首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
旨在探讨GBLUP与惩罚类回归方法用于猪血液性状基因组选择的相关问题。以本实验室收集的免疫资源猪群体13个血液性状为分析对象,结合Illumina公司猪SNP60K基因芯片分型数据,以加性模型和加性-显性模型为基础,利用GBLUP和3种惩罚类回归方法(ridge、lasso与elastic-net)开展基因组选择分析。研究发现,基因组选择的准确性与性状芯片遗传力估计值呈正相关。交叉验证分析结果表明,4种方法对13个血液性状预测准确性最高的性状均是MCV(平均红细胞体积),而加性模型和加性-显性模型的预测准确性在不同性状中的表现不同。在多数性状中,lasso和elastic-net回归的预测准确性低于ridge回归和GBLUP法,但在NE%(嗜中性细胞百分比)等少数性状中则刚好相反。综上说明,没有适用于所有性状的最佳基因组预测方法,基因组预测方法的选择应考虑目标性状的遗传特性。本研究为猪免疫性状基因组选择的实际应用提供了重要参考信息。  相似文献   

2.
旨在基于GBLUP等模型对梅花鹿(Cervus Nippon)生长相关性状基因组选择的预测准确性进行比较。本研究以吉林某鹿场2014—2019年所产梅花鹿261只作为研究群体(公鹿96只,母鹿165只),对梅花鹿体重体尺等生长相关性状进行遗传力估计,并基于5-fold交叉验证方法对GBLUP、Bayes A、Bayes B、Bayes C、Bayes Lasso、RRBLUP六种基因组选择模型预测准确度进行了比较,以筛选出适合梅花鹿生长相关性状的基因组选择模型。结果发现:1)管围与臀端高的遗传力分别为0.43、0.50,属于高遗传力;体重、体高与体斜长的遗传力分别为0.22、0.30、0.27,属于中等遗传力;而胸围的遗传力为0.15,属于低遗传力;2)在GBLUP中,基因组选择预测的准确度与性状的遗传力呈正相关关系,而在Bayes类与RRBLUP法中并未表现明显正相关关系;3)在样本量较少的情况下,选取GBLUP作为基因组选择模型具有一定的优势;Bayes A可在低遗传力性状中作为首选;体重、体高、体斜长、管围、胸围、臀端高预测准确度最高的分别为GBLUP、Bayes B、Bayes...  相似文献   

3.
旨在比较结合全基因组关联分析(genome-wide association study, GWAS)先验标记信息的基因组育种值(genomic estimated breeding value, GEBV)估计与基因组最佳线性无偏预测(genomic best linear unbiased prediction, GBLUP)方法对鸡剩余采食量性状育种值估计的准确性,为提高基因组选择准确性提供理论与技术支持。本研究选用广西金陵花鸡3个世代共2 510个个体作为素材,其中公鸡1 648只,母鸡862只,以42~56日龄期间的剩余采食量(residual feed intake, RFI)为目标性状,将试验群体随机分为两组,其中一组作为先验标记信息发现群体,用于GWAS分析并筛选最显著的top5%、top10%、top15%和top20%的位点作为先验标记信息;另外一组分别结合不同的先验标记信息进行遗传参数估计并比较基因组育种值的预测准确性,使用重复10次的五倍交叉验证法获取准确性,随后两组群体再进行交叉验证。研究结果表明,GBLUP计算RFI的遗传力为0.153,预测准确性为0.38...  相似文献   

4.
为有效实现山羊基因组选择,提高选择准确性,根据前期对内蒙古绒山羊生产性能的遗传评估结果,以山羊的体重(h2=0.11)性状为例,结合NCBI已经公布的山羊基因组序列信息,设定群体传递过程和基因组参数,模拟获得个体表型和基因型数据,利用GBLUP和Bayes方法进行基因组育种值估计。结果表明,不同历史群体变化模式下,基因组选择对山羊体重基因组育种估计值准确性无显著影响(P>0.05)。GBLUP法估计的准确性高于Bayes Lasso,准确性达0.40。在历史群体下降模式下,基因组选择准确性高于恒定模式。  相似文献   

5.
旨在探究快速型黄羽肉鸡饲料利用效率性状的遗传参数,评估不同方法所得估计育种值的准确性。本研究以自主培育的快速型黄羽肉鸡E系1 923个个体(其中公鸡1 199只,母鸡724只)为研究素材,采用"京芯一号"鸡55K SNP芯片进行基因分型。分别利用传统最佳线性无偏预测(BLUP)、基因组最佳线性无偏预测(GBLUP)和一步法(SSGBLUP)3种方法,基于加性效应模型进行遗传参数估计,通过10倍交叉验证比较3种方法所得估计育种值的准确性。研究性状包括4个生长性状和4个饲料利用效率性状:42日龄体重(BW42D)、56日龄体重(BW56D)、日均增重(ADG)、日均采食量(ADFI)和饲料转化率(FCR)、剩余采食量(RFI)、剩余增长体重(RG)、剩余采食和增长体重(RIG)。结果显示,4个饲料利用效率性状均为低遗传力(0.08~0.20),其他生长性状为中等偏低遗传力(0.11~0.35);4个饲料利用效率性状间均为高度遗传相关,RFI、RIG与ADFI间为中度遗传相关,RFI与ADG间无显著相关性,RIG与ADG间为低度遗传相关。本研究在获得SSGBLUP方法的最佳基因型和系谱矩阵权重比基础上,比较8个性状的估计育种值准确性,SSGBLUP方法获得的准确性分别比传统BLUP和GBLUP方法提高3.85%~14.43%和5.21%~17.89%。综上,以RIG为选择指标能够在降低日均采食量的同时保持日均增重,比RFI更适合快速型黄羽肉鸡的选育目标;采用最佳权重比进行SSGBLUP分析,对目标性状估计育种值的预测性能最优,建议作为快速型黄羽肉鸡基因组选择方法。  相似文献   

6.
旨在比较不同方法对遗传参数估计的差异,为未来北京油鸡胴体和肉质性状选育方法的制定提供参考依据。本研究利用传统最佳线性无偏预测(best linear unbiased prediction,BLUP)和基因组最佳线性无偏预测(genomic best linear unbiased prediction,GBLUP)两种方法对北京油鸡的胴体和肉质等性状进行了遗传参数估计。从系谱较为完整的北京油鸡群体中,选择100日龄体重相近的公鸡615只,测定其100日龄体重(BW)、屠宰率(EP)、胸肌率(BMP)、腿肌率(LMP)、腹脂率(AFP)、嫩度(T,以剪切力值表示)和肌内脂肪(IMF)等性状,并用SNP芯片(Illumina,60K)进行个体基因分型。结果表明,除IMF和剪切力(SF)遗传力基于两种方法的估值存在较大差异外,其余性状利用两种方法得到的遗传力估值差异较小;除嫩度外,GBLUP方法估计的遗传力均低于BLUP方法。所有胴体相关性状中,除屠宰率遗传力为低遗传力外,其余性状均属于中等遗传力性状。嫩度呈现低遗传力,而IMF基于BLUP法和GBLUP法的估计遗传力分别为中等(h2 =0.256)和低遗传力(h2 =0.107)。基于BLUP方法,IMF与BW、BMP和SF 3个性状间均呈高度遗传负相关(-0.572、-0.420、-0.682),与EP的遗传相关为中度负相关(-0.234),与AFP的遗传相关为中度正相关(0.420);基于GBLUP方法,IMF与BW、BMP和SF 3个性状间均呈高度遗传负相关(-0.808、-0.725、-0.784),与EP的遗传相关为高度负相关(-0.626),与AFP的遗传相关为低度正相关(0.097)。综上,对于某些性状,基于传统的BLUP方法与新的GBLUP方法得到的遗传力与遗传相关估值存在较大差异,实际育种工作中,为提高育种效率,需要综合考虑。  相似文献   

7.
旨在系统比较GBLUP、SSGBLUP、BayesA、BayesB、BayesC、BayesLASSO、BSLMM和BayesR等8种方法对猪重要经济性状基因组选择的准确性。本研究以本实验室收集的2 585头大白猪达100kg日龄、达100kg背膘厚和母猪乳头数3个性状为分析对象,结合猪50K基因芯片分型数据,以加性模型为基础,利用5倍交叉验证比较8种方法的基因组选择准确性。研究发现,基因组选择的准确性与不同性状估计遗传力呈正相关。交叉验证结果表明,预测准确性最高的性状为达100kg日龄,但不同方法在不同性状中表现并不完全相同,在达100kg日龄和达100kg背膘厚中SSGBLUP基因组预测准确性均为最高,而在母猪乳头数中BayesA的基因组预测准确性最高。综上表明,对小样本开展基因组预测时,中、高等遗传力性状可以选择SSGBLUP方法,低等遗传力性状可以选择BayesA方法。如何优化和选择一种广泛适用于所有性状的方法,可能是未来研究的方向。  相似文献   

8.
旨在比较不同方法对中国荷斯坦牛繁殖性状的基因组预测效果,选择最佳的基因组预测方法及信息矩阵权重组合(τ和ω)用于实际育种。本研究利用北京地区33个牧场1998—2020年荷斯坦牛群繁殖记录,分析了3个重要繁殖性状:产犊至首次配种间隔(ICF)、青年牛配种次数(NSH)和成母牛配种次数(NSC)共98 483~197 764条表型数据。同时收集了8 718头母牛和3 477头公牛的基因芯片数据,根据具有芯片数据的牛群结构划分为公牛验证群和母牛验证群。随后,通过BLUPF90软件的AIREMLF90和BLUPF90模块利用最佳线性无偏预测(BLUP)、基因组最佳线性无偏预测(GBLUP)和一步法(ssGBLUP)对3个性状进行基因组预测,不同方法的预测效果根据准确性和无偏性来评估。结果表明,3个繁殖性状均为低遗传力性状(0.03~0.08);ssGBLUP方法中,各性状信息矩阵的权重取值能够在一定程度上提升基因组预测的效果;ICF、NSH和NSC在母牛验证群下的最佳权重取值分别为:τ=1.3和ω=0,τ=0.5和ω=0.4以及τ=0.5和ω=0;在公牛验证群下最优权重组合分别为:τ=1.5和ω=0,τ=1.3和ω=0.8以及τ=0.5和ω=0;基于最佳权重的ssGBLUP方法准确性较BLUP和GBLUP方法准确性分别提升了0.10~0.39和0.08~0.15,且无偏性最接近于1。综上,使用最佳权重组合的ssGBLUP时,各性状基因组预测结果具有较高准确性和无偏性,建议作为中国荷斯坦牛繁殖性状基因组选择方法。  相似文献   

9.
为探究一步法基因组最佳线性无偏预测(SSGBLUP)法应用于内蒙古绒山羊育种的选择效果,本研究基于课题组前期积累的健康状况良好的内蒙古绒山羊(阿尔巴斯型)2 256只个体的70 K SNP芯片测序数据,收集整理1至8岁个体的绒毛性状(绒长、绒细和产绒量)生产性能数据和系谱记录,通过设定SSGBLUP法中H逆矩阵的不同矩阵参数(ω,τ)进行基因组育种值估计,并利用五倍交叉验证法评价基因组育种值估计的准确性。结果表明:随着ω的不断增加,SSGBLUP法用于内蒙古绒山羊绒毛性状的基因组育种值估计准确性越高。结合ABLUP和GBLUP的遗传参数估计结果可知,当τ为0.3、ω为0.9时,内蒙古绒山羊绒毛性状的基因组选择准确性较好。其中,绒长的准确性为0.702 8,绒细准确性为0.668 2,产绒量准确性为0.713 1。对SSGBLUP方法的H矩阵选择合适的尺度参数可提高内蒙古绒山羊绒毛性状基因组育种值估计的准确性,加快种群的遗传改良,缩短世代间隔。  相似文献   

10.
我国白羽肉鸡育种中,通过遗传途径提高产蛋数和控制合适的蛋重是培育优良品系的一个重要方面。为探索适合我国白羽肉鸡育种中的基因组选择模型,本研究以2 474只白羽肉鸡品系的产蛋性状为研究对象,主要分析了机器学习算法KAML、BLUP(包括:PBLUP、GBLUP、SSGBLUP)和Bayes(包括:Bayes A、Bayes B和Bayes Cπ)方法对产蛋数和蛋重性状的预测准确性,准确性以5倍交叉验证进行评估。利用系谱以及基因组信息估计了产蛋数和蛋重性状的遗传力和遗传相关。结果表明,产蛋数性状遗传力为0.061~0.16,属于低遗传力性状;蛋重遗传力为0.28~0.39,属于中等遗传力性状;产蛋数与蛋重是中等遗传负相关(-0.518~-0.184),不同阶段产蛋数之间是强的遗传正相关(0.736~0.998)。不同模型预测43周产蛋数和52周蛋重的育种值估计准确性结果表明,KAML方法对两者的预测准确性分别为0.115和0.266,与GBLUP方法(准确性分别为0.118和0.283)和SSGBLUP方法(准确性分别为0.136和0.259)的准确性差异显著,同时显著低于Bayes方法(准确性分别为0.230~0.239、0.336~0.340)的预测准确性, PBLUP方法预测准确性最低(准确性分别为0.095和0.246)。因此,在白羽肉鸡产蛋数和蛋重性状中应用Bayes方法将获得最高的育种值估计准确性。  相似文献   

11.
基因组选择(Genomic selection, GS)技术在肉兔上的研究和应用都还显著落后于其他畜禽。为探究基因组选择在肉兔育种上的实际应用,研究以363只肉兔的84日龄体重为试验材料,结合全基因组范围内的87 704个SNPs标记,构建线性混合模型;利用基因组最佳线性无偏预测(GBLUP)方法估计个体的基因组育种值,并采用5倍交叉验证法分析估计的准确性。结果表明:基因组估计育种值准确性最高为0.23,最低为0.01,平均值为0.12。该研究结果为在肉兔中开展基因组选择提供了参考。  相似文献   

12.
联合育种是我国生猪遗传改良计划的重要工作,联合育种能够扩大群体规模,增加群体内遗传变异,提高育种值估计的准确性,且相较于传统育种方法对低遗传力的繁殖性状有着更明显的效果。本研究收集了河北大好河山养殖有限公司、河北裕丰京安养殖有限公司、石家庄清凉山养殖有限公司(以下分别简称大好河山、京安和清凉山)3家育种场共6 790条大白猪的繁殖性状,构建了基因组选择合并参考群体,通过基因型填充将纽勤50K(Geneseek)芯片基因型填充到液相50K,采用一步法进行基因组联合遗传评估。结果表明:清凉山与裕丰京安两场遗传背景相近,大好河山场与其他两场存在较远的联系;基于系谱信息预测大好河山个体的总产仔数育种值准确性为0.170,基因组预测准确性则为0.324;通过联合基因组遗传评估,总产仔数基因组预测的准确性进一步提升至0.347,比基于单场系谱信息提高了104%。本研究表明通过基因型填充统一各场SNP芯片类型,构建河北省大白猪繁殖性状基因组选择参考群,从而进行联合基因组选择是可行的,尤其对提高常规育种进展缓慢的繁殖性状意义重大。  相似文献   

13.
旨在比较简化基因组测序技术和基因芯片技术实施基因组选择的基因组估计育种值(GEBV)准确性。本研究在AH肉鸡资源群体F2代中随机选取395个个体(其中公鸡212只,母鸡183只,来自8个半同胞家系),同时采用10×SLAF测序技术和Illumina Chicken 60K SNP芯片进行基因标记分型。采用基因组最佳无偏估计法(GBLUP)和BayesCπ对6周体重、12周体重、日均增重、日均采食量、饲料转化率和剩余采食量等6个性状进行GEBV准确性比较研究,并采用5折交叉验证法验证。结果表明,采用同一基因标记分型平台,两种育种值估计方法所得GEBV准确性差异不显著(P>0.05);不同的性状对基因标记分型平台的选择存在差异,对于6周体重,使用基因芯片可获得更高的GEBV准确性(P<0.05),对于剩余采食量,则使用简化基因组测序可获得更高的GEBV准确性(P<0.05)。综合6个性状GEBV均值比较,两个基因标记分型平台之间差异不到0.01,高通量测序技术和基因芯片技术都可以用于黄羽肉鸡基因组选择。  相似文献   

14.
旨在比较不同方法对遗传参数估计的差异,为未来北京油鸡胴体和肉质性状选育方法的制定提供参考依据。本研究利用传统最佳线性无偏预测(best linear unbiased prediction,BLUP)和基因组最佳线性无偏预测(genomic best linear unbiased prediction,GBLUP)两种方法对北京油鸡的胴体和肉质等性状进行了遗传参数估计。从系谱较为完整的北京油鸡群体中,选择100日龄体重相近的公鸡615只,测定其100日龄体重(BW)、屠宰率(EP)、胸肌率(BMP)、腿肌率(LMP)、腹脂率(AFP)、嫩度(T,以剪切力值表示)和肌内脂肪(IMF)等性状,并用SNP芯片(Illumina,60K)进行个体基因分型。结果表明,除IMF和剪切力(SF)遗传力基于两种方法的估值存在较大差异外,其余性状利用两种方法得到的遗传力估值差异较小;除嫩度外,GBLUP方法估计的遗传力均低于BLUP方法。所有胴体相关性状中,除屠宰率遗传力为低遗传力外,其余性状均属于中等遗传力性状。嫩度呈现低遗传力,而IMF基于BLUP法和GBLUP法的估计遗传力分别为中等(h~2=0.256)和低遗传力(h~2=0.107)。基于BLUP方法,IMF与BW、BMP和SF 3个性状间均呈高度遗传负相关(-0.572、-0.420、-0.682),与EP的遗传相关为中度负相关(-0.234),与AFP的遗传相关为中度正相关(0.420);基于GBLUP方法,IMF与BW、BMP和SF 3个性状间均呈高度遗传负相关(-0.808、-0.725、-0.784),与EP的遗传相关为高度负相关(-0.626),与AFP的遗传相关为低度正相关(0.097)。综上,对于某些性状,基于传统的BLUP方法与新的GBLUP方法得到的遗传力与遗传相关估值存在较大差异,实际育种工作中,为提高育种效率,需要综合考虑。  相似文献   

15.
旨在将多层感知机(multilayer perceptron, MLP)应用于绵羊限性性状基因组选择中,并在多种情况下与其他经典基因组选择方法进行比较分析。本研究利用Qmsim软件模拟2个绵羊群体Pop1和Pop2的表型数据和基因型数据。在MLP中使用人工神经网络(artificial neural network, ANN),线性模型中使用约束性最大似然法(residual maximum likelihood, REML)估计不同群体的遗传参数。利用Python语言自编MLP模型,利用DMU软件实现最佳线性无偏预测(best linear unbiased prediction, BLUP)、基因组最佳线性无偏预测(genomic BLUP)和一步法(single-step GBLUP, SSGBLUP)模型,评估不同情况下各方法遗传力(heritability,h2)和育种值估计方面的差异。各情况下,MLP和SSGBLUP均显著(P<0.05)优于GBLUP和BLUP。在3种情况下MLP的h2估值与SSGBLUP差异不显著:h  相似文献   

16.
旨在挖掘快大型黄羽肉鸡胸肌肉品质性状的重要候选区间和基因。本研究以1 923只快大型黄羽肉鸡为素材,于56日龄屠宰并测定屠宰和胸肌肉品质性状;利用“京芯一号”55K SNP芯片进行基因分型,利用传统最佳线性无偏预测(BLUP)、基因组最佳线性无偏预测(GBLUP)和全基因组关联分析(GWAS)等方法进行遗传参数估计和QTL区间/关键基因的检测。结果显示,胸肌pH、肉色L24 h*。同时发现,位于5号染色体上的2个单倍型对胸肌pH、肉色性状均有极显著影响。以上结果为黄羽肉鸡肉品质遗传选择方案优化和分子育种技术研发奠定了重要基础。  相似文献   

17.
在基因组选择中(GS),相比单性状模型,多性状模型有诸多优势:可以利用到性状间的遗传相关信息,提高预测可靠性;当直接选择主要性状效果不佳时,可通过选择与其遗传相关较高的次要性状来提高主要性状的预测可靠性;当个体缺失某个表型的记录时,可以参与到遗传评估中。本研究旨在评估最佳无偏线性预测(BLUP)与一步法基因组选择(ssGBLUP)两性状模型相比单性状模型的选择实施效果,为应对现实中个体可能缺失部分性状观察值提供参考依据。选择出生于2012—2019年的2 132头杜洛克猪为研究对象,利用DMU(v 6.0)软件中的单性状与多性状模型(BLUP,ssGBLUP)基因组选择方法探讨了验证群中不同比例的表型个体对生长性状(达100 kg体重时的日龄、背膘厚和眼肌面积)的预测可靠性的影响。结果:不同的验证群表型个体比例,单性状ssGBLUP对性状的预测可靠性均要优于单性状BLUP,两性状ssGBLUP模型的预测可靠性均要优于单性状模型;随着验证群中有表型的个体比例变化,两性状ssGBLUP与两性状BLUP模型对性状的预测可靠性均呈现提高的趋势。随着验证群中有表型的个体比例变化,两性状ssGBL...  相似文献   

18.
为比较不同全基因组选择方法估计肉牛平均日增重(Average Daily Gain,ADG)育种值的性能,本研究选用5种间接育种值估计方法(贝叶斯方法)、2种直接育种值估计法(GBLUP类方法)和3种机器学习方法分别对同一尼洛尔肉牛群体的20K、80K、770K基因分型SNP数据和表型数据构成的数据集采用交叉验证的方式进行了全基因组选择研究,实验结果表明在20KSNP数据集中估计育种值准确度最高的是0.258 5(Bayes B),80KSNP数据集中的最高准确度是0.260 8(Bayes Lasso和Bayes Ridge Regression),770KSNP数据集的最高准确度是0.270 4(Bayes Ridge Regression)。GBLUP类方法与贝叶斯方法的准确度接近,机器学习方法的育种值准确度最低。就运行时间而言,GBLUP类方法所需时间最短。综合比较,GBLUP类方法在本研究中表现出更强的实用性。  相似文献   

19.
与生长性状相比,猪的繁殖性状具有遗传力低和限性表现的特点,通过传统育种方法很难获得较高的育种值估计准确性,且无法缩短世代间隔。因此,猪的繁殖性状选育策略应与生长性状不同。基因组选择是一种基于全基因组信息的标记辅助选择。与生长性状相比,基因组选择对提高繁殖性状(如产仔数)的预测准确性更具有优势。然而,基因组选择的育种成本较高阻碍了该技术的广泛应用。本文旨在探讨母系猪繁殖性状基因组选择的参考群体构建策略,以节省基因组育种成本和加快遗传进展。  相似文献   

20.
为了满足人们对畜产品需求的快速增长,必须在加快畜禽产业发展的同时把对环境的影响降到最低,提高畜禽遗传特性有望促进这一问题的解决。进入21世纪以来,以基因组选择为核心的分子育种技术迎来了发展机遇,利用该技术可实现早期准确选择,从而大幅度缩短世代间隔,加快群体遗传进展,并显著降低育种成本。虽然在某些畜种中(如奶牛),基因组选择取得了成功,群体也获得较大遗传进展,但仍无法满足快速增长的需求。因此,亟需寻找能够进一步加快遗传进展的方法。研究表明,在SNP标记数据中加入目标性状的已知功能基因信息,可以提高基因组育种值预测的准确性,进而加快遗传进展。而挖掘更多基因组信息的同时,开发更优化的分析方法可以更有助于目标的实现。文章总结了主要畜禽物种的可用基因组数据,包括牛、绵羊、山羊、猪和鸡以及这些数据是如何有助于鉴定影响重要性状的遗传标记和基因,从而进一步提高基因组选择的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号