首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A procedure for determining the peak tubewell capacity required for irrigation of rice grown under shallow water submergence has been developed. The formula takes care of both the effective rainfall and the available canal water supply, and is based on dividing the planting period into small sub-periods. The area to be planted in each sub-period is decided by the decision rules which are formulated outside the model. The model is tested for the area served by a lateral canal in the Western Jamuna Canal Command. The suggested planting schedule results in reducing the peak tubewell capacity requirement by about 25% over the existing capacity requirement. The cost of irrigation is reduced as a result of efficient utilization of the installed tubewell capacity.  相似文献   

2.
Since its inception, in 1885 the Buckeye Irrigation Canal has delivered irrigation water in the Buckeye Valley, southwest of Phoenix, Arizona. Throughout its tenure the owners of the canal have consulted design professionals for its engineering needs. Early engineering in 1885 established canal alignments, delivery points and channel capacity. Until recently, the Buckeye Valley was a rural area relying on agricultural revenues to drive the local economy. Now, due to the recent housing market boom new homes started springing up like corn in September driving the existing open-channel laterals below grade into a patch work redesigned pipeline system. Because of these changes, professional construction managers are an enormous benefit to the Buckeye Water Conservation and Drainage District (BWCDD), the owner of the canal.As a result of this urbanization, contractors working for home developers are installing irrigation pipelines and systems with the focus of completing the project as quickly and economically as possible. Irrigation providers, on the other hand, focus on meeting the agricultural needs of their clients with consistent and uninterrupted water delivery. The services of a professional construction manager help both entities achieve their respective goals, shield BWCDD from construction of sub-par systems and risk, maintain uninterrupted service to growers and providing the technical expertise to communicate with both BWCDD and contractors.Construction managers provide a number of services to rural irrigation districts under-going urbanization. They team with an irrigation district by:
  • Understanding irrigation design concepts;
  • Understanding agricultural demands;
  • Providing a thorough knowledge of construction practices and standards;
  • Creating long-term design functionality;
  • Reducing stress on and increasing productivity of personnel;
  • Coordinating construction activities with water deliveries;
  • Verifying constructed facilities perform as designed, which reduces maintenance costs.
Construction managers represent an irrigation district in the field by:
  • Reviewing development plans for adherence to current construction standards and practices and coordinates construction schedules with water delivery needs;
  • Observing construction for proper installation;
  • Clarifying installers understanding of plans and specifications;
  • Coordinating interruptions in service;
  • Tracking multiple construction projects;
  • Explaining agricultural practices to contractor personnel;
  • Providing a single point of contact for construction related correspondence.
These “boots on the ground” create a local presence with a focus on the specific needs unique to an irrigation district. They provide a liaison while minimizing the impact to its growers.This paper will discuss the strain of urbanization on an irrigation district and the benefits of an engineering consulting firm to manage construction projects. The benefits include expertise, technical resources, design capability, coordination and inspection. Construction managers can help protect an irrigation district from being overwhelmed by rapid urbanization.  相似文献   

3.
A simulation study on alternative water management strategies was carried out for Sirsa Irrigation Circle in Haryana, covering an area of about 4800 km2. Results showed that crop evapotranspiration and soil salinity development under reduction in canal water supply and increase in groundwater use, are largely influenced by the amount and distribution of rainfall. Reduction in canal water supply by 25% during the rainy season is unlikely to have any adverse effect on the salinity development in the study area. Reduction in crop evapotranspiration due to decreased canal water supply can partly be compensated by the increase in groundwater use. Leaching of salts due to monsoon rains in the study area shows that groundwater of even relatively poor quality can be used for irrigation without excessive long-term build up of soil salinity under deep groundwater depth conditions. However, increased groundwater extraction without associated actions will not be very effective to solve the problem of rising groundwater levels.  相似文献   

4.
Evaluation of crop water stress index for LEPA irrigated corn   总被引:6,自引:0,他引:6  
This study was designed to evaluate the crop water stress index (CWSI) for low-energy precision application (LEPA) irrigated corn (Zea mays L.) grown on slowly-permeable Pullman clay loam soil (fine, mixed, Torrertic Paleustoll) during the 1992 growing season at Bushland, Tex. The effects of six different irrigation levels (100%, 80%, 60%, 40%, 20%, and 0% replenishment of soil water depleted from the 1.5-m soil profile depth) on corn yields and the resulting CWSI were investigated. Irrigations were applied in 25 mm increments to maintain the soil water in the 100% treatment within 60–80% of the “plant extractable soil water” using LEPA technology, which wets alternate furrows only. The 1992 growing season was slightly wetter than normal. Thus, irrigation water use was less than normal, but the corn dry matter and grain yield were still significantly increased by irrigation. The yield, water use, and water use efficiency of fully irrigated corn were 1.246 kg/m2, 786 mm, and 1.34 kg/m3, respectively. CWSI was calculated from measurements of infrared canopy temperatures, ambient air temperatures, and vapor pressure deficit values for the six irrigation levels. A “non-water-stressed baseline” equation for corn was developed using the diurnal infrared canopy temperature measurements as T cT a = 1.06–2.56 VPD, where T c was the canopy temperature (°C), Ta was the air temperature (°C) and VPD was the vapor pressure deficit (kPa). Trends in CWSI values were consistent with the soil water contents induced by the deficit irrigations. Both the dry matter and grain yields decreased with increased soil water deficit. Minimal yield reductions were observed at a threshold CWSI value of 0.33 or less for corn. The CWSI was useful for evaluating crop water stress in corn and should be a valuable tool to assist irrigation decision making together with soil water measurements and/or evapotranspiration models. Received: 19 May 1998  相似文献   

5.
本文针对潇河灌区管理手段落后、水资源利用率低等制约灌区节水发展的瓶颈问题,从支持灌区科学用水管理的角度出发,运用先进的GIS平台,通过计算机网络传输,建立起潇河灌区计量与水管理系统.  相似文献   

6.
The links between water application, energy consumption and emissions are complex in irrigated agriculture. There is a need to ensure that water and energy use is closely considered in future industry planning and development to provide practical options for adaptation and to build resilience at the farm level. There is currently limited data available regarding the uncertainty and sensitivity associated with water application and energy consumption in irrigated crop production in Australia. This paper examines water application and energy consumption relationships for different irrigation systems, and the ways in which the uncertainty of different parameters impacts on these relationships and associated emissions for actual farms. This analysis was undertaken by examining the current water and energy patterns of crop production at actual farms in two irrigated areas of Australia (one using surface water and the other groundwater), and then modelling the risk/uncertainty and sensitivity associated with the link between water and energy consumption at the farm scale. Results showed that conversions from gravity to pressurised irrigation methods reduced water application, but there was a simultaneous increase in energy consumption in surface irrigation areas. In groundwater irrigated areas, the opposite is true; the use of pressurised irrigation methods can reduce water application and energy consumption by enhancing water use efficiency. Risk and uncertainty analysis quantified the range of water and energy use that might be expected for a given irrigation method for each farm. Sensitivity analysis revealed the contribution of climatic (evapotranspiration and rainfall) and technical factors (irrigation system efficiency, pump efficiency, suction and discharge head) impacting the uncertainty and the model output and water-energy system performance in general. Flood irrigation systems were generally associated with greater uncertainty than pressurised systems. To enhance resilience at the farm level, the optimum situation envisaged an irrigation system that minimises water and energy consumption and greenhouse gas emissions. Where surface water is used, well designed and managed flood irrigation systems will minimise the operating energy and carbon equivalent emissions. Where groundwater is the dominant use, the optimum system is a well designed and managed pressurised system operating at the lowest discharge pressure possible that will still allow for efficient irrigation. The findings might be useful for farm level risk mitigation strategies in surface and groundwater systems, and for aiding adaptation to climate change.  相似文献   

7.
《Agricultural Systems》2007,94(1-3):90-114
The objective of this paper is to evaluate the impacts of agriculture and water policy scenarios on the sustainability of selected irrigated farming systems in Italy, in the context of the forthcoming implementation of the directive EC 60/2000. Directive EC 60/2000 (Water Framework Directive) is intended to represent the reference norm regulating water use throughout Europe. Five main scenarios were developed reflecting aspects of agricultural policy, markets and technologies: Agenda 2000, world market, global sustainability, provincial agriculture and local community. These were combined with two water price levels, representing stylised scenarios for water policy. The effects of the scenarios on irrigated systems were simulated using multi-attribute linear programming models representing the reactions of the farms to external variables defined by each scenario. The output of the models consists of economic, social and environmental indicators aimed at quantifying the impact of the scenarios on different aspects of sustainability relevant for irrigated farming systems. Five Italian irrigated farming systems were considered: cereal, rice, fruit, vegetables and citrus. The results show the diversity of irrigated systems and the different effects that water pricing policy may produce depending on the agricultural policy, market and technological scenarios. They also highlight a clear trade-off between socio-economic sustainability and environmental (water, nitrogen, pesticide) sustainability. Water pricing will have, in most cases, less impact than agricultural markets and policy scenarios, though it appears to be an effective instrument for water regulation in the least intensive irrigated systems considered. This emphasises the need for a differentiated application of the Water Framework Directive at the local level as well as a more careful balance of water conservation, agricultural policy and rural development objectives.  相似文献   

8.
In the irrigated area of Chanza (Huelva, Spain) there are about 1500 ha of strawberries under localized irrigation. A survey, covering 12% the farms and 20% of the area, was performed in order to characterize the farms, their water use, the cultivation techniques and crop yields and the localized irrigation systems used. Results of this survey were employed to select 20 farms for the evaluation of the irrigation systems using the procedure of Merriam and Keller (1978) modified according to local conditions. Results of the survey and evaluations of the strawberry crops are presented and the unitary water use determined. The conclusions summarize the main problems detected as well as their causes and possible solutions.  相似文献   

9.
《Agricultural Systems》1998,56(4):391-414
Vegetable crops such as processing tomatoes (Lycopersicon esculentum Mill.) are usually complex in terms of nitrogen (N) dynamics because of the large amounts absorbed by the crop, the short growing season and the use of irrigation. Complexity increases when N is supplied from an organic source. A crop simulation model could be very useful to improve N management in this crop. Processing tomatoes were grown on raised beds and furrow irrigated in 1994 and 1995 in the Sacramento Valley of California. Fertilizer N and/or purple vetch (Vicia sativa L.) as green manure and composted turkey manure were used as sources of N. The Erosion Productivity Impact Calculator (EPIC) model was calibrated with 1994 data and validated with 1995 data. Plant growth was accurately simulated in the conventional systems that used fertilizer N and in the low input system that used fertilizer N plus vetch. The model accurately simulated above-ground biomass in a system that used vetch and no synthetic fertilizer N, but it over-predicted Leaf Area Index (LAI). Nitrogen deficiency was observed in the plants in this system. The model simulated nitrogen deficiency mainly as a reduction in biomass production but in the real world the reduction of leaf area was the first effect of nitrogen deficiency in the vegetative phase. Yields were accurately predicted except when diseases affected plant growth. A simple reduction factor of nitrate movement in the bed adequately addressed the movement of nitrate. In general, the model accurately predicted the evolution of inorganic nitrogen in different soil layers during the crop season. However, simulated inorganic N in the upper 15 cm was underestimated in the last part of the crop season and consequently N uptake at harvest was slightly over-predicted in some cases. Nitrogen distribution and access of the roots to inorganic nitrogen are discussed as causes of this discrepancy between model simulated and observed values.  相似文献   

10.
A detailed field experiment was carried out in the Jordan Valley, south of Lake Kinneret, Israel for evaluation of the water management model DRAINMOD. This field was chosen to represent the local agro-climate conditions of that zone. Banana crop was grown and was irrigated daily with about 3200 mm/year and 0.5 leaching fraction. Subsurface drainage system with 2.5 m drain depth and 160 m drain spacing existed in the field. The water table depth was measured with about 100 piezometers, in which most of them were observed weekly, and four were continuosly recording piezometers. Five identical drainage plots were selected, out of 10 existing, as replicates for the evaluation of DRAINMOD. Deviations in a range of 0.3–1.7 m between observed water table depth and that simulated by DRAINMOD were found in four out of the five replicates. A reasonable agreement was found only in one drainage plot out of the five tested. These findings contradict the world wide convention that DRAINMOD simulation is in a good agreement with observed field data. An additional study was therefore conducted to explore the reasons for these large deviations. Three reasons were suggested: (i) a strong side effect by the Jordan River, which flows some 350 m west to the test field; a very steep 4.6% gradient was found toward the Jordan River; (ii) presence of sandy permeable layers below the depth of the drains which magnifies the boundary condition effect of the Jordan River; (iii) a very significant component of deep and lateral seepage (more than 50% of the yearly irrigation plus rainfall). A combination of these three reasons was suggested as an explanation to the apparent large disagreement. It was therefore recommended not to use DRAINMOD or similar vertical flow models for simulation of water table depths in irrigated fields with subsurface drain pipe systems in the Jordan Valley.  相似文献   

11.
《Agricultural Systems》2007,94(1-3):1-24
Site-specific nutrient management (SSNM) provides a field-specific approach for dynamically applying nutrients to rice as and when needed. This approach advocates optimal use of indigenous nutrients originating from soil, plant residues, manures, and irrigation water. Fertilizers are then applied in a timely fashion to overcome the deficit in nutrients between the total demand by rice to achieve a yield target and the supply from indigenous sources. We estimated environmental impact of SSNM and evaluated economic benefits in farmers’ fields in southern India, the Philippines, and southern Vietnam for two cropping seasons in 2002–2003. On-farm research comparing SSNM and the farmers’ fertilizer practice showed increased yield with SSNM for the three locations, even with reduced fertilizer N rates in some cases. SSNM increased partial factor productivity (kg grain kg−1 fertilizer N) when fertilizer N use efficiency with the farmers’ fertilizer practice was relatively low such as at locations in Vietnam and the Philippines. Use of on-farm data with the DNDC model revealed lower percentage of total N losses from applied fertilizers with SSNM during an annual cycle of cropping and fallows. At the location in India, SSNM showed the potential of obtaining higher yields with increased fertilizer N use while maintaining low N2O emissions. SSNM in the Philippines and Vietnam showed greater yields with less fertilizer N through improved fertilizer use efficiency, which could reduce N2O emissions and global warming. Use of SSNM never resulted in increased emissions of N2O per unit of grain yield, and in environments where higher yield could be obtained with less fertilizer N, the use of SSNM could result in reduced N2O emissions per unit of grain yield. For the economic analysis, data were generated through focus group discussions (FGD) with farmers practicing SSNM and with other farmers not practicing SSNM. Based on FGD, the seasonal increase in yield of farmers solely due to use of SSNM averaged 0.2 Mg ha−1 in southern Vietnam, 0.3 Mg ha−1 in the Philippines, and 0.8 Mg ha−1 in southern India. Farmers practicing SSNM at the study site in India used less pesticide. The added net annual benefit due to use of SSNM was 34 US$ ha−1 year−1 in Vietnam, 106 US$ ha−1 year−1 in the Philippines, and 168 US$ ha−1 year−1 in India. The increased benefit with SSNM was attributed to increased yield rather than reduced costs of inputs.  相似文献   

12.
Summary Soil-water tension variability in a 0.15 hectare drip irrigated chile pepper field was evaluated in order to determine the number of tensiometers required for scheduling irrigations in such a field. Four plots were irrigated with a trickle irrigation system. Fifty tensiometers were installed in each plot and monitored on 13 days using a handheld pressure transducer (tensimeter). The standard deviations of the soil-water tensions were relatively high (30 cm at 50 cm tension) and increased when the soil became drier (180 cm at 400 cm tension). The variability of the log-transformed soil-water tension values did not increase as the soil became drier. Forty-eight out of 52 sets of soil water tension measurements were approximately log-normally distributed. Therefore, it appears that the log-transformed soil-water tension values should be used for statistical inference about the mean soil water status of the field. Temporal stability of the soil-water tension readings persisted for one irrigation interval. Using a previously determined production function (yield versus soil-water tension) it is shown for this field that about seven tensiometers are needed to determine the threshold tension value above which yields start to decrease.  相似文献   

13.
Summary Dilution of saline groundwater (2.5 dS m–1) for irrigation is a common practice in the Shepparton Region of Northern Victoria. There is little information describing the leaching rates and hence longterm soil salinity levels that will result from such practices. There is also little information to suggest the effect of irrigating with saline water on groundwater recharge.Leaching rates under perennial pastures grown on a Paleustalf were estimated using three methods based on the mass conservation of chloride. Five treatments were irrigated with water ranging from 0.22 dS m–1 to 4.84 dS m–1. Leaching rates were greater the higher the salinity of the irrigation water (Table 3). Increased leaching resulted from both increased electrolyte levels in the water and decreased water uptake by plants.A model based on non-steady state solute movement usefully predicted the approach of steady-state conditions in the root zone several years earlier than simple observation of the solute data allowed (Table 5).  相似文献   

14.
A methodology has been developed to quantify spatial variation of crop yield, evapotranspiration (ET) and water productivity (WPET) using the SEBAL algorithm and high and low resolution satellite images. SEBAL-based ET estimates were validated over an irrigated, wheat dominated area in the Yaqui Valley, Mexico and proved to be accurate (8.8% difference for 110 days). Estimated average wheat yields in Yaqui Valley of 5.5 t ha−1 were well within the range of measured yields reported in the literature. Measured wheat yields in 24 farmers’ fields in Sirsa district, India, were 0.4 t ha−1 higher than SEBAL estimated wheat yields. Area average WPET in the Yaqui Valley was 1.37 kg m−3 and could be considered to be high as compared to other irrigated systems around the world where the same methodology was applied. A higher average WPET was found in Egypt's Nile Delta (1.52 kg m−3), Kings County (CA), USA (1.44 kg m−3) and in Oldambt, The Netherlands (1.39 kg m−3). The spatial variability of WPET within low productivity systems (CV = 0.33) is higher than in high productivity systems (CV = 0.05) because water supply in the former case is uncertain and farming conditions are sub-optimal. The high CV found in areas with low WPET indicates that there is considerable scope for improvement. The average scope for improvement in eight systems was 14%, indicating that 14% ET reduction can be achieved while maintaining the same yield. It is concluded that the proposed methodology is accurate and that better knowledge of the spatial variation of WPET provides valuable information for achieving local water conservation practices in irrigated wheat.  相似文献   

15.
Reuse of drainage water from irrigated areas   总被引:1,自引:0,他引:1  
Increasing competition for water of good quality and the expectation that at least half of the required increase in food production in the near-future decades must come from the world's irrigated land requires to produce more food by converting more of the diverted water into food. Reuse of the non-consumed fraction ('drainage water') of the irrigation water already diverted is a proven but risky option for better fresh water management. This paper presents an overview of different options for reuse of drainage water and guidelines for its safe use. Criteria for maximum irrigation water salinity to prevent soil deterioration and crop yield reduction, for the maximum concentration of toxic substances and limits for bacteriological water quality are given. Examples of sustainable reuse of drainage water in Egypt, India and the USA are presented. The usefullness of simulation models for the analysis of regional water and salt balances is demonstrated.  相似文献   

16.
Analysis of the possible economic impact of climate change at the local level is becoming increasingly relevant to agricultural policy, in terms of the definition of new measures to sustain adaptation of the farm sector. This study focuses on a Mediterranean agricultural zone to evaluate the economic impact of rainfall regime changes that modify the accumulation of irrigation water in a dam. The objective is to identify farm typologies that suffer more from rainfall changes, in order to target policy measures that increase farm sector capability to adapt to climate change. First, an analysis of historical series is conducted for precipitation. The decreasing trend in annual precipitation, as well as an increase in monthly rainfall variability, is shown to have a statistically significant influence on the regime of water accumulation in the dam. Density functions representing this regime are estimated for several periods, including the 1960s-1970s, the current time and a time interval that extends to 2015. A comparison of these functions reveals an increase in variability of water accumulation in the dam through time. Parameters of these functions are used in three models of Discrete Stochastic Programming to represent different expectations of irrigation water availability and to simulate the possible reaction of the farm sector in the study area to the different scenarios. The simulation results show that both income and employment are noticeably reduced in some farm typologies when scenarios with higher variability levels for water accumulation in the dam are considered. In addition, changes in the use of soil are seen, the use of inputs declines and the quantity of extracted groundwater increases.  相似文献   

17.
We present an innovative approach to explore water management options in irrigated agriculture considering the constraints of water availability and the heterogeneity of irrigation system properties. The method is two-folds: (i) system characterization using a stochastic data assimilation procedure where the irrigation system properties and operational management practices are estimated using remote sensing (RS) data; and (ii) water management optimization where we explored water management options under various levels of water availability. We set up a soil–water–atmosphere–plant model (SWAP) in a deterministic–stochastic mode for regional modeling. The distributed data, e.g. sowing dates, irrigation practices, soil properties, depth to groundwater and water quality, required as inputs for the regional modeling were estimated by minimizing the residuals between the distributions of field-scale evapotranspiration (ET) simulated by the regional application of SWAP, and by surface energy balance algorithm for land (SEBAL) using two Landsat7 ETM+ images. The derived distributed data were used as inputs in exploring water management options. Genetic algorithm was used in data assimilation and water management optimizations. The case study was conducted in Bata minor (lateral canal), Kaithal, Haryana, India during 2000–2001 rabi (dry) season. Our results showed that under limited water condition, regional wheat yield could improve further if water and crop management practices are considered simultaneously and not independently. Adjusting sowing dates and their distribution in the irrigated area could improve the regional yield, which also complements the practice of deficit irrigation when water availability is largely a constraint. This result was also found in agreement with the scenario that water is non-limited with the exception that the farmers have more degrees of freedom in their agricultural activities. An improvement of the regional yield to 8.5% is expected under the current scenario.  相似文献   

18.
Groundwater discharge through evaporation due to a shallow water table can be an important component of a regional scale water balance. Modeling this phenomenon in irrigated regions where soil moisture varies on short time scales is most accurately accomplished using variably saturated modeling codes. However, the computational demands of these models limit their application to field scale problems. The MODFLOW groundwater modeling code is applicable to regional scale problems and it has an evapotranspiration package that can be used to estimate this form of discharge, however, the use of time-invariant parameters in this module result in evaporation rates that are a function of water table depth only. This paper presents a calibration and validation of the previously developed MOD-HMS model code using lysimeter data. The model is then used to illustrate the dependence of bare soil evaporation rates on water table depth and soil moisture conditions. Finally, an approach for estimating the time varying parameters for the MODFLOW evapotranspiration package using a 1-D variably saturated MOD-HMS model is presented.  相似文献   

19.
Waterlogging and salinity are reducing the productivity of irrigated agriculture on clay soils in south east Australia. We compared five drainage treatments: (1) undrained control (Control); (2) mole drains (Mole); (3) mole drains formed beneath gypsum-enriched slots (GES) (Mole + GES); (4) shallow pipe drains installed beneath GES (Shallow Pipe); (5) deep pipe drains (Deep Pipe). The experiment was set out on a vertisol and our measurements were made during the growth of an irrigated onion crop.

Over the 3 months before the spring irrigations commenced, the perched water table on the Control was less than 400 mm below the soil surface for 27% of the time, whereas the shallow drainage treatments (Treatments 2, 3 and 4) reduced this time to less than 4%. During the irrigation season, the perched water table on the Mole + GES treatment rose above 400 mm for 3% of the time. The perched water table on the Mole treatment was above 400 mm for 14% of the time, compared with 19% of the time on the Control. The Deep Pipes were less effective in reducing the depth to the perched water table, both before and during the irrigation period.

Mole drains increased the gas-filled porosity above the drains. However, the gas-filled porosity remained below reported levels for optimum root growth. Although the drains effectively drained excess water, and lowered the water table, the hydraulic gradient was insufficient to remove all of water from the macropores. Gypsum enriched slots above the mole drains increased the gas-filled porosity in the slots but the drainable porosity in the undisturbed soil appeared to be inadequate for optimum root growth, even though some drainage occurred near the slots.

Discharge from the shallow drainage treatments averaged 58 mm for each irrigation, and was considerably more than the amount required to drain the macropores. The mole channels were in reasonably good condition at the end of the irrigation season, with at least 70% of the cross-sectional area of the channel open.

Shallow subsurface drains increased onion yield by about 38%. For each day the water table was above 400 mm, the yield declined by 0.23 tonnes per hectare. Farmer adoption of shallow subsurface drainage will depend on the long-term economic benefits (influenced by the longevity of the mole channels and yields response) and the need to develop more sustainable management practices.  相似文献   


20.
陈丹  唐宏璐  袁秀伟  陈波  季巍 《农业工程》2022,12(10):81-85
从农业用水户的角度,结合南方平原灌区实际,提出3种递进式的农业用水激励模式及相应测算公式,即“先交水费、后全额补贴”模式,基于合理用水定额的“先交水费、后差额补贴”模式,以及基于区域单位用水量的“先交水费、后差额补贴”模式,并测算分析了典型试点区内用水户的用水量、预交水费、奖惩金额、精准补贴额和实交水费等。结果表明,3种农业用水激励模式各有优缺点,可适用于改革进程的不同阶段。基于区域单位用水量的“先交水费、后差额补贴”模式充分体现了节奖超罚的原则,并最终达到区域内奖惩金额的动态平衡,促使用水户间相互督促、互相竞争,有利于充分调动用水户的节水积极性,提升用水户节水意识,具有推广应用价值。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号