首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to develop a ready‐to‐eat extruded food using a single‐screw laboratory extruder. Blends of Indian barley and rice were used as the ingredients for extrusion. The effect of extrusion variables and barley‐to‐rice ratio on properties like expansion ratio, bulk density, water absorption index, hardness, β‐glucan, L*, a*, b* values, and pasting characteristics of extruded products were studied. A central composite rotatable design was used to evaluate the effects of operating variables: die temperature (150–200°C), initial feed moisture content (20–40%), screw speed (90–110 rpm), and barley flour (10–30%) on properties like expansion ratio, bulk density, water absorption index (WAI), hardness, β‐glucan, L*, a*, b* values, and sensory and pasting characteristics of extruded products. Die temperature >175°C and feed moisture <30% resulted in a steep increase in expansion ratio and a decrease in bulk density. Barley flour content of 10% and feed moisture content of <20% resulted in an increased hardness value. When barley flour content was 30–40% and feed moisture content was <20%, a steep increase in the WAI was noticed. Viscosity values of extruded products were far less than those of corresponding unprocessed counterparts as evaluated. Rapid visco analysis indicated that the extruded blend starches were partially pregelatinized as a result of the extrusion process. Sensory scores indicated that barley flour content at 20%, feed moisture content at 30%, and die temperature at 175°C resulted in an acceptable product. The prepared product was roasted in oil using a particular spice mix and its sensory and nutritional properties were studied.  相似文献   

2.
Wheat flour with 0.3% (w/w) thiamin was extruded on a twin‐screw laboratory‐scale extruder (19‐mm barrel) at lower temperatures and expanded using carbon dioxide (CO2) gas at 150 psi. Extrusion conditions were die temperature of 80°C and screw speed range of 300–400 rpm. Control samples were extruded at a die temperature of 150°C and screw speed range of 200–300 rpm. Dough moisture content was 22% in control samples and 22 and 25% in CO2 samples. Expansion ratio, bulk density, WAI, and %WSI were compared between control and treatment. CO2 injection did not significantly increase expansion ratio. Bulk densities in the CO2 extruded samples decreased when feed moisture decreased from 25 to 22%. The products using CO2 had lower WAI values than products puffed without CO2 at higher temperatures. The mean residence time was longer in CO2 screw configurations than in conventional screw configurations. Thiamin losses were 10–16% in the control samples. With CO2, thiamin losses were 3–11% at 22% feed moisture, compared with losses of 24–34% at 25% moisture. Unlike typical high‐temperature extrusion, thiamin loss in the low‐temperature samples decreased with increasing screw speed. Results indicate that thiamin loss at lower extrusion temperatures with CO2 injection is highly dependent on moisture content.  相似文献   

3.
We have modeled a rice extrusion process focusing specifically on the starch gelatinization and water solubility index (WSI) as a function of extrusion system and process parameters. Using a twin‐screw extruder, we examined in detail the effect of screw speed (350–580 rpm), barrel temperature, different screw configurations, and moisture content of rice flour on both extrusion system parameters (product temperature, specific mechanical energy [SME], and residence time distribution [RTD]) and extrudate characteristics (expansion, density, WSI, and water absorption index [WAI]). Changes in WSI were monitored to reveal a relationship between the reaction kinetics during extrusion and WSI. Reaction kinetics models were developed to predict WSI during extrusion. WSI followed a pseudo first‐order reaction kinetics model. It became apparent that the rate constant is a function of both temperature and SME. We have developed an adaptation of the kinetic model based on the Arrhenius equation that shows better correlations with SME and distinguishes data from different screw configurations. This adaptation of the model improved predictability of WSI, thereby linking the extrusion conditions with the extruded product properties.  相似文献   

4.
The effects of added calcium hydroxide (0.0, 0.15, 0.25, and 0.35%) and processing conditions, feed moisture content (mc) (16, 18, and 20%) and barrel temperature (130 and 150°C) on characteristics of corn meal extrudates were studied. Extruder screw speed was maintained at 130 rpm. Corn meal was extruded with a single-screw extruder (Brabender model GNF 1014/2) with a screw compression ratio of 3:1. The highest values (P < 0.05) for radial expansion and the lowest values for density and breaking force of extrudates were found for the treatment with 0.00% calcium hydroxide extruded at 16% feed mc and 130°C barrel temperature. This treatment was statistically different from the other treatments. Best values for radial expansion of samples extruded with added calcium hydroxide were for the samples with 0.15% calcium hydroxide at 18% feed mc and 130°C barrel temperature, followed by the sample with 0.35% calcium hydroxide at 16% feed mc and 130°C barrel temperature. Water absorption index and water solubility index were affected by calcium hydroxide and extrusion conditions evaluated. Extrudates had large numbers of flattened and sheared granules. Increases in calcium hydroxide increased extrudate yellowness. The combined action of calcium hydroxide and extrusion conditions completely modified the organized structure of the starch and suggest the formation of a starch-calcium complex (crystalline region). The texture of the extruded products was crispy after puffing.  相似文献   

5.
Corn distillers' dried grains with solubles (DDGS) was extruded with corn meal in a pilot plant single‐screw extruder at different extruder die temperatures (100, 120, and 150°C), levels of DDGS (0, 10, 20, and 30%) and initial moisture contents (11, 15, and 20% wb). In general, there was a decrease in water absorption index (WAI), water solubility index (WSI), radial expansion, and L* value with an increase in DDGS level, whereas a* value and bulk density increased. Increase in extruder die temperature resulted in an increase in WSI and WAI but a decrease in L* and bulk density. Peak load was highest at 30% DDGS as compared with 0, 10, and 20% DDGS extrudates. Die temperature of 120°C and initial moisture content of 20% resulted in least peak load. The a* value remained unaffected by changes in extruder die temperature. Radial expansion was highest at extruder die temperature of 120°C. Maximum WAI, WSI, radial expansion, and L* value were obtained at 15% initial moisture content. An increase in initial moisture content, in general, decreased L* value and bulk density but increased a* value of extrudates.  相似文献   

6.
Corn masa by‐product streams are high in fiber and are amenable for utilization in livestock feed rations. This approach is a potentially viable alternative to landfilling, the traditional disposal method for these processing residues. Suspended solids were separated from a masa processing waste stream, blended with soybean meal at four levels (0, 10, 20, and 30% wb), and extruded in a laboratory‐scale extruder at speeds of 50 rpm (5.24 rad/sec) and 100 rpm (10.47 rad/sec) with temperature profiles of 80‐90‐100°C and 100‐110‐120°C. Processing conditions, including dough and die temperatures, drive torque, specific mechanical energy consumption, product and feed material throughput rates, dough apparent viscosity, and dough density, were monitored during extrusion. The resulting products were subjected to physical and nutritional characterization to determine the effects of processing conditions for these blends. Extrudate analysis included moisture content, water activity, crude protein, in vitro protein digestibility, crude fat, ash, product diameter, expansion ratios, unit and true density, color, water absorption and solubility, and durability. All blends were suitable for extrusion at the processing conditions used. Blend ratio had little effect on either processing parameters or extrudate properties; extrusion temperature and screw speed, on the other hand, significantly affected both processing and product properties.  相似文献   

7.
The influence of added fatty acids on extrusion cooking of corn grits and extrudate properties was studied. Samples with three average corn grits particle sizes were processed in a twin-screw extruder; fatty acids content (0.2–0.8%, wb) varied, and experimental conditions were kept constant (moisture content 18.4% wb, barrel temperature 150°C, screw speed 165 rpm). The effect of adding fatty acids was studied by analyzing water solubility and absorption indices, expansion indices, and mechanical (puncture test) and structural (computerized image analysis) extrudate properties. When fatty acids were added, water solubility and absorption indices decreased, radial expansion index decreased, longitudinal expansion index increased, number of cells increased, and mechanical resistance of extrudates decreased. The influence of added fatty acids was attributed to the formation of fatty acids-amylose complexes.  相似文献   

8.
Corn grits spiked with fumonisin B1 (FB1) at a level of 5 μg/g were extrusion cooked in a corotating twin-screw extruder at different temperatures (140, 160, 180, and 200°C) and screw speeds (40, 80, 120, and 160 rpm). Good recoveries of FB1 were obtained from the nonextruded as well as the extruded grits by using high-performance liquid chromatography. Both the barrel temperature and the screw speed significantly (P ≤ 0.05) affected the extent of fumonisin reduction in extruded grits. As expected, the FB1 recovered decreased with an increase in temperature and a decrease in screw speed. The amount of FB1 lost from cooking grits at the different extrusion parameters used in this study ranged from 34 to 95%. About 46–76% of the spiked FB1 was lost when the grits were cooked at temperatures and screw speeds that resulted in acceptable product expansion and color.  相似文献   

9.
Rice hulls were pretreated with an alkaline (pH 11.5) solution of hydrogen peroxide (1%) and then extruded. Pretreatment of rice hulls (4% db) at 50°C for 12 hr promoted 94.4% silica reduction, caused lignin solubilization and increased water absorption index (54%) and swollen volume (44%). The effects of temperature (125, 175, and 225°C), moisture content (25, 30, and 35%) and screw speed (120, 140, and 160 rpm) on water absorption and swollen volume of rice hulls fiber were evaluated after extrusion in a single-screw extruder. Operational conditions that produced the most modified product with regard to the functional properties were: 125°C, 35% moisture, and 120 rpm. Extruded fiber had a water absorption index 95% higher and swollen volume 138% higher than the unprocessed material. Microscopic examination showed a slight effect on the hulls epidermis after pretreatment, while extrusion promoted cellular structure disruption.  相似文献   

10.
Rice flour (37% moisture content) was used to examine the effects of feed rate and screw speed on the specific energy input during single-screw extrusion cooking. Torque, raised by decreasing screw speed or increasing feed rate, was found to be a power law function of the ratio of feed rate to screw speed (Fr/Ss) with r2 > 0.94. Specific mechanical energy (SME) calculated from torque also was a power law function of Fr/Ss with r2 >0.84 and negative power law indices. The SME obtained was in the 225–481 kJ/kg range. Thus the extruder can be considered low shear. Increasing SME raised the die temperature and decreased both intrinsic viscosity and water absorption index (WAI). The degree of gelatinization and intrinsic viscosity of extrudates also were power law functions of Fr/Ss. The intrinsic viscosity correlated well with the degree of gelatinization, WAI, and cooking loss, and appeared to be a good index of the extrudate properties. Different screw profiles also affect torque measurement.  相似文献   

11.
Grains of two regular and two waxy barley cultivars were milled into break and reduction stream flours using a wheat milling mill, granulated to facilitate feeding and flow through the barrel, and extruded to form expanded products using a modified laboratory single‐screw extruder. As moisture content of barley granules decreased from 21 to 17%, the expansion index of extrudates increased from 1.81 to 2.68, while apparent modulus of compression work (AMCW) decreased from 17.1 × 104 to 7.8 × 104 N/m2. Break stream flours of both regular and waxy barley produced extrudates with higher expansion index (2.72–3.02), higher water absorption index (WAI), and lower AMCW than extrudates from reduction stream flours. Extrudates produced from regular barley had generally higher expansion and lower density than those produced from waxy barley. The specific mechanical energy (SME) was greater during extrusion of regular than of waxy barley. Barrel temperatures of 130, 150, and 170°C for the feeding, compression, and metering sections, respectively, resulted in higher SME, higher expansion index, lower water absorption index and lower AMCW of extrudates compared with a constant extruder barrel temperature of 160°C. Increased screw speed generally resulted in larger expansion index and increased WAI of extrudates. With increased feed rate from 89 to 96 g/min, the expansion index of extrudates decreased from 3.20 to 2.78 in regular barley and 3.23 to 2.72 in waxy barley, and harder extrudates were produced.  相似文献   

12.
Corn starch was extruded with a corotating twin-screw extruder (24:1 L/D ratio, 31-mm screw diameter) and supercritical CO2 was injected as a blowing agent. The effects of barrel temperature (80–90°C), screw speed (150–250 rpm), and water injection (30–54 g/min) on specific mechanical energy (SME) input for the process and the physical properties of extrudates, such as expansion ratio, water absorption (WA), water solubility (WS), breaking stress, and elastic modulus, were examined using a response surface methodology. Barrel temperature had the greatest effect on physical properties of extrudates but not on SME input, whereas screw speed and water injection had significant effects on SME input. Extrudates had a smooth surface, and air cells were uniform and closed, providing low WA and WS. Using superimposed contour plots, optimum barrel temperature, screw speed, and water injection rate, based on maximum expansion ratio and minimum SME input, were 94–96°C, 155–175 rpm, and 36–39 g/min, respectively.  相似文献   

13.
A fractional factorial design with a replicated central composite point was used to investigate the effects of extrusion processing on physical properties of distillers dried grains with solubles (DDGS) based aquafeeds using a twin‐screw extruder. Extrusion cooking trials were performed with a nutritionally balanced ingredient blend for Nile tilapia, with two levels of screw speed (350 and 450 rpm), two levels of extruder water (0.236 and 0.302 kg/min), and two levels of conditioner steam (0.1 and 0.15 kg/min). The central point was 400 rpm screw speed, 0.271 kg/min extruder water, and 0.12 kg/min conditioner steam. Effects of these processing conditions on extrudate characteristics were extensively analyzed and included moisture content, water activity, thermal properties, expansion ratio, unit density, bulk density, color, water stability, sinking velocity, water absorption and solubility indices, and pellet durability index. Increasing the extruder water and conditioner steam resulted in a 5.3% decrease and nearly 8.6% rise in mass flow rate, respectively. As screw speed increased from 350 to 400 rpm, water stability and water activity increased by 13 and 58%, respectively. Increasing extruder water from 0.236 to 0.302 kg/min led to a significant increase in water stability by 12.5% and decreases in water absorption index, water activity, and expansion ratio by 13, 21, and 5.5%, respectively. As conditioner steam increased from 0.1 to 0.15 kg/min, sinking velocity and water absorption index decreased by 25 and 15%, respectively. Increasing conditioner steam from 0.1 to 0.12 kg/min resulted in 20, 5.5, 10, and 3% decreases in moisture content of the extrudates, brightness (L*), water stability, and expansion ratio, respectively. It also increased bulk density by 5.8% and unit density by 4.2%. Overall, all trials produced viable extrudates with properties appropriate for Nile tilapia feeding.  相似文献   

14.
《Cereal Chemistry》2017,94(3):385-391
Extrusion expansion characteristics of commercially available whole flours from three green pea varieties (Ariel, Aragorn, and Daytona) and three yellow pea varieties (Carousel, Treasure, and Jetset) were investigated with a corotating twin‐screw extruder. Feed moisture content was kept constant at 15 ± 0.5% (wb). Two barrel temperature levels of 140 and 160°C and three screw speed levels of 150, 200, and 250 rpm were studied. A round die with an opening of 3 mm was used. The radial expansion ratio (ER) of whole pea extrudates was 2.75–3.34. It was shown that the varieties had a significant impact on the expansion properties. Daytona green pea had a significantly greater ER compared with all other varieties (P < 0.05) within the conditions studied. ER was also found to have a positive linear correlation with screw speed. The microstructure of extrudate cross‐sections showed that the samples with greater expansion had more uniform and relatively small pore structure. The results show the importance of using the specific varieties of peas for optimum expansion during extrusion.  相似文献   

15.
The effects of moisture, screw speed, and barrel temperature on pasting behavior of refabricated rice grains were investigated in a corotating twin‐screw extruder with response surface methodology. The rice flour obtained from broken rice (≤1/8 of actual kernel size) of PR‐116 variety was used in the study. The screw speed was set at five levels between 49 and 150 rpm, barrel temperature between 59 and 110°C, and feed moisture between 31 and 45%. All pasting properties of refabricated grains evaluated—peak viscosity, hold viscosity, breakdown viscosity, final viscosity, and setback viscosity—were significantly (P < 0.01) affected by the three process variables. Barrel temperature was the most significant variable, with quadratic effect on all viscosity parameters. Response surface regression models were established to correlate the viscosity profile of refabricated rice grains to the process variables. The optimum moisture content, screw speed, and barrel temperature estimated by a response surface of desirability function for the production of refabricated rice were 36%, 130 rpm, and 89.5°C, respectively. Scanning electron microscopy also revealed that intermediate moisture and temperature along with high screw speed during extrusion could create a more realistic appearance of refabricated rice with less rupture of starch granules.  相似文献   

16.
Precooked pinto, navy, red, and black bean flours were extruded at different screw speeds (320, 380, and 440 rpm) with a twin‐screw extruder. Effect of speed on physical properties and in vitro starch hydrolysis was investigated. Increasing screw speeds reduced water activity, expansion index, and texture. Extrudates could not be obtained from pinto bean flour at 440 rpm because of the high shear effect. Water absorption index and water solubility index were not significantly affected by screw speed but were significantly higher than for unextruded precooked flour. A significant change in color was observed in navy beans, characterized by increasing b values on the Hunter color scale. Resistant starch ranged from 3.65 to 4.83% db and was not significantly affected by screw speed. Glycemic index of all extrudates was high, ranging from 81.3 to 86.9.  相似文献   

17.
Expansion during extrusion of starches is a unique phenomenon used extensively in the food industry. Sectional expansion index is usually determined as the ratio of the square of the diameter of the final extrudate to the square of diameter of the die through which the product is expelled. Longitudinal expansion index is calculated indirectly by doing a mass balance across the extruder and making an assumption for density of the dough melt in the die. The objective of this research was to determine the longitudinal expansion index experimentally using a die designed to measure the velocity of the melt dough inside the die. A tracer was induced to change the conductivity of the melt dough. The velocity inside the die was then determined by measuring the time of travel of a tracer with the help of electrical probes. Corn starch (25% amylose and 30% moisture content) was extruded in a twin-screw extruder at a barrel temperature of 140°C, screw speeds of 80, 120, and 160 rpm, and feed rates corresponding to the screw speeds varying from 7.35 to 13. 35 kg/hr. An inverse relationship was observed between the longitudinal expansion and the sectional expansion indices.  相似文献   

18.
An in‐line slit‐die viscometer (SDV) was used to measure the viscosity of a melt extrudate independently of the extruder operating conditions. The melt produced by extrusion of the corn grits followed a power law rheological model. The viscosity of the melt and extrusion parameters such as specific mechanical energy (SME), torque, and die pressure decreased with increasing moisture content. The degree of starch gelatinization increased when barrel temperature increased from 90 to 130°C. At temperatures higher than 130°C, most of the starch had gelatinized. The increase in barrel temperature, however, resulted in small changes in the apparent viscosity of the melt, until a maximum of ≈130°C. At a constant feed rate, SME increased and torque decreased when screw speed increased due to the shear thinning behavior of the melt. At a constant screw speed, the torque increased and SME decreased with increasing feed rate. This was due to a decrease in apparent viscosity of the melt at higher feed rates. SME is not an independent extrusion variable and should be used with caution either when predicting the effect of thermomechanical treatment of the product or as the key and only variable for controlling the food extrusion process.  相似文献   

19.
Sorghum (Sorghum bicolor (L.) Moench) grain was boiled or autoclaved in alkali, washed, drained, and dried into shelf-stable half-products (pellets). The pellets were deep-fat fried to produce a crunchy snack product. Effects of cooking time, drying method (pellet moisture content), and sorghum cultivar on unfried and fried pellets were evaluated. Increasing the alkaline cooking time from 30 to 60 min decreased the yield of the pellets from 96 to 84% (on a dry weight basis). Cooked sorghum dried at room temperature (24°C) for 18 hr, followed by oven-drying at 50°C for an additional 18 hr, produced pellets with a low moisture content (≤5%), that required a higher frying temperature (≥220°C). However, cooked sorghum dried at room temperature for 18 hr followed by oven-drying at 50°C for 5 hr produced pellets with 9% moisture and a lighterdensity highly acceptable product when fried at 220°C. Fat content of fried pellets averaged 18%. The optimum method for producing a light, crunchy, fried product was cooking for 60 min, drying to 9% moisture, and frying at 220°C. ATx631*Tx436, the hardest endosperm-texture sorghum used in the study, had the highest unfried and fried pellet yields. Dorado, an intermediate-to-soft endosperm-texture sorghum, and ATx Arg-1*Tx2907, a waxy sorghum, had lower yields. The fried pellets produced from Dorado and waxy sorghum (ATxArg-1*Tx2907) were more expanded than those produced from ATx631*Tx436.  相似文献   

20.
《Cereal Chemistry》2017,94(1):74-81
In Brazil, rice (Oryza sativa L.) and beans (Phaseolus vulgaris L.) are the basis of the population's diet, and their consumption together is a good strategy to improve protein biological value. The aim of this study was to produce extruded products with whole red bean (WRBF) and polished rice (PRF) flours and to evaluate the effects of extrusion temperature (T) and feed moisture content (FM) on technological properties and total phenolic compounds content. The extrudates were elaborated in a twin‐screw extruder following a 22 central composite rotatable design with FM (15–23%) and T (120–160°C) as independent variables. WRBF and PRF were used at a 1:3 ratio. Amino acid content and profile were evaluated in the optimum extrudate (produced at FM = 19% and T = 140°C). The total phenolic content identified in extruded products was provided by the red bean seed coat, and its quantification suggested the release of bound phenolics with the extrusion process (not temperature dependent). The extrusion of PRF and WRBF, in combination, produced extruded products of high protein quality, being complete in essential amino acids for the diets of people at least 48 months old. The results indicate that legume flours such as WRBF incorporated into rice flour can cause a positive impact on technological, nutritional, and functional quality of extrudates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号