首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
针对现今玉米籽粒收获机收获时存在籽粒清洁率和损失率不能满足国家标准要求的问题,设计一种分段式振动圆孔筛清选装置。利用CFD-DEM耦合技术对传统双层往复振动筛清选装置内气固两相运动进行仿真,参考上筛纵向区域内籽粒透筛规律和上筛长度,确定合适的分段式振动筛前筛长度并设计分段式振动筛后筛,使玉米脱出物在前筛尾部下落到后筛之前可以被前筛上下混合气流继续分散、分层,提高籽粒的清洁率,降低籽粒的损失率。在保证分段式振动筛前筛清选性能不变的条件下,以后筛频率、振幅、前后筛垂直间距、前后筛水平间距为试验因素,以籽粒的清洁率和损失率为评价指标,设计二次正交旋转中心组合试验,建立各因素与指标之间的回归数学模型。利用Design-Expert 8.0.6软件的多目标优化算法获得最佳参数组合为:后筛频率为4.44 Hz、振幅为15.65 mm、前后筛垂直间距为114 mm、水平间距为18.53 mm。在清选装置入口气流速度为12.8 m/s、气流方向角为25°、清选装置入口玉米脱出物喂入量为5 kg/s时,分段式振动筛清选装置使籽粒清洁率提高到98.34%,籽粒的损失率降为1.45%,相比于传统双层往复振动筛清选装置籽粒的清洁率提高1.26个百分点,损失率降低0.81个百分点,满足国家筛分质量评价技术规范要求。  相似文献   

2.
玉米籽粒收获机分段式振动筛清选装置设计与试验   总被引:3,自引:0,他引:3  
针对目前玉米籽粒收获机籽粒清洁率和损失率不能满足国家标准要求的问题,设计了一种分段式振动圆孔筛清选装置。利用CFD-DEM耦合技术对传统双层往复振动筛清选装置内气固两相运动进行仿真,根据上筛纵向区域内籽粒透筛规律和上筛长度,确定合适的分段式振动筛前筛长度,并设计分段式振动筛后筛,使玉米脱出物在前筛尾部下落到后筛之前可以被前筛上下混合气流继续分散、分层,以提高籽粒清洁率,降低籽粒损失率。在保证分段式振动筛前筛清选性能不变的条件下,以后筛频率、后筛振幅、前后筛垂直间距、前后筛水平间距为试验因素,以籽粒的清洁率和损失率为评价指标,设计二次正交旋转中心组合试验,建立各因素与指标之间的回归数学模型。利用Design-Expert 8.0.6软件的多目标优化算法获得最佳参数组合:后筛频率为4.44 Hz、后筛振幅为15.65 mm、前后筛垂直间距为114 mm、前后筛水平间距为18.53 mm。在清选装置入口气流速度为12.8 m/s、气流方向角为25°、清选装置入口玉米脱出物喂入量为5 kg/s时,分段式振动筛清选装置使籽粒清洁率提高到98.34%,籽粒损失率降至1.45%,籽粒清洁率比传统双层往复振动筛清选装置提高1.26个百分点,损失率降低0.81个百分点,满足国家筛分质量评价技术规范要求。  相似文献   

3.
油菜联合收获机滚筒筛式复清装置设计与试验   总被引:1,自引:0,他引:1  
针对油菜联合收获机脱粒分离作业后脱出物组分杂,籽粒细小不易分离,导致清选作业清洁率低、人工复清劳动强度大等问题,设计了一种挂接在粮箱上的模块化滚筒筛式复清装置。基于运动学与动力学分析了物料提升螺旋输送器和筛分装置的结构参数与运行参数范围;以滚筒筛式复清装置的损失率、清洁率及筛分效率为评价指标,以滚筒筛转速、筛网内助流螺旋叶片螺距和筛孔直径为影响因素,基于EDEM开展了三因素三水平正交试验,确定了最佳参数组合,并利用收获关键部件试验台开展了验证试验。仿真结果表明:当喂入量为0.6kg/s时,滚筒筛式复清装置的较优参数组合为筛孔直径5mm、滚筒筛转速105r/min、筛网内助流螺旋叶片螺距250mm,此时滚筒筛式复清装置损失率为0.92%、清洁率为98.96%、筛分效率为95.12%。台架验证试验表明,带有滚筒筛式复清装置的清选系统工作顺畅,在最佳参数组合条件下,滚筒筛式复清装置的损失率为0.96%、清洁率为98.67%、筛分效率为95.36%,对比未增加滚筒筛式复清装置前清洁率提升了4.38个百分点。研究可为油菜联合收获机清选装置结构改进和优化提供参考。  相似文献   

4.
玉米联合收获机贯流风阶梯式振动筛设计与试验   总被引:4,自引:0,他引:4  
为降低筛分作业后籽粒损失率,同时保证籽粒清洁率,分析了玉米脱出物在气流场中运动状态,基于贝壳筛设计阶梯式筛体,并通过籽粒碰撞理论设计阶梯缓冲带,使籽粒在阶梯暂时"滞留",减轻杂余对籽粒夹带作用。在筛面振幅19 mm条件下,采用CFD-DEM耦合仿真方法,以入风口气流速度、气流角、阶梯高度和筛面振动频率为试验因素,玉米籽粒清洁率和损失率为试验指标,进行二次正交旋转组合试验。通过响应曲面方法对试验结果进行分析,利用软件对回归数学模型进行优化。结果表明:当气流速度、气流角、阶梯高度和振动频率分别为16 m/s、25°、8.36 mm和4.45 Hz时,籽粒损失率和清洁率分别为1.69%和98.8%,通过贯流风阶梯式振动筛台架试验验证了结果的准确性。通过对比试验得到,阶梯式贝壳筛作业后籽粒损失率降低为2.12%,清洁率提高到99.16%,清选性能得到提高。  相似文献   

5.
蓖麻脱出物组分复杂,清选后含杂率高,且没有专用清选装置,清选效率低,为此设计一种双层倾斜振动风筛式蓖麻清选装置。首先对清选装置总体结构进行设计,采用双层风吹式同步振动结构。其次,对装置的振动筛、清选室、出料口等关键部件进行设计。采用离散元法对清选筛结构进行参数优化,以哲蓖4号为试验物料,测定物料离散元参数,通过单因素试验,分析上筛面筛孔排列型式、筛孔直径、筛面倾角对筛分效率和损失率的影响。确定最佳设计参数为U型筛孔排列、筛孔直径14mm、筛面倾角8°。为了获取最优的工作参数,采用离散元法与计算流体动力学(Computational fluid dynamics,CFD)耦合方法对清选过程进行仿真分析。对单目标函数进行参数优化,当振动筛振幅为8.43mm、振动筛振频为6.00Hz、气流横向角为40.00°时,蓖麻脱出物的最大筛分效率为98.20%。当振动筛振幅为7.00mm、振动筛振频为7.76Hz、气流横向角为40.81°时,蓖麻籽粒的最小损失率为2.02%。以振动筛的振幅、振频和气流横向角为试验因素,以筛分效率和损失率为试验指标,设计了正交组合试验,建立各因素与指标间的数学回归模型,并对模型进行参数优化。结果表明,当振动筛振幅9.00mm、振动筛振频6.16Hz、气流横向角40.00°时,蓖麻清选装置的筛分效率和蓖麻籽粒的损失率最优,分别为97.66%和2.32%。最后,设计出蓖麻清选装置,通过台架试验对最优参数组合进行试验,实际筛分效率与损失率分别为93.15%和6.94%,与预测结果误差在5%以内,同时实际所得到的籽粒含杂率为0.83%,满足使用要求。  相似文献   

6.
为降低筛分作业后籽粒损失率,同时保证籽粒一定清洁率,分析了玉米脱出物在气流场中运动状态,基于贝壳筛设计阶梯式筛体,并通过籽粒碰撞理论设计阶梯缓冲带,使籽粒在阶梯暂时“滞留”,减少杂余对籽粒夹带作用。在筛面振幅19 mm的条件下,采用CFD-DEM耦合仿真方法,以入风口气流速度、气流角度、阶梯高度和筛面振动频率为试验因素,玉米籽粒清洁率和损失率为试验指标,进行二次正交旋转组合试验。通过响应曲面方法对试验结果分析,利用软件对回归数学模型进行优化。结果表明:当气流速度、气流角度、阶梯高度和振动频率分别为16 m/s、25°、8.36 mm和4.45 Hz时,籽粒损失率和清洁率分别为1.69%和98.8%,均满足玉米籽粒联合收获机性能要求,进行贯流风阶梯式振动筛台架试验验证了结果准确性。通过对比试验得到,相比于平面贝壳筛,阶梯式贝壳筛作业后籽粒损失率降低为2.12%,清洁率提高到99.16%,清选性能得到提高。  相似文献   

7.
玉米清选组合孔筛体设计与试验   总被引:4,自引:0,他引:4  
为增强玉米清选筛体对高喂入量脱出物的筛分能力,以适应玉米联合收获机快速发展要求,以玉米籽粒为研究对象,对贝壳筛体作业机理进行分析,探究筛分过程中籽粒在贝壳筛体上运动状态,得到贝壳筛对籽粒的筛分特性和籽粒的透筛模型。为增大籽粒透筛概率,基于贝壳筛和圆孔筛的筛分特性,设计了贝壳-圆孔组合孔筛体。在玉米脱出物不同喂入量条件下进行仿真试验,对组合孔筛、圆孔筛、贝壳筛作业效果进行对比,结果表明:在喂入量为6 kg/s情况下,组合孔筛作业后的籽粒损失率、清洁率和筛分时间分别为1. 15%、97. 53%和5. 50 s,均满足国家标准要求,且组合孔筛的籽粒损失率比圆孔筛和贝壳筛分别减少了5. 79个百分点和7. 84个百分点,通过台架试验验证了仿真结果准确性。在喂入量分别为5 kg/s和6 kg/s条件下对组合孔筛与阶梯筛筛分效果进行对比,在喂入量为6 kg/s、气流速度为12. 8 m/s、气流方向角30°、振动频率为5. 15 Hz时,组合孔筛相对阶梯筛籽粒损失率降低5. 60个百分点,筛分时间缩短0. 93 s,清选效果提高。  相似文献   

8.
玉米收获机清选曲面筛设计与试验   总被引:3,自引:0,他引:3  
为提高玉米收获机风筛式清选装置的清选效果,通过筛上颗粒受力分析,确定筛上颗粒运动状态与筛面方程f(x)存在函数关系。以编织筛为研究对象,利用CFD-DEM耦合技术,通过对比清选装置内平面、凸面、凹面3种编织筛的气流场及不同区域筛分特点,提出一种正弦曲线编织筛,并与去除尾筛的正弦曲线筛进行性能对比,确定保留尾筛筛分性能更好。以正弦曲线筛筛形系数、入口气流速度、气流方向角为试验因素,以籽粒清洁率和籽粒损失率为评价指标,设计二次正交旋转组合试验,建立了各因素与指标间回归数学模型,运用Design-Expert软件的多目标优化算法进行参数优化。获得参数最优组合为:筛形系数32. 35 mm,入口气流速度13. 73 m/s,气流方向角23. 86°。当玉米脱出物喂入量为5 kg/s,筛面振动频率为5. 15 Hz时,利用高速摄像及室内台架进行了正弦曲线筛工作机理试验和性能对比试验。试验结果表明,正弦曲线筛可实现对杂余的快速推移,并提高籽粒透筛概率。正弦曲线筛清选装置的籽粒清洁率为98. 07%,籽粒损失率为1. 16%,相较平面编织筛清洁率提高2. 45个百分点、损失率降低0. 79个百分点,满足国家筛分质量评价技术规范要求。  相似文献   

9.
为满足玉米籽粒收获机对大喂入量玉米脱出物的清选要求,设计了一种使玉米脱出物在进入清选装置时分流的双层筛孔式抖动板。对玉米脱出物离开抖动板到达振动筛前的运动进行了分析,确定了上、下抖动板相对于振动筛的位置,并参考圆孔筛确定了上抖动板筛孔的分布和尺寸。以抖动板的安装倾角、振幅和频率作为试验因素,以振动筛筛分玉米脱出物时间、清选系统收集籽粒的清洁率和损失率为性能评价指标,基于CFD-DEM耦合仿真方法确定各试验因素对性能指标的影响,并设计了二次正交旋转中心组合试验,建立了各因素与指标之间的回归数学模型。在清选系统入口气流速度、气流方向角和玉米脱出物喂入量分别为12.8 m/s、25°和7 kg/s的条件下,获得最优参数组合:抖动板安装倾角、抖动板频率、抖动板振幅分别为-3.85°、5.62 Hz、44.77 mm,此时清选系统收集的籽粒清洁率为98.36%,籽粒损失率为1.45%,振动筛筛分玉米脱出物时间为6.74 s,并通过台架试验验证了仿真结果的准确性,相比于带有单层抖动板的清选系统,籽粒清洁率提高了1.72个百分点,损失率降低了0.84个百分点,振动筛筛分玉米脱出物时间缩短了0.57 ...  相似文献   

10.
为提高装置对大喂入量玉米脱出物的清选性能,基于曲柄-双摇杆设计了一种波浪筛机构,通过多筛片组“下凹”与“近似展平”姿态的连续转换,实现了整个筛体的波浪式运动,通过理论分析确定了波浪筛结构。采用CFD-DEM耦合仿真对波浪筛清选装置内气固两相运动进行了数值模拟,得出波浪筛清选装置内上部空间可形成一条高速气流带,其有利于杂余吹散,近筛层气流速度沿波浪筛纵向呈先降低后升高趋势,有利于配合筛片组的“下凹”与“近似展平”实现筛上物料运移与暂时滞留,在筛体波浪式运动下筛上籽粒陆续完成撞筛、滞留、抛起、越筛,此种筛分方式提高了籽粒的透筛效率。以清选装置入口气流速度、筛体安装倾角、驱动轴转速为试验因素,以籽粒的清洁率和损失率为指标,进行了二次正交旋转组合仿真试验,建立了各因素与指标间的数学模型,优化获得了各参数的最优组合为:清选装置入口气流速度为14.6 m/s,筛体安装倾角为8.5°,驱动轴转速为240 r/min。高速摄像台架试验结果表明:波浪筛上籽粒的实际运动与仿真中籽粒运动基本一致,验证了仿真结果的准确性;在玉米脱出物喂入量高达7 kg/s时,波浪筛清选装置籽粒的清洁率和损失率分别为99.12...  相似文献   

11.
在茶叶生产过程中,鲜叶原料分级是其中重要工序之一。当前,茶叶生产企业普遍采用传统滚筒式鲜叶分级机进行分级,对于机采作业而然,存在着鲜叶分级等次少、分级效果差、损伤率高、不方便收集等系列问题,难以适应机采鲜叶的分级要求。针对于这一情况,我们设计了一种新型螺旋导向鲜叶分级机构。本设计增加了筛筒长度,将鲜叶筛选分为四级,增加了分选等级;同时,通过筛筒内设置的双螺旋导向叶片的阻隔作用,延长筛选时间,提升筛选质量,通过改变筛筒形状结构,选用新型复合材料和不锈钢材料,降低机械对鲜叶的损伤率;其次,采用抽屉式的收集结构,更方便筛选后鲜叶的收集。此外,采用风机进行初步分选,减少了鲜叶分级后短碎叶含量,提升了后续分选效果,通过这一系列的改进设计,有望整体提升鲜叶筛选的效率及分级效果,从根本上解决机采鲜叶的分级问题。  相似文献   

12.
对振动筛摇杆的受力进行了研究,以久保田pro208半喂入水稻联合收割机的清选机构中振动筛的摇杆为研究对象,分析在振动筛运动时摇杆的受力状况,算出极限位置的受力状况,对极限位置应力分布进行分析,用SilulationXpress有限元分析工具对摇杆受力进行分析,并运用DOE技术进行结构优化,从而保证摇杆正常工作。  相似文献   

13.
农机化发展的新途径与对策   总被引:3,自引:4,他引:3  
农机化是农业现代化的基本内容和组成部分,推进农业现代化,必须首先发展农机化,这是提高农业生产率和效率的重要途径。积极探索农机化发展的新途径,努力提高农机装备水平,加大农机新技飞及机具的推广力度,充分发挥农机化在农业现代化建设中的主力军作用,用现代农业机械装备农业、改善农业生产条件,才能推进农业现代化进程。为此,论述了当前农机化存在的主要问题以及在农业结构调整和加入WT0后农机化发展的新途径,提出了推进农业机械化的对策。  相似文献   

14.
Y型网式过滤器多目标优化正交试验   总被引:1,自引:0,他引:1  
为了提高Y型网式过滤器水力性能和抗堵塞性能,以出口与筒体间夹角、入口缩小比、导流片高度和导流片圆心角为试验因素,采用CFD-DEM耦合和物理试验相结合的方法对过滤器内部的过滤过程进行探究。通过系列数值模拟正交试验结果的极差分析探索各因素对水头损失、中速过流量区域面积占比、颗粒分布相对标准偏差及拦截率4个指标影响的敏感度,结果表明:中、高速过流量区域均集中在出口侧,当出口与筒体间夹角越小时,出口截面积与其呈正相关,且对应中速过流区面积越大,水力性能越好。颗粒集中通过区域与中速过流量区域相对应,入口缩小比的增大使颗粒分布越均匀,抗堵塞性能越好。结构优化参数组合为:出口与筒体间夹角35°、入口缩小比22/26、导流片高度10mm、导流片圆心角90°,其中夹角对综合指标影响最为显著,是结构设计的关键参数。与改进前相比,水头损失减小了36.6%,相对标准偏差减小了43.26%,拦截率提高了3.93个百分点,中速过流量区域面积占比增加了15.77个百分点,表明了优化方案的有效性。研究结果可为网式过滤器的优化设计提供参考。  相似文献   

15.
大田滴灌用网式过滤器滤网堵塞成因分析   总被引:1,自引:0,他引:1  
过滤器是滴灌系统中最核心的设备,其中网式过滤器以其良好的过滤性能保障了滴灌系统的正常运行,在我国新疆等西北地区农业滴灌系统中应用最广泛。但其应用过程中也存在滤网清洗不彻底以及堵塞的问题,为此,在对网式过滤器滤网堵塞成因及机理进行全面论述基础上,分别从水源水质、不同滤网类型、反清洗设计问题以及水肥一体化对滤网的化学影响等方面对滤网堵塞成因进行了详细的分析,并提出相应对策;这为今后深入研究滤网堵塞机理、解决滤网堵塞问题提供一种思路,为进一步研制更适用西北地区的农业滴灌过滤设备提供理论依据。  相似文献   

16.
网式过滤器滤网堵塞成因分析与压降计算   总被引:7,自引:0,他引:7  
为分析网式过滤器滤网堵塞的过程和成因,并获得滤网堵塞后压降计算的相关参数,对网式过滤器进行堵塞试验。试验结果表明:滤网堵塞经历了介质堵塞和滤饼堵塞2个过程,形成的滤饼内层泥沙颗粒粒径较大,外层颗粒粒径分布较均匀;滤网孔径和含沙量是影响堵塞的重要因素,滤网孔径越小,滤网堵塞所用时间越短;相同孔径下,含沙量越大,堵塞所用时间越短,滤网越容易堵塞。根据试验结果建立了滤网内外压降与滤网孔径、滤网厚度、孔隙率、形成滤饼层厚度、滤饼孔隙率等的定量关系式,并分别计算了孔径为430、280、200μm滤网的内外压降,并与实测压降进行了对比分析。结果表明,计算得到的滤网内外压降与实测值基本一致,可以反映滤网堵塞的规律;滤网内外压降随水流流量、滤网厚度、形成滤饼层厚度增大而增大,滤网孔径越小,滤饼孔隙率越小,滤网两侧压降越大。  相似文献   

17.
针对绿豆收获清选过程中清选损失率高、籽粒含杂率高的问题,研发了一种双斜面风筛式绿豆清选装置。运用流固耦合仿真模拟绿豆清选过程,并开展了正交试验。同时运用二次回归方程分析和响应面分析等方法对相关试验因素对籽粒含杂率、清选损失率的影响进行了探究。进行了最优组合参数验证试验,试验结果表明,该参数组合符合性能指标要求,实物模型可用于后期田间试验。  相似文献   

18.
多维并联振动筛筛分过程解析与筛面运动形式优选   总被引:1,自引:0,他引:1  
针对物料在多维并联振动筛筛面上的运动过程及其规律不明确,以及采用何种筛面运动形式最佳的问题,研究了物料颗粒在多维振动筛筛面上的运动过程,并提出最佳的筛面运动形式。引入分散度与分层速率2个指标,基于颗粒离散单元法(DEM)研究各单自由度振动对筛面上物料分散和分层过程的影响,优选出分散度和分层速率较优的4个单自由度振动,即:分别沿筛面长度、宽度和高度方向的移动x、y和z,以及绕筛面法线方向的转动γ,其中,x和y单自由度振动效果尤为明显。在优选振动自由度组成的各种振动形式下,基于筛分效率和含杂率,对多维振动筛面的物料透筛过程进行模拟研究,表明:3平移1转动(3T-1R)四维振动形式透筛性最好,为理想的筛面运动。据此设计了一种3T-1R并联机构,并在样机上进行了筛分试验验证。  相似文献   

19.
不同工况下Y型网式过滤器流场数值模拟分析   总被引:1,自引:0,他引:1  
为探究网式过滤器的水力性能,充分了解网式过滤器内部最初流场、滤芯网面流量分布情况,应用计算流体动力学方法对网式过滤器3种入口流速(0.5、1.5、2.5 m/s)以及3种滤网目数(60、80、100目)对过滤器流场进行数值模拟。通过试验对模拟结果的可靠性进行验证,结果表明:过滤器的水头损失集中在出口侧滤芯上,该部分水头损失占总损失的87%;水流在腔体内可分为出口侧加速区、出口侧减速区、堵头回流区和漩涡区4部分;滤网面流量分布严重不均,高流量区域主要分布在出口侧,入口流速由0.5 m/s增至2.5 m/s过程中,网面最大与最小流量均相差3.3倍,滤网目数为60、80、100目时,网面最大与最小流量相差3.3、3.1、2.3倍,且滤网目数增至100目时,最大与最小流量位置向两侧偏移;堵头处死水区压力大、流速低,泥沙易于沉淀,建议扩大堵头容积以承接更多的泥沙;可以考虑增大腔体体积、改变腔体角度、在入口处设置导流片,从而改善流场分布;建议在滤网上增加环状片体,改善网面流量分布,从而提高过滤器的使用寿命以及过滤效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号