首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Uncoated Norway spruce specimens from different spatial positions within stems from two origins with different growth conditions were exposed to liquid water over a prolonged time, and apparent diffusion coefficients and rates of void filling were calculated from sorption curves. Both apparent diffusion and rate of void filling were significantly affected by origin and by the difference between inner and outer boards. The differences between inner and outer boards were explained by heartwood proportion and density, but some effects of origin remained when these properties were accounted for. The apparent diffusion coefficient was reduced by increasing density, and increased by increasing heartwood proportion. Void filling rate was reduced by both increasing density and increasing heartwood proportion. Since the effect of heartwood proportion was more pronounced in the material from the highly productive area, it may have been confounded with properties of juvenile wood.  相似文献   

2.
To evaluate the mass of coarse woody debris (CWD), it is necessary to quantify its density. Drill resistance measurements are introduced as a approach to estimate the density of CWD in different stages of decay. Dead logs of Norway spruce [Picea abies (L.) Karst.] from a Central European mountainous site were used as a test system to compare the new method with conventional predictors of wood density such as fast quantitative field estimates (e.g., knife probe) and classification of decay classes based on a set of qualitative traits and quantitative estimates. The model containing only drill resistance as a predictor explained 65% of the variation in wood density and was markedly better than models containing one or more of several conventional predictors. However, we show that the relationship between drill resistance and gravimetric wood density relationship is sensitive to the decay status. Therefore, the best model combines drill resistance and decay class (adj. R2 = 0.732). An additional experiment showed that drill resistance is also sensitive to the moisture state (fresh vs. oven-dry) of the sample. The major potential of the method lies in its non-destructive nature which allows repeated sampling in long-term ecosystem studies or in protected areas where destructive sampling is prohibited. The limitations of the method are discussed and recommendations for applications are given.  相似文献   

3.
Snow is an important ecological factor limiting vegetation distribution, growth, and regeneration, and the importance of snow in the latitudes of Central Europe is expected to increase in the future. We assessed snow damage to secondary spruce stands (not of native provenance therefore not adapted to local conditions) in a mountainous region of 14500 ha in Central Europe (Moravian-Silesian Beskids, Czech Republic). We used neural networks-based regression modeling to study the relationship between stand and environmental parameters and four types of snow damage (top tree, crown, and stem breakage, and uprooting) that occurred during heavy snowfalls in winter 2005/2006 and 2009. Almost 40000 trees were sampled in 345 plots after each of these two events.The results suggest that parameters that can be controlled by forest management (mainly stand density and taper) were not closely associated with spruce forest resistance to snow damage. Investigated snow damage types were primarily related to the developmental stage of the stand, as indicated by stand volume, age, height, and diameter. Damage in 2009, which was caused by shorter-lasting and lower snow loads than the damage in 2005/2006, was also associated with elevation and snow depth. The response of snow damage to all stand development-related variables was clearly unimodal.We infer that forest management can reduce snow damage to secondary spruce forests in Central Europe only to a limited extent, especially under heavy snow loads. This conclusion is supported by the heavy snows that have frequently fallen on forests in Central Europe in the past and the projected increase in winter precipitation in mid- and northern latitudes; thereby increasing snow damage to forest in the future. Therefore, managers of such spruce forests should not specifically consider forest resistance to snow damage but should apply general practices that maintain forest health and productivity.  相似文献   

4.
The effects of stand density on increment and branch properties were studied in three spacing experiments of Norway spruce [Picea abies (L.) Karst.]. The stand densities ranged from 350 stems ha−1, regarded as open-grown trees, up to 1,600 stems ha−1, corresponding to the density recommended for forestry practice. Properties of all the branches were measured from the stem apex downwards. The study material included a total of 5,661 branches from 45 trees. Increasing stand density resulted in a decrease in radial increment as well as shorter and narrower crowns, but it had no effect on height increment. The average number of spike knots per tree was 0.87, 0.27, and 0.33 in densities of 350, 700 and 1,600 ha−1, respectively. Additionally, in the widely spaced stands of 350 stems ha−1, the fraction of trees having spike knots was high (over 50%). At a density of 1,600 ha−1, the sample trees had somewhat less branches in a whorl compared with the more widely spaced plots. The most pronounced effect of stand density was the increase in branch diameter with decreasing stand density. At a density of 350 ha−1, the maximum branch diameter of all the sample trees exceeded the diameter limit of quality class B in the European quality requirements for round wood. The results give some indication that trees subjected to severe competition would produce smaller branches per unit of crown projection area. However, the possibilities for reducing branch dimensions relative to stem and crown size through competition appear quite restricted.  相似文献   

5.
The effects of early re-spacing on the physical and mechanical properties of Sitka spruce (Picea sitchensis [Bong.] Carr.) structural-dimensioned timber were studied using material from a fully replicated 57-year-old trial located in Northern Ireland, which had been thinned at age 11 years. Basic density, distortion (spring, twist and bow), modulus of elasticity (MOE) and modulus of rupture (MOR) in bending of structural timber from four different re-spacing treatments (1.83 m × 3.66 m, 3.66 m × 3.66 m, 3.66 m × 5.49 m and 5.49 m × 5.49 m) were compared with those of timber from a control (1.83 m × 1.83 m). Re-spacing intensity had a significant effect on both modulus of elasticity (p = 0.006) and modulus of rupture (p = 0.009), but not on basic density (p = 0.379) or distortion (p > 0.200). Timber from the two widest re-spacing treatments failed to meet the requirements for the C14 strength class, while timber from the control met the requirements for the C16 strength class. Both MOE and MOR were significantly and negatively associated with knot size and frequency, which in turn increased with re-spacing intensity. Overall, re-spacing intensity only explained approximately 10% of the total amount of variation in both MOE and MOR, with most of the variation due to inter- and intra-tree differences within a treatment. Based on these results, re-spacing of Sitka spruce to a residual stand density of less than 900 trees/ha (3.33 m × 3.33 m) is not recommended if the goal of management is to produce C16 structural timber.  相似文献   

6.
Intr0ducti0nNorwayspruce(PiceaabiesKarst)is0l1eoflI1e111ostimportal1tc011iferinFra11ce.lnl99l,tI1etotaIareaofNorwaysprLICewasestimatedt0be723000I11112.ItsvoIUmewasl27Inilli0I1m3.Tl1eanl1uaIvoILl111eiI1crc-mentwas5.74millionm3.ltiswideIyacceptedII1atIargeri11itialspacingssI1ouldbeusednow.l111940's,thedensity0ftl1epIantatiol1rangedfr0m5000to10000stems/hm2.Nowtl1einitiaIdensityvariesbetweenI000to250Ostems/I1m2.TI1eIargestspacit1g111aybe650~800stems/hm2.S0ithasasignifica11cetostLldyt…  相似文献   

7.
We developed individual tree height growth models for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in Norway based on national forest inventory data. Potential height growth is based on existing dominant height growth models and reduced due to competition by functions developed in this study. Three spatially explicit and two spatially non-explicit competition indices were tested. Distance effects and diameter ratio effects were estimated from the data simultaneously with parameters of the potential modifier functions. Large height measurement errors in the national forest inventory data caused large residual variation of the models. However, the effects of competition on height growth were significant and plausible. The potential modifier functions show that height growth of dominant trees is largely unaffected by competition. Only at higher levels of competition, height growth is reduced as a consequence of competition. However, Scots pine also reduced height growth at very low levels of competition. Distance effects in the spatially explicit competition indices indicated that the closest neighbors are most important for height growth. However, for Scots pine also competitors at larger distance affected height growth. The five competition indices tested in this study explained similar proportions of the variation in relative height growth. Given that unbiased predictions can only be expected for the same plot size, we recommend a spatially explicit index, which describes the distance function with a negative exponential, for use in growth simulators.  相似文献   

8.
Seedling of Norway spruce (Picea abies L.) were grown under three different light qualities in fluid-roof growth chambers. Blue light with a high red/far-red ratio decreased shoot length as well as total plant dry weight compared to natural light. Yellow light with a low blue/red ratio did not significantly affect the plants. The effects of light quality were generally the same at 18, 24 and 28 °C day temperature. Plant growth was reduced at temperatures above 24 °C.  相似文献   

9.
The effects of boron (B) fertilizer applied 10 growing seasons earlier were studied in mature Norway spruce (Picea abies (L.) Karst.) trees in long-term factorial fertilization experiments at two field sites. Needle nutrient status, above-ground and below-ground growth and δ13C and carbon concentrations in the annual rings were measured. Needle B concentrations varied between 4 and 19 mg kg−1 on the plots that had not received B fertilization. On the B-fertilized plots they varied between 15 and 39 mg kg−1. The lowest B concentrations were on the plots that had received N or NCa fertilization. Needle Mn and Zn concentrations were lower on the B plots than on the plots that had not received B fertilization, although not significantly. Mean annual volume growth was slightly higher on the B plots at the more fertile site, but not at the less fertile one. The living:dead fine root mass ratio and living fine root length were also higher on the B-fertilized plots than on the unfertilized plots, but δ13C was not significantly affected, suggesting that the water status of the trees was not markedly altered by the increase in root growth. The carbon concentration in the annual rings was higher in the B-fertilized trees than in the unfertilized ones, suggesting the importance of B for wood formation.  相似文献   

10.
Timber storage is a key aspect of storm damage management. After huge storms, sprinkling storage is usually the most used conservation process but anaerobic storage in sealed silos appears as good alternative to preserve wood quality over long periods. This paper investigates the impact of long-term (57 months) storage of Norway spruce logs in anaerobic atmosphere on wood properties. Tests were performed on clear wood specimens and on lumbers to determine the modulus of elasticity (E), the static bending strength (σf) and the dynamic bending strength (K). Storage effects on impregnability and colour variation were also studied. Results show no effect of storage on E, σf and K. The naturally poor impregnability of Norway spruce is not improved by the anaerobic conditions, compared to traditional wet storage. Triangle tests reveal no discernible colour variation between logs that underwent anaerobic storage and the control sample. As a conclusion, despite a mould (Gliocladium solani) frequently observed on logs surface after the storage, the process offers ideal conservation conditions. While overall cost remains the main drawback for using anaerobic storage at large scale, the process can be recommended for high value logs, especially since it has few environmental impacts.  相似文献   

11.
The effects of genetic entry and competition on the above ground dry biomass production (i.e. stem wood, needles, branches and harvest index) was studied in 20 Norway spruce (Picea abies (L.) Karst.) clones grown in southern Finland. Furthermore, the measured above ground biomass components were compared against the corresponding estimations based on biomass models developed previously. The clones included both Finnish and Russian clones, as well as provenance-hybrids clones. Differences existed between clones in stem dry mass production, but not in harvest index or in crown dry mass. However, the competition caused by neighboring trees also significantly affected above ground dry biomass, as well as the biomass of crown and stem separately. Differences in competition between the clones could not be found. Unlike the dry mass of branches, the dry mass of needles and stem could be estimated well for individual sample trees with the available biomass models. Moreover, the clone with the largest above ground dry biomass production had nearly doubled production, on average, than the average over all clones. Thus, some of the clones showed especially high potential for biomass recovery in energy wood thinning.  相似文献   

12.
Abstract

Wood properties, including tracheid cross-sectional dimensions, show a large degree of variation. To improve the properties of products made from wood, different methods to control variation have been developed. This study aims to determine the theoretical efficiency of three control strategies: the fractionation of pulped tracheids into earlywood and latewood, the separation of juvenile and mature wood, and sorting of logs according to tree size. The efficiency of each method was studied by first constructing virtual trees from measured tracheid cross-sectional dimensions, then simulating the efficiency of above-mentioned methods. The tracheid dimension data include Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.). The simulations show that separation into earlywood and latewood classes has the highest theoretical efficiency and yields the lowest variances in raw material. Classification into juvenile and mature wood groups is the second most efficient method, and the sorting of logs according to the size class of the tree is the least efficient method. It was also concluded that the variation in cell-wall thickness and radial diameter mainly originates from differences between earlywood and latewood, whereas the variation in tangential diameter mainly originates from differences between mature and juvenile wood.  相似文献   

13.
In the Nordic countries, Norway spruce (Picea abies) is a major species in tree breeding. In order to facilitate breeding work and availability of highly bred forest regeneration material, the time required for breeding and implementation of results should be shortened. This could be done by accelerating production of clonal material for field testing, and possibly for planting stock, by combining production of rooted cuttings with somatic embryogenesis (SE). This would allow efficient production of numerous plants of the same genotype, with equal age and propagation history between genotypes. In the present work, we studied the rooting potential of cuttings from Norway spruce emblings. Altogether 36 clones from 12 families representing elite breeding materials and ornamental forms were examined under different rooting conditions (container type and rooting media) in 2015 and 2016. Our results show that Norway spruce emblings are good donors for cuttings. Best combination (peat–vermiculite mixture and Plantek 81f containers) resulted in 91% rooting, variation among the tested clones of elite breeding materials being 55–100% per treatment. The rooting variation between families is acceptable for breeding purposes. High rooting (87–96%) of ornamental forms indicates propagation potential with the combination of SE and rooted cuttings.  相似文献   

14.
In this work, a set-up with a device measuring the mass of wood packages is examined as an aid to estimate the average moisture content (MC) of wood packages. As the basic density needs to be presumed in the set-up, an estimator of the basic density as a function of log diameter is determined for Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris). In total, 1920 specimens were collected at two different sawmills and analysed for this purpose. Specimens collected at the butt-end of pine had the greatest variation in basic density and it is recommended that they should be omitted when sawmills create their own functions for basic density estimation. Furthermore, the variation in basic density was shown to have the greatest impact on the estimated MC. A maximum error estimator of the MC became 14% at a MC of 70% and 9% at a MC of 10%. It was therefore concluded that the described method should not be used to estimate the MC of packages after drying but can serve as a valuable indicator of average green MC of a drying batch.  相似文献   

15.
挪威云杉种源及家系种子播种品质的研究   总被引:1,自引:0,他引:1  
通过对引进的芬兰挪威云杉5个种源和窄冠垂枝挪威云杉10个家系种子播种品质的方差分析和聚类分析研究表明,挪威云杉种源和窄冠垂枝挪威云杉家系种子净度达98%以上。种子的播种品质与地理分布和起源有关。由北向南种子的千粒重增加、发芽率提高、死亡率下降。另外,天然起源的种子播种品质低于种子园的种子。窄冠垂枝挪威云杉因天然分布区域极为狭窄、种群规模过小,导致由其它因素造成的未萌发百分率高。  相似文献   

16.
The supply of energy wood from young forests could be enhanced by altering the harvesting methods in integrated pulpwood and energy wood thinnings. In this study, effects of different bucking and delimbing options on the biomass division into energy wood, pulpwood and logging residue were estimated in integrated thinnings of young stands dominated by Scots pine (Pinus sylvestris), Norway spruce (Picea abies) or birches (Betula spp.) in Finland. Thinning options were simulated in the harvestings of model stands created on the basis of forest inventory data. Increasing the minimum top diameter of pulpwood (MTDP) expectedly increased energy wood and decreased pulpwood yields. Depending on tree species, energy wood yield increased by 36–65% when the top diameter was increased from the regular level (6 or 7 cm) to 8 cm in whole-tree harvesting, and was more than doubled when the top diameter was increased to 10 cm. Delimbed energy wood yield was increased by 240–280% when the top diameter was increased to 10 cm. Total harvesting yield in whole-tree thinnings was slightly increased by increasing top diameter. These increments in harvesting yields and reallocations of tree biomass could have an impact on large-scale forest energy potentials.  相似文献   

17.
In this work, empirical ring-based models were developed to predict the distribution of early wood percentage, wood density and fibre length along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management. The performance of the ring-based models was also compared for Scots pine and Norway spruce with corresponding disc-based (cross-sectional) models. Moreover, both models were integrated with example simulations by a process-based growth and yield model to analyze how management, such as thinning, affects the growth and wood properties of Scots pine trees over a rotation as an average for the tree stem, but also along the stem.The ring-based models built for annual early wood percentage (explained by ring width), air dry wood density (explained by early wood percentage and cambial age) and fibre length (explained by radial growth percentage and cambial age) predicted reasonably well the wood properties both at an intra-ring level, but also at a cross-sectional level. These predictions were also reasonably well in line with corresponding cross-sectional predictions by the disc-based models (which predicted the properties based on the number of annual rings and diameter at breast height and/or the cross-section being considered and temperature sum). The example simulations also demonstrated that both models predicted slightly lower wood density for dominant trees compared to dominated ones grown in thinned and unthinned Scots pine stands over a rotation. Unlike the disc-based model, the ring-based model predicted, on average, higher early wood percentage in dominant trees than in dominated ones. However, fibre length was not significantly affected when the averages of the whole stems were predicted, and this held true for both ring- and disc-based models.In summary, the incorporation of empirical ring-based wood property models into a process-based growth and yield model, offers a means to study in detail how environmental conditions, forest structure and management affect the quantity and properties of stem wood produced over a rotation. The disc-based wood property models used in this work are based on data with large geographical and genetic variation, and therefore may turn out to be more applicable for predicting future wood and fibre resources at a regional and national level. This kind of integrated use of wood property models with a process-based growth and yield model could help us to evaluate the forest resources under current and changing climate.  相似文献   

18.
Abstract

Untreated Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) samples were exposed above ground in a durability test for 6 years. The samples consisted of three pieces of wood, 22×95×500 mm, screwed together; two pieces lengthwise with a third piece overlapping. Weight was measured, to calculate moisture content (MC), and samples checked regularly for cracks and fungal growth. Parameters investigated were heartwood/sapwood (pine), annual ring orientation (spruce), stand site, annual ring width and density. Stand site, annual ring width and density had no influence on MC or fungal growth for either pine or spruce. Spruce samples with vertical annual rings had fewer cracks than samples with horizontal annual rings. Pine sapwood samples had a high MC and a large amount of rot fungi, while heartwood had a lower MC and no rot. Most spruce samples were similar to pine heartwood, except from a few samples that had high MC and fungal growth. Those were all sawn from the outer part of the log. Therefore, it can be stated that spruce sawn from the inner part has almost the same properties as pine heartwood, while spruce from the outer part of the log has similar properties to pine sapwood.  相似文献   

19.
Abstract

One of the main objectives of thermal modification is to increase the biological durability of wood. In this study the fungal resistance of Norway spruce and Scots pine, thermally modified at 195°C and 210°C, was studied with a lap-joint field test. Untreated pine and spruce and pine impregnated with tributyl tin oxide (TBTO) and copper, chromium and arsenic (CCA) were selected as reference materials. The evaluations were carried out after 1, 2 and 9 years of exposure. After 1 and 2 years of exposure mainly discoloration was detected. Only the untreated pine was slightly affected by decay fungi. There were significant differences in the decay ratings of untreated and thermally modified wood materials after 9 years in the field. While the untreated wood materials were severely attacked by decay fungi or reached failure rating, only small areas of incipient decay were detected in the thermally modified samples. Thermally modified pine was slightly more decayed than thermally modified spruce. The only wood material without any signs of decay was CCA-treated pine, since some of the TBTO-treated pine samples were also moderately attacked by fungal decay. The results of the lap-joint test had a good correlation with mass losses in a laboratory test with brown-rot fungi.  相似文献   

20.
Abstract

Wood drying experiments were conducted in which the temperature and the drying rate were controlled independently. The mechanical properties of dried wood in radial loading were analysed in relation to drying parameters. Mass loss, due to thermal degradation of the wood structural components, occurred predominantly in slow high-temperature drying processes. Despite the higher mass loss, slowly dried wood showed similar radial strength and stiffness to rapidly dried wood. The formation of irreversible hydrogen bonds (hornification) within the wood structure may compete with the effects of mass loss on the radial mechanical behaviour of wood. However, both the mass loss and the hornification resulted in wood specimens with lower hygroscopicity. Application of slow high-temperature drying to reduce microscopic cell-wall damage, caused by anisotropic shrinkage of cell-wall layers, did not seem to affect the radial mechanical properties of wood. The effects of stress relaxation within the wood cell wall on the mechanical behaviour of wood may be offset by the degradation of structural components along with drying. Radial mechanical properties may be improved by rapid high-temperature drying up to high final dryness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号