the in vitro digestion system, 12–33% of total β-glucan in bran and rolled oats was solubilized, and peak MW was in the same range as β-glucan extracted by hot-water treatment. In muffins, 30–85% of total β-glucan was solubilized by in vitro digestion, with a major difference in extractability among muffins from different recipes. Peak MW of extracted β-glucan was lower in all muffins when compared to original bran. During frozen storage, extractable β-glucan decreased by >50% in all muffins, but no change in peak MW of extracted β-glucan was detected.  相似文献   

12.
This study evaluated effects of oats (Avena sativa L.) and grazing vetch (Vicia dasycarpa L.), bicultures, in rotation with summer maize (Zea mays), on soil organic matter fractions and activities of selected enzymes. The trial was initiated in April 2009. The treatments were 100% oat, 100% vetch, 90% oat + 10% vetch, 70% oat + 30% vetch, 50% oat + 50% vetch, and weedy fallow, in a randomized complete block design (RCBD) with three replications. Soil samples were collected in October 2011, from the 0–5 and 5–20 cm depths, and analyzed for total carbon (C), particulate organic matter (POM), water-soluble carbon (WSC), microbial biomass carbon (MBC) and activities of selected enzymes. Total C was higher in bicultures, particularly the 70% oat + 30% vetch, and 100% vetch than in 100% oats and the control. The greatest MBC, WSC, dehydrogenase, aryl-sulphatase and phosphomonoesterase activities were in the 70% oat + 30% vetch biculture, and declined where the proportion of oats or vetch was higher. Increasing proportions of vetch resulted in increases in urease and β-glucosidase activity and decrease in POM. The findings suggested that, in addition to increased maize yields, bicultures of oats and vetch also have synergistic effects on soil carbon pools and enzyme activities, with potential benefits of improved soil physical condition and nutrient cycling compared with the individual crops, under warm temperate conditions.  相似文献   

13.
This study was designed to compare the glucose, insulin, and glucagon responses to consumption of high‐soluble β‐glucan compounds from oats and barley. After an initial medical evaluation that included blood and urine testing, 11 men and 11 women, nondiabetics, 35–57 years, were selected. Subjects consumed a controlled diet for three days. On the third day of five successive periods, subjects consumed 1 g/kg of body weight of carbohydrate as glucose or 0.66 g/kg of body weight pudding (predominantly sucrose) and 0.33 g/kg of body weight as oat bran, barley flour, oat or barley extract (Nu‐trimX) in a Latin square design. Order of treatment was randomly assigned. Glycemic responses were calculated using the trapezoid method. Data were analyzed using mixed procedure analysis of variance program. Glucose responses to oats, barley, and both extracts, and areas under the curve were significantly lower than responses to the glucose solution (P < 0.0001). Insulin responses for the barley extract were lowest and were significantly lower than for glucose solution. Oat and barley extracts retain the beneficial effects of the grains from which they are extracted. High‐soluble fiber barley is more effective than standard oats. Oat and barley carbohydrate‐based fat substitutes can provide a useful addition to menus to control plasma glucose responses.  相似文献   

14.
Maize Starch Yield Calibrations with Near Infrared Reflectance   总被引:1,自引:0,他引:1  
Maize starch yield is affected by variety, environmental growing conditions, and drying conditions. One-hundred gram starch yield tests that predict actual wet milling starch yield were used as a reference method for developing an extractable starch calibration on a NIRSystems Model 6500 spectrophotometer. A maize starch yield calibration was developed from 940 samples and used to predict a validation set of 304 samples. It had a standard error of prediction (SEP) of 1·06, a coefficient of determination r2 of 0·77 and a ratio of performance to deviations (rpd) of 2·1. This indicates about 95% of similar samples could have starch yield predicted by near-infrared reflectance within about±2·1%. The calibration should be successful in segregating maize lots for high and low starch yield percentages.  相似文献   

15.
Germination and subsequent drying of oat produced significantly different sensory profiles depending on processing parameters such as drying speed and temperature profile. The most salient sensory attributes for processed oat were roasted odor and flavor, sweet taste, intense odor, intense aftertaste, and hard, crisp, brittle texture (P < 0.05). High temperatures (>85°C) were necessary to produce these sensory attributes, and quick drying after germination resulted in higher levels of intensity of favorable sensory attributes. The total amount of volatile compounds was higher in native (ungerminated) oat than in processed oat. During germination, and particularly during the drying treatment, the profile of volatile compounds changed. The most abundant volatile compounds responsible for odor were dimethyl sulfide, hexanal, pentanal, and iso butanal. The relative amount of dimethyl sulfide increased as a function of temperature in drying, whereas hexanal, pentanal, and isobutanal disappeared during heating, as did several other small ketones, alcohols, and esters. The germinated oat dried at high temperatures (65–93°C and 65–85°C) was perceived as being roasted, sweet, and nutty. Sensory and instrumental profile analyses of selected volatile compounds using partial least squares (PLS) regression techniques showed that these sensory attributes were clearly related to dimethyl sulfides and isobutanol. A moist and earthy odor was related to cymene, limonene, and isobutanal. Phenolic compounds significantly influenced oat flavor, whereas lipids had a negligible effect.  相似文献   

16.
Test weight or bulk density of oats (Avena sativa L.) has a major influence on the monetary value of oat grain. We hypothesize that test weight can be attributed to grain density and packing efficiency. We have measured oat grain volume and density by a sand‐displacement method and derived the packing factor for six oat cultivars grown in three environments. Volumes of individual grains were 31–38 mm3 and were highly correlated with grain mass. Grain densities were 0.96–1.03 g/cm3. Packing efficiency, defined as the space proportion occupied by the grains, was 53–55%. Regression analysis suggested that 78% of the variation in test weight could be attributed to grain density. Size fractionation of grain by sieving and analysis by digital image analysis indicated that smaller grains within an oat sample packed more efficiently than larger grains and larger grains in a sample were less dense than the smaller grains. Analysis of oat grain components indicated groat densities were ≈1.29 g/cm3 and hull densities were ≈0.69 g/cm3. The difference in densities between groat and hull provide a physical basis for the recognized relationship between groat percentage and test weight.  相似文献   

17.
The previously found wide range in the ratios of avenin or methanol-precipitated fractions to residual proteins was revisited by studying 75 oat varieties, mainly representing landraces from Finland, and included old varieties or selections, cv. Kytö, synthetic hexaploid oats and an Avena strigosa line (HA 71–87). The means of the fraction ratios ranged from 4.17 to 6.46 with significant differences. Samples of 10 narrow-ratio and 10 wide-ratio oats were compared more closely. The wide-ratio sample had significantly higher total protein content and significantly lower content of the methanol-precipitated protein fraction. Therefore, both fractions in general appear to contribute to the ratio of the protein fractions. The wide-ratio sample had significantly lower grain mass and husk-free karyopsis mass. Samples of the extreme ends in the ratios of the protein fractions showed different electrophoretic protein patterns, which was also seen in samples representing the same population of origin. It is evident that polymorphisms in the protein fractions would allow breeding of oat cultivars showing further lowering of proteins putatively toxic to coeliacs assuming oats contain these toxic proteins.  相似文献   

18.
The aim of the present study was to investigate effects of debranching, autoclaving‐storing cycles, and drying processes (oven‐drying or freeze‐drying) on RS contents, thermal, pasting, and functional properties of high‐amylose maize starches (Hylon V and Hylon VII). The resistant starch (RS) contents increased (≤57.8%) with increasing autoclaving‐storing cycles. RS contents of oven‐dried samples were higher than those of freeze‐dried samples due to ongoing retrogradation of starch during oven drying at 50°C. Debranching caused a significant decrease in peak transition temperature and enthalpy values as compared with native starches. Solubility and water binding values of RS preparations were higher than those of native starches. Addition of native and autoclaved samples had improving effect on emulsion properties of albumin. Cold viscosity values of oven‐dried samples were lower as compared with freeze‐dried samples; this might be due to higher number of H‐bonds in the oven‐dried samples expected to be formed during drying. Debranching and autoclaving‐storing cycles caused decreases in peak, breakdown, and final viscosity values. The results of present study showed that debranching and heat treatments increased the RS contents and improved the functional properties of high‐amylose maize starches.  相似文献   

19.
Changes in starch at the molecular level during high‐temperature (HT) drying of pasta were studied with differential scanning calorimetry (DSC). Pasta was manufactured from durum wheat semolina into the shape of spaghetti on a pilot‐plant installation. The HT phase (100°C) was applied at relatively high (27 g/100 g, wb), intermediate (20 g/100 g), and low (15 g/100 g) product moisture, respectively. Spaghetti dried at 55°C served as reference samples. The changes in the thermal properties of starch during drying were dependent on the drying conditions. The gelatinization enthalpy of pasta dried at 55°C was reduced by 30% during drying, which indicates a partial melting of the starch crystallites. With the beginning of the HT phase, the gelatinization enthalpy increased to final values that were close to or higher than those of freshly extruded pasta. In general, HT drying of pasta induced a broadening of the gelatinization range. Starch crystallinity remained unchanged during extrusion and drying at HT. Based on a state diagram of starch and on DSC measurements of pasta during drying, it is hypothesized that HT drying favors molecular rearrangements of starch polymers at the double helical level.  相似文献   

20.
The intestinal contents viscosities of oat-based breakfast cereals and muffins were examined. Male Sprague-Dawley rats were adapted for four days to a semipurified diet (AIN-76A). Following an overnight fast, the animals were meal-fed 5 g of either the AIN-76A diet (containing 5% cellulose), the AIN-76A diet containing 2% guar gum, whole-grain oat flour, one of five cereals (corn flakes, cooked oatmeal, uncooked oatmeal, cooked oat bran, or Cheerios), or one of two types of muffins (containing whole-grain oat flour or oatmeal). Two hours after presentation of the meal, the animals were killed, the small intestines removed, and the contents collected. The contents were centrifuged, and the viscosity values of the undiluted supernatants were determined. The supernatant viscosity from rats fed the AIN-76A diet was negligible (<5 mPa·sec), whereas that from rats fed guar gum was high (396 ± 117 mPa·sec). Of the cereals fed, corn flakes resulted in the lowest viscosity (<5 mPa·sec). However, all oat-based cereals resulted in high intestinal contents supernatant viscosity levels (cooked oatmeal 368 ± 128, uncooked oatmeal 307 ± 107, cooked oat bran 301 ± 85, Cheerios 199 ± 58, mPa·sec) with no statistically significant differences. The intestinal contents viscosity values for the whole-grain oat flour muffin and oatmeal muffin were 233 ± 52 and 111 ± 26 mPa·sec, respectively, a statistically significant difference (P < 0.05). This suggests that the form of the oat within a food may influence the degree of viscosity produced within the small intestine after that food is consumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号