首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of dogs vaccinated with a live attenuated CPV type 2 (Nobivac Intervet) vaccine to resist challenge with a current CPV2c isolate was investigated. Six SPF beagle dogs were given the minimum recommended course of vaccination, comprising a single inoculation of vaccine (Nobivac Lepto+Nobivac Pi) at 8-10 weeks of age followed 3 weeks later with a parvovirus vaccine in combination with distemper, adenovirus and parainfluenza virus (Nobivac DHPPi) and a repeat leptospirosis vaccine. Six control dogs were kept unvaccinated. All animals were challenged orally with a type 2c isolate of CPV and monitored for clinical signs, virus shedding, white blood cell fluctuations and serological responses. All vaccinated dogs were fully protected; showing no clinical signs nor shedding challenge virus in the faeces, in contrast to control animals, which displayed all the typical signs of infection with pathogenic CPV and shed challenge virus in the faeces.  相似文献   

2.
Pregnant ewes were vaccinated 1 month before parturition with mono or bivalent adenovirus vaccines. Vaccination resulted in increased levels of homologous and heterologous antibody in ewes, with corresponding increases in passive immunity of lambs. Challenge of lambs with homologous or heterologous virus at 21 days of age was associated with significant resistance to development of lesions in lambs challenged with homologous virus, and partial resistance in those challenged with heterologous virus. Bivalent vaccines gave comparable protection to challenge with both virus types.  相似文献   

3.
OBJECTIVE: To evaluate humoral immune responses of emus vaccinated with commercially available equine polyvalent or experimental monovalent eastern equine encephalomyelitis (EEE) virus and western equine encephalomyelitis (WEE) virus vaccines and to determine whether vaccinated emus were protected against challenge with EEE virus. DESIGN: Cohort study. ANIMALS: 25 emus. PROCEDURE: Birds were randomly assigned to groups (n = 5/group) and vaccinated with 1 of 2 commercially available polyvalent equine vaccines, a monovalent EEE virus vaccine, or a monovalent WEE virus vaccine or were not vaccinated. Neutralizing antibody responses against EEE and WEE viruses were examined at regular intervals for up to 9 months. All emus vaccinated with the equine vaccines and 2 unvaccinated control birds were challenged with EEE virus. An additional unvaccinated bird was housed with the control birds to assess the possibility of contact transmission. RESULTS: All 4 vaccines induced detectable neutralizing antibody titers, and all birds vaccinated with the equine vaccines were fully protected against an otherwise lethal dose of EEE virus. Unvaccinated challenged birds developed viremia (> 10(9) plaque-forming units/ml of blood) and shed virus in feces, oral secretions, and regurgitated material. The unvaccinated pen-mate became infected in the absence of mosquito vectors, presumably as a result of direct virus transmission between birds. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that emus infected with EEE virus develop a high-titer viremia and suggest that they may serve as important virus reservoirs. Infected emus shed EEE virus in secretions and excretions, making them a direct hazard to pen-mates and attending humans. Commercially available polyvalent equine vaccines protect emus against EEE virus infection.  相似文献   

4.
Eight puppies (group 1) were vaccinated once with a bivalent modified-live vaccine against infectious tracheobronchitis by the intranasal route and at the same time with an injectable trivalent vaccine against canine parvovirus, canine distemper virus and canine adenovirus; a second group of eight puppies (group 2) was vaccinated only with the intranasal bivalent vaccine, and a further eight puppies (group 3) were vaccinated only with the injectable trivalent vaccine. Three weeks later they were all challenged with wildtype Bordetella bronchiseptica and canine parainfluenza virus by the aerosol route, and their antibody responses to the five vaccine organisms were determined. Oronasal swabs were taken regularly before and after the challenge for the isolation of bacteria and viruses, and the puppies were observed for clinical signs for three weeks after the challenge. There were no significant differences in the puppies' titres against canine parvovirus, canine distemper virus and canine adenovirus type 2 between the groups vaccinated with or without the bivalent intranasal vaccine. After the challenge the mean clinical scores of the two groups vaccinated with the intranasal vaccine were nearly 90 per cent lower (P=0.001) than the mean score of the group vaccinated with only the trivalent injectable vaccine, and the puppies in this group all became culture-positive for B bronchiseptica and canine parainfluenza virus. There were only small differences between the rates of isolation of B bronchiseptica from groups 1, 2 and 3, but significantly lower yields of canine parainfluenza virus were isolated from groups 1 and 2 than from group 3.  相似文献   

5.
The protection elicited by a temperature-sensitive (Ts) mutant of Ornithobacterium rhinotracheale (ORT) vaccine against challenge with pathogenic strain was investigated. In Experiment 1, specific serologic response to ORT was detected in 12%-19% of Ts-vaccinated birds at 3 wk postvaccination by either drinking water or oculo-nasal instillation. At 7 days postchallenge, 100% of Ts-vaccinated turkeys of all groups were able to respond with an ORT-specific antibody response, but the control group was not, suggesting the potential of Ts strain to evoke immune protection. The study also revealed a statistically significant ability of the Ts strain to protect vaccinated turkeys against gross lesions caused by the pathogenic strain of ORT in treated groups vs. control. In Experiment 2, seroconversion was detected by enzyme-linked immunosorbent assay in birds after they were given the Ts strain in drinking water in field conditions. The results of the field study showed mean scores of gross lesions of nonvaccinated/challenged groups to be up to seven times higher than those of the vaccinated/challenged group. In addition, reisolation rates and quantification of ORT colonies per gram of lung tissue were significantly lower for vaccinated/challenged than for nonvaccinated/challenged turkeys. In conclusion, results from laboratory and field experiments suggest that use of the Ts mutant strain of ORT as a live vaccine would be a suitable method to evoke protection against ORT infection in turkeys.  相似文献   

6.
In this study, two highly pathogenic avian influenza (HPAI) H5N8 viruses were isolated from chicken and geese in 2018 and 2019 (Chicken/ME-2018 and Geese/Egypt/MG4/2019). The hemagglutinin and neuraminidase gene analyses revealed their close relatedness to the clade-2.3.4.4b H5N8 viruses isolated from Egypt and Eurasian countries. A monovalent inactivated oil-emulsion vaccine containing a reassortant virus with HA gene of the Chicken/ME-2018/H5N8 strain and a bivalent vaccine containing same reassortant virus plus a previously generated reassortant H5N1 strain (CK/Eg/RG-173CAL/17). The safety of both vaccines was evaluated in specific-pathogen-free (SPF) chickens. To evaluate the efficacy of the prepared vaccines, 2-week-old SPF chickens were vaccinated with 0.5 mL of a vaccine formula containing 108/EID50 /dose from each strain via the subcutaneous route. Vaccinated birds were challenged with either wild-type HPAI-H5N8 or H5N1 viruses separately at 3 weeks post-vaccine. Results revealed that both vaccines induced protective hemagglutination-inhibiting (HI) antibody titers as early as 2 weeks PV (≥5.0 log2). Vaccinated birds were protected clinically against both subtypes (100 % protection). HPAI-H5N1 virus shedding was significantly reduced in birds that were vaccinated with the bivalent vaccine; meanwhile, HPAI-H5N8 virus shedding was completely neutralized in both tracheal and cloacal swabs after 3 days post-infection in birds that had been vaccinated with either vaccine. In conclusion, the developed bivalent vaccine proved to be efficient in protecting chickens clinically and reduced virus shedding via the respiratory and digestive tracts. The applicability of the multivalent avian influenza vaccines further supported their value to facilitate vaccination programs in endemic countries.  相似文献   

7.
Efficacy of a bivalent vaccine against Marek's disease   总被引:1,自引:0,他引:1  
A bivalent vaccine was prepared by combining inactivated Marek's disease virus and turkey herpesvirus. The efficacy of this vaccine, compared to turkey herpesvirus and inactivated Marek's disease virus separately, was studied in unsexed White Leghorn chicks which were vaccinated at one day old and then challenged at 21 days old with fowl blood infected with virulent Marek's disease virus. The bivalent vaccine appreciably delayed mortality resulting from Marek's disease and elicited the highest protective efficacy as judged on the basis of Marek's disease-specific mortality and percentage occurrence of lesions. The occurrence, extent and severity of gross lymphomas and microscopic lymphoproliferative lesions in various organs of the bivalent vaccinated birds were less than in the other challenged groups. In addition, the level of viraemia remained consistently and significantly lower in the bivalent vaccinated birds.  相似文献   

8.
The efficacy of a bivalent inactivated vaccine against bluetongue virus (BTV) serotypes 2 (BTV-2) and 4 (BTV-4) was evaluated in cattle by general and local examination, serological follow-up, and challenge. Thirty-two 4-month-old calves were randomly allocated into 2 groups of 16 animals each. One group was vaccinated subcutaneously (s/c) with two injections of bivalent inactivated vaccine at a 28-day interval, and the second group was left unvaccinated and used as control. Sixty-five days after first vaccination, 8 vaccinated and 8 unvaccinated calves were s/c challenged with 1 mL of 6.2 Log10 TCID50/mL of an Italian field isolate of BTV serotype 2, while the remaining 8 vaccinated and 8 unvaccinated animals were challenged by 1 mL of 6.2 Log10 TCID50/mL of an Italian field isolate of BTV serotype 4. Three additional calves were included in the study and used as sentinels to confirm that no BTV was circulating locally. At the time of the challenge, only one vaccinated animal did not have neutralizing antibodies against BTV-4, while the remaining 15 showed titres of at least 1:10 for either BTV-2 or BTV-4. However, the BTV-2 component of the inactivated vaccine elicited a stronger immune response in terms of both the number of virus neutralization (VN) positive animals and antibody titres. After challenge, no animal showed signs of disease. Similarly, none of the vaccinated animals developed detectable viraemia while bluetongue virus serotype 2 and 4 titres were detected in the circulating blood of all unvaccinated animals, commencing on day 3 post-challenge and lasting 16 days. It is concluded that administration of the bivalent BTV-2 and BTV-4 inactivated vaccine resulted in a complete prevention of detectable viraemia in all calves when challenged with high doses of BTV-2 or BTV-4.  相似文献   

9.
Ewes (N = 7) and their lambs (N = 12) were vaccinated with a commercial modified live infectious bovine rhinotracheitis-parainfluenza type 3 virus vaccine. Both the vaccinated ewes and lambs and a group of unvaccinated ewes (N = 8) and their lambs (N = 13) were subsequently challenged with virulent parainfluenza type 3 virus. Although absolute immunity to infection and clinical response was not conferred, the clinical response was less severe in vaccinated lambs. Vaccinated animals also shed parainfluenza type 3 virus in nasal secretions for a shorter time than nonvaccinated animals. Some vaccinated lambs developed a persistent infectious bovine rhinotracheitis virus infection that was recrudesced by treatment with dexamethasone. It was concluded that vaccination was of benefit in reducing the severity of infection with parainfluenza type 3 virus. However, the inclusion of infectious bovine rhinotracheitis virus in a vaccine for sheep respiratory tract disease is highly questionable as it might increase the risk factor associated with vaccination. The consequences of the persistence of infectious bovine rhinotracheitis virus are now known.  相似文献   

10.
鸡新城疫病毒分离株与La Sota株灭活疫苗效力比较试验   总被引:1,自引:0,他引:1  
用NDV分离株及La Sota株为抗源液,经福尔马林灭活后,与油佐剂混合,分别制成分离株灭活苗、La Sota株灭活苗及分离株与La Sota株二价灭活苗。将这三种灭活疫苗分别免疫SPF鸡后,均获得100%抵抗NDV分离株及F48株强毒攻击的保护力;而用这3种灭活苗与La Sota活苗单独或联合使用,免疫带有ND母源抗体的普通鸡后,3种灭活苗的免疫效力不同,分离株灭活苗与价灭活苗对NDV分离株攻击的免疫保护效力明显优于La Sota灭活苗;灭活苗与活苗同时使用,其免疫效力明显优于单独使用灭活苗或活苗。  相似文献   

11.
OBJECTIVE: To determine whether a monovalent Leptospira borgpetersenii serovar hardjo (type hardjobovis) vaccine commercially available in Australia, New Zealand, Ireland, and the United Kingdom would protect cattle from renal colonization and urinary shedding when exposed to a US strain of Leptospira borgpetersenii serovar hardjo. ANIMALS: 24 Hereford heifers that lacked detectable antibodies against serovar hardjo. PROCEDURE: Heifers received 2 doses, 4 weeks apart, of the commercial hardjo vaccine (n = 8) or a monovalent US reference hardjo vaccine (8) or were not vaccinated (controls; 8). Heifers were challenged 16 weeks later by intraperitoneal inoculation or conjunctival instillation. Serum antibody titers were measured weekly, and urine samples were examined for leptospires. Heifers were euthanatized 11 to 14 weeks after challenge, and kidney tissue was examined for evidence of colonization. RESULTS: All 8 heifers vaccinated with the reference vaccine were found to be shedding leptospires in their urine and had evidence of renal colonization. All 4 control heifers challenged by conjunctival instillation and 2 of 4 control heifers challenged by intraperitoneal inoculation shed leptospires in their urine, and all 8 had evidence of renal colonization. In contrast, leptospires were not detected in the urine or tissues of any of the 8 heifers that received the commercial hardjo vaccine. Heifers that received the commercial hardjo vaccine had significantly higher antibody titers than did heifers that received the reference vaccine. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that cattle that received 2 doses of the commercial hardjo vaccine were protected against renal colonization and urinary shedding when challenged with L borgpetersenii serovar hardjo strain 203 four months after vaccination.  相似文献   

12.
This study investigated the efficacy of a bivalent swine influenza virus (SIV) vaccine in piglets challenged with a heterologous H1N1 SIV isolate. The ability of maternally derived antibodies (MDA) to provide protection against a heterologous challenge and the impact MDA have on vaccine efficacy were also evaluated. Forty-eight MDA(+) pigs and 48 MDA(-) pigs were assigned to 8 different groups. Vaccinated pigs received two doses of a bivalent SIV vaccine at 3 and 5 weeks of age. The infected pigs were challenged at 7 weeks of age with an H1N1 SIV strain heterologous to the H1N1 vaccine strain. Clinical signs, rectal temperature, macroscopic and microscopic lesions, virus excretion, serum and local antibody responses, and influenza-specific T-cell responses were measured. The bivalent SIV vaccine induced a high serum hemagglutination-inhibition (HI) antibody titer against the vaccine virus, but antibodies cross-reacted at a lower level to the challenge virus. This study determined that low serum HI antibodies to a challenge virus induced by vaccination with a heterologous virus provided protection demonstrated by clinical protection and reduced pneumonia and viral excretion. The vaccine was able to prime the local SIV-specific antibody response in the lower respiratory tract as well as inducing a systemic SIV-specific memory T-cell response. MDA alone were capable of suppressing fever subsequent to infection, but other parameters showed reduced protection against infection compared to vaccination. The presence of MDA at vaccination negatively impacted vaccine efficacy as fever and clinical signs were prolonged, and unexpectedly, SIV-induced pneumonia was increased compared to pigs vaccinated in the absence of MDA. MDA also suppressed the serum antibody response and the induction of SIV-specific memory T-cells following vaccination. The results of this study question the effectiveness of the current practice of generating increased MDA levels through sow vaccination in protecting piglets against disease.  相似文献   

13.
Dogs were successfully isolated for a period of either 52 or 64 weeks following vaccination with an inactivated, adjuvanted canine parvovirus-2 vaccine. Antibody persisted in all ten vaccinated dogs, although in one case by 52 weeks postvaccination only virus neutralizing antibody, and not hemagglutination-inhibiting antibody, could be detected. Sentinel unvaccinated dogs housed alongside the vaccinated dogs throughout the study remained free of canine parvovirus-2 antibody until challenged. Upon oral challenge with canine parvovirus-2 infected material all unvaccinated dogs developed one or more signs of canine parvovirus-2 disease, shed virus and developed antibody. None of the vaccinated dogs became overtly sick. Of the five vaccinated dogs challenged 52 weeks after vaccination, three shed virus and one showed a significant rise in antibody. At 64 weeks after vaccination only one of the five challenged dogs shed virus and showed a boost in antibody titer.  相似文献   

14.
Two experimental bovine respiratory syncytial virus (BRSV) challenge studies were undertaken to evaluate the efficacy of a single intranasal dose of a bivalent modified live vaccine containing BRSV in 3-week-old calves. In the first study, vaccine efficacy was evaluated in colostrum deprived (maternal antibody negative) calves 5, 10 and 21 days after vaccination. Nasal shedding of BRSV was significantly reduced in vaccinated calves challenged 10 or 21 days after vaccination. Virus excretion titres were also reduced in vaccinates challenged 5 days after vaccination but reduction in duration of shedding and total amount of virus shed were not statistically significant. Clinical disease after challenge in this study was mild. In the second study, vaccine efficacy was assessed in calves with maternal antibodies against BRSV by challenge 66 days post-vaccination. Vaccination significantly reduced nasal shedding after challenge and the severity of clinical disease was also reduced.  相似文献   

15.
Immunogenicity of Haemophilus paragallinarum serovar B strains.   总被引:1,自引:0,他引:1  
Immunogenicity of three Haemophilus paragallinarum serovar B strains was investigated in cross-protection tests using monovalent vaccines prepared from the B strains, as well as one strain each of serovars A and C. A bivalent vaccine composed of the serovar A and C strains also was used. In the studies with the monovalent vaccines, the immunogenicity of serovar B strains was different from that of serovar A and C strains, although only partial serovar B-specific protection with the three strains was observed. Chickens vaccinated with the bivalent vaccine protected against challenge with one serovar B strain, as well as serovar A and C strains, but not against the other two serovar B strains.  相似文献   

16.
OBJECTIVE: To evaluate the efficacy of a modified-live virus (MLV) combination vaccine containing type 1 and type 2 bovine viral diarrhea virus (BVDV) in providing fetal protection against challenge with heterologous type 1 and type 2 BVDV. DESIGN: Prospective study. ANIMALS: 55 heifers. PROCEDURE: Heifers were vaccinated with a commercial MLV combination vaccine or given a sham vaccine (sterile water) and bred 47 to 53 days later. Heifers were challenged with type 1 or type 2 BVDV on days 75 to 79 of gestation. Clinical signs of BVDV infection, presence of viremia, and WBC count were assessed for 14 days after challenge. Fetuses were collected on days 152 to 156 of gestation, and virus isolation was attempted from fetal tissues. RESULTS: Type 1 BVDV was not isolated in any fetuses from vaccinated heifers and was isolated in all fetuses from nonvaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated in 1 fetus from a vaccinated heifer and all fetuses from nonvaccinated heifers challenged with type 2 BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: A commercial MLV combination vaccine containing type 1 and type 2 BVDV given to the dam prior to breeding protected 100% of fetuses against type 1 BVDV infection and 95% of fetuses against type 2 BVDV infection. Use of a bivalent MLV vaccine in combination with a comprehensive BVDV control program should result in decreased incidence of persistent infection in calves and therefore minimize the risk of BVDV infection in the herd.  相似文献   

17.
Outbreaks of infectious bovine rhinotracheitis (IBR) have recently been observed in vaccinated feedlot calves in Alberta a few months post-arrival. To investigate the cause of these outbreaks, lung and tracheal tissues were collected from calves that died of IBR during a post-arrival outbreak of disease. Bovine herpesvirus-1 (BHV-1), the causative agent of IBR, was isolated from 6 out of 15 tissues. Of these 6 isolates, 5 failed to react with a monoclonal antibody specific for one of the epitopes on glycoprotein D, one of the most important antigens of BHV-1. The ability of one of these mutant BHV-1 isolates to cause disease in calves vaccinated with a modified-live IBR vaccine was assessed in an experimental challenge study. After one vaccination, the majority of the calves developed humoral and cellular immune responses. Secondary vaccination resulted in a substantially enhanced level of immunity in all animals. Three months after the second vaccination, calves were either challenged with one of the mutant isolates or with a conventional challenge strain of BHV-1. Regardless of the type of virus used for challenge, vaccinated calves experienced significantly (P < 0.05) less weight loss and temperature rises, had lower nasal scores, and shed less virus than non-vaccinated animals. The only statistically significant (P < 0.05) difference between the 2 challenge viruses was the amount of virus shed, which was higher in non-vaccinated calves challenged with the mutant virus than in those challenged with the conventional virus. These data show that calves vaccinated with a modified-live IBR vaccine are protected from challenge with either the mutant or the conventional virus.  相似文献   

18.
Four calves were infected with noncytopathic (NCP) New York-1 strain of bovine viral diarrhea virus (BVDV). During the observation period of one month the calves remained clinically normal but the virus was repeatedly recovered from their pharyngeal swabbings and blood. Thirty days following infection the four calves were vaccinated, together with two uninfected calves, with a modified-live vaccine containing cytopathic (CP) BVDV, infectious bovine rhinotracheitis virus and parainfluenza-3 virus. No detrimental effects were observed after vaccination. Forty-three days after vaccination the calves were challenged by exposure either with the CP TVM-2 strain or the NCP New York-1 strain of BVDV. The vaccinated calves remained healthy throughout the 60-day observation period.  相似文献   

19.
An adjuvanted vaccine containing inactivated equine influenza, herpesvirus antigens, and tetanus toxoid was administered to young seronegative foals of 8 months of age by deep intramuscular injection in the neck (Group A). The first two vaccinations were given 4 weeks apart. The third was administered 6 months later. Another group of foals (Group B) was vaccinated according to the same scheme at the same time with monovalent equine herpes virus (EHV) vaccine (EHV1.4) vaccine. Antibody responses to the equine influenza (single radial haemolysis; SRH) and tetanus (ToBi ELISA) components of the vaccines were examined from first vaccination until 1 year after the third vaccination. The influenza components of the combination vaccine induced high antibody titres at two weeks after the second vaccination whereafter titres declined until the time of the third vaccination. After the third vaccination, the titres rose rapidly again to remain high for at least 1 year. Antibody titres against tetanus peaked only after the third vaccination but remained high enough to offer protective immunity for at least 1 year. Foals vaccinated with monovalent EHV1.4 remained seronegative for influenza and tetanus throughout the study. Four and a half months after the third vaccination of groups A and B, a third group of animals was vaccinated twice with monovalent EHV1.4 vaccine 4 weeks apart (Group C). Two weeks after the administration of the second dose in the later group, all groups (A, B, C and an unvaccinated control group D) were challenged with EHV-4. Vaccinated foals (Group A, B, C) showed a clear reduction of clinical symptoms and virus excretion after EHV-4 challenge compared with the unvaccinated control foals. No difference could be demonstrated among the vaccinated groups, suggesting that the combination vaccine protects as well as the monovalent vaccine. In EHV1.4-vaccinated foals both antigenic fractions induced clear protection up to 6 months after vaccination (9). It can therefore be anticipated that the efficacy of the combination vaccine against EHV-1 challenge is similar to the efficacy against EHV-1 induced by EHV1.4 vaccination.  相似文献   

20.
Cross-protection between Haemophilus parasuis serovars 2 and 5 was examined in pigs using a bacterin based vaccine, and subsequently the safety and efficacy of a bivalent vaccine were evaluated. Upon intratracheal challenge of a serovar 2 or 5 strain, pigs immunized with a monovalent vaccine were protected against challenge with a homologous serovar strain, but not with a heterologous serovar strain. Immunization with a bivalent vaccine containing both serovars 2 and 5 bacterins conferred protection in pigs against lethal challenge with each of the serovar strains. A total of 86 pigs from two SPF herds were injected with the bivalent vaccine intramuscularly twice at a four-week interval. No adverse reactions following the vaccination were observed. On day 7 after the second vaccination, vaccinated and non-vaccinated control pigs from herd A were transferred to herd B, where Glasser's disease had broken out. Pigs in the control group developed clinical signs of the disease, and 6 of 8 (75%) pigs died until slaughter, in contrast with only 4 of 46 (9%) pigs in the vaccinated group. In herd C, where there was no outbreak of Glasser's disease, complement fixation antibody titer was raised only in the vaccinated group. A challenge experiment on days 20 and 79 after the second vaccination showed that only the vaccinated pigs were protected. From these findings, the safety and efficacy of the bivalent vaccine were confirmed under laboratory and field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号