首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tomato leaves showing severe leaf spot symptoms have been observed and sampled in the central west and southwest Taiwan during 2015 and 2016. The symptoms were similar to those of bacterial leaf spot/late blight diseases, but only Stemphylium-like fungi were consistently isolated from the diseased tomato. Upon spray inoculation of tomato, Stemphylium-like isolates caused leaf spot symptoms identical to those of naturally infected plants, and the pathogenic isolates were successfully re-isolated from inoculated leaves. The tomato-pathogenic isolates were identified as S. lycopersici based on morphological characterization and molecular identification. S. lycopersici has been previously reported to cause gray leaf spot of tomato in the temperate regions, but the majority of S. lycopersici-caused lesions were black/dark brown rather than gray in our surveillance. Accordingly, it is suggested that S. lycopersici-caused disease of tomato is named Stemphylium leaf spot of tomato more appropriately than tomato gray leaf spot. Moreover, S. lycopersici-caused leaf spot disease on tomato has been distributed in major tomato production regions in Taiwan. The information provided by our study will be important for future breeding of tomato cultivars, especially for tomato producers in Taiwan.  相似文献   

2.
Isolates of Pyrenochaeta lycopersici, the causal agent of corky root rot on tomato plants, were assessed for physiological and genetic characteristics using conventional and molecular techniques. All isolates were able to produce necrosis on tomato roots and classified into temperature group according to the optimal growth temperatures. Specific-PCR assays and DNA sequence analysis of the ribosomal DNA (rDNA) internal transcribed spacer region confirmed the existence of both types (Type 1 and Type 2) of the pathogen among the isolates tested. All isolates were identified as Type 2 except for isolate Pl-4, which was classified as Type 1. Restriction fragment length polymorphism (RFLP) analysis with six enzymes resulted in three distinct banding patterns among the isolates depending on the length and restriction profiles of the rDNA intergenic spacer region. Inter-simple sequence-repeat analysis revealed a high level of genetic diversity among the isolates in agreement with the data of RFLP analysis. These results indicated that there were three different intraspecific groups among Turkish isolates of P. lycopersici. The presented study is the first attempting to characterize Turkish isolates of P. lycopersici. The results obtained will be useful in screening of tomato seedlings for resistance to P. lycopersici.  相似文献   

3.
Stemphylium lycopersici (Enjoji) W. Yamam was initially described from tomato and has been reported to infect different hosts worldwide. Sequence analyses of the internal transcribed spacer (ITS) regions 1 and 2, including 5.8S rDNA (ITS-5.8S rDNA) and glyceraldehyde-3-phosphate dehydrogenase (gpd) gene, random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR), as well as virulence studies were conducted to analyze 46?S. lycopersici isolates. Stemphylium lycopersici isolates used in this study were obtained from diseased tomato (Solanum lycopersicum L.), eggplant (Solanum melongena L.), pepper (Capsicum annuum L.) and lettuce (Lactuca sativa L.) from major vegetable growing regions of Malaysia, including the three states of Pahang, Johor and Selangor between 2011 and 2012. Phylogenetic analysis of a combined dataset of the ITS-5.8S rDNA and gpd regions indicated that all isolates were clustered in the sub-cluster that comprised S. lycopersici, and were distinguished from other Stemphylium species. Cluster analyses using the UPGMA method for both RAPD and ISSR markers grouped S. lycopersici isolates into three main clusters with similarity index values of 67 and 68 %. The genetic diversity data confirmed that isolates of S. lycopersici are in concordance to host plants, and not geographical origin of the isolates. All S. lycopersici isolates were pathogenic on their original host plants and showed leaf spot symptoms; however, virulence variability was observed among the isolates. In cross-inoculation assays, the representative isolates were able to cause leaf spot symptoms on eggplant, pepper, lettuce and tomato, but not on cabbage.  相似文献   

4.
Leaf mold symptoms were found on tomato varieties carrying the Cf-9 resistance gene against Passalora fulva, the causal agent of leaf mold, in Japan in 2008. Disease symptoms and morphological characteristics of the isolates were similar to those of P. fulva. After inoculating a set of tomato differentials with the isolates, all isolates were identified as race 2.9 of P. fulva, previously unreported.  相似文献   

5.
Molecular and biological characterization of the begomovirus isolate BR:LNS2:Pas:01, obtained from yellow passionfruit plants in Livramento de Nossa Senhora, Bahia state, Brazil, was carried out. Sequence analysis demonstrated that the BR:LNS2:Pas:01 DNA‐A had highest nucleotide sequence identity with Tomato chlorotic mottle virus (77%) and had five ORFs corresponding to the genes cp, rep, trap, ren and ac4. The DNA‐B had highest nucleotide sequence identity with Tomato yellow spot virus (74%) and two ORFs corresponding to the genes mp and nsp. These identity values indicate that this isolate represents a new begomovirus species, for which the name Passionfruit severe leaf distortion virus (PSLDV), is proposed. Phylogenetic analysis clustered the PSLDV DNA‐A and ‐B in a monophyletic branch with Brazilian tomato‐infecting begomoviruses. The isolate’s host range was restricted to species from the Passifloraceae and Solanaceae. PSLDV‐[BR:LNS2:Pas:01] was capable of forming pseudorecombinants with tomato‐infecting begomoviruses, reinforcing its close relationship with these viruses and suggesting a possible common origin. However, the virus was not capable of infecting tomato.  相似文献   

6.
甘肃省红豆草病原真菌鉴定及病害发生动态调查   总被引:4,自引:1,他引:3  
为明确甘肃省红豆草的病害种类、发生动态和危害状况,采用病原物分离与培养、形态学及分子生物学鉴定和致病性测定确定红豆草病害种类,于2012—2013年在通渭、渭源、榆中和碌曲4县调查各病害的发病率以确定发生动态,观察病害田间发生特点并结合调查数据评价其重要性。结果表明,4县共发生真菌性病害12种,分别为大茎点霉叶斑病(病原为大茎点霉属真菌Macrophoma sp.)、壳针孢叶斑病(病原为歪头菜壳针孢Septoria orobina)、炭疽病(病原为白蜡树刺盘孢Colletotrichum spaethianum)、黑秆病(病原为红豆草壳二孢Ascochyta onobrychis、菠菜刺盘孢C.spinaciae和链格孢Alternaria alternata混合侵染)、壳二孢叶斑病、茎点霉叶斑病、尾孢叶斑病、柱格孢白斑病、匍柄霉叶斑病、链格孢黑斑病、锈病和白粉病,其中大茎点霉属真菌、白蜡树刺盘孢和菠菜刺盘孢在红豆草上首次发现;尾孢叶斑病和壳针孢叶斑病为甘肃新记录病害;大茎点霉叶斑病为世界新病害,仅于碌曲县发现。白粉病、锈病、链格孢黑斑病发生于红豆草生长后期,其它病害则始于6月;6—9月危害加重的为黑秆病和柱格孢白斑病,发病率最高达89.7%和96.0%;危害渐轻的为茎点霉叶斑病、壳二孢叶斑病和壳针孢叶斑病,发病率最高达88.7%、57.4%和45.1%。黑秆病和茎点霉叶斑病在甘肃省目前危害最重。  相似文献   

7.
The infectivity of a Japanese isolate of tomato powdery mildew, Oidium neolycopersici KTP-01, to tomato cultivars was examined using a resistant cultivar Grace bred in The Netherlands to O. lycopersici, which was recently proposed to be renamed O. neolycopersici. Grace was severely infected with KTP-01, and its susceptibility was similar to that on susceptible tomato cultivars Moneymaker and Ponderosa, suggesting that KTP-01 differs in pathogenicity on tomatoes from those of European and American isolates.  相似文献   

8.
Nine accessions of three cucurbit species, ten of eight legume species, three of lettuce (Lactuca sativa) and 34 of 14 Solanaceae species were inoculated with a Dutch isolate of the tomato powdery mildew fungus (Oidium lycopersici) to determine its host range. Macroscopically, no fungal growth was visible on sweet pepper (Capsicum annuum), lettuce, petunia (Petunia spp.) and most legume species (Lupinus albus, L. luteus, L. mutabilis, Phaseolus vulgaris, Vicia faba, Vigna radiata, V. unguiculata). Trace infection was occasionally observed on melon (Cucumis melo), cucumber (Cucumis sativus), courgette (Cucurbita pepo), pea (Pisum sativum) and Solanum dulcamara. Eggplant (Solanum melongena), the cultivated potato (Solanum tuberosum) and three wild potato species (Solanum albicans, S. acaule and S. mochiquense) were more heavily infected in comparison with melon, cucumber, courgette, pea and S. dulcamara, but the fungus could not be maintained on these hosts. All seven tobacco (Nicotiana tabacum) accessions were as susceptible to O. lycopersici as tomato (Lycopersicon esculentum cv Moneymaker), suggesting that tobacco is an alternative host. This host range of the tomato powdery mildew differs from that reported in some other countries, which also varied among each other, suggesting that the causal agent of tomato powdery mildew in the Netherlands differ from that in those countries. Histological observations on 36 accessions showed that the defense to O. lycopersici was associated with a posthaustorial hypersensitive response.  相似文献   

9.
 In May 1998 leaf spot caused by Septoria chrysanthemella was found on Aster savatieri in Kanagawa Prefecture, Japan. This is the first report of leaf spot on A. savatieri caused by S. chrysanthemella. Received: September 13, 2002 / Accepted: October 18, 2002 Acknowledgments The authors thank Dr. T. Kobayashi, formerly of Tokyo University of Agriculture, for his advice on identifying the fungus.  相似文献   

10.
Brassica crops are of global importance, with oilseed rape (Brassica napus) accounting for 13% of edible oil production. All Brassica species are susceptible to sclerotinia stem rot caused by Sclerotinia sclerotiorum, a generalist fungal pathogen causing disease in over 400 plant species. Generally, sources of plant resistance result in partial control of the pathogen although some studies have identified wild Brassica species that are highly resistant. The related pathogen Ssubarctica has also been reported on Brassica but its aggressiveness in relation to S. sclerotiorum is unknown. In this study, detached leaf and petiole assays were used to identify new sources of resistance to S. sclerotiorum within a wild Brassica ‘C genome’ diversity set. High‐level resistance was observed in B. incana and B. cretica in petiole assays, whilst wild B. oleracea and B. incana lines were the most resistant in leaf assays. A B. bourgeai line showed both partial petiole and leaf resistance. Although there was no correlation between the two assays, resistance in the detached petiole assay was correlated with stem resistance in mature plants. When tested on commercial cultivars of B. napus, B. oleracea and B. rapa, selected isolates of S. subarctica exhibited aggressiveness comparable to S. sclerotiorum indicating it can be a significant pathogen of Brassica. This is the first study to identify B. cretica as a source of resistance to S. sclerotiorum and to report resistance in other wild Brassica species to a UK isolate, hence providing resources for breeding of resistant cultivars suitable for Europe.  相似文献   

11.
Calonectria leaf blight, caused by Calonectria pteridis, is currently one of the main foliar diseases in eucalypt plantations in Brazil. In warm and high rainfall regions, the disease can be a limiting factor for eucalypt production when planting susceptible genotypes. The most effective method for controlling this disease in the field is the use of resistant genotypes, which requires knowledge of the genetic variability and aggressiveness of the pathogen population for effective deployment of plant resistance. This work evaluated the genetic diversity and aggressiveness of C. pteridis populations obtained from infected eucalypt plants in Monte Dourado (Pará state) and Imperatriz (Maranhão state), Brazil. To study the genetic diversity, 16 ISSR primers were tested, five of which amplified polymorphic, reproducible and informative bands. Thirty-one closely related genotypes were identified from 84 isolates studied, indicating that the population has a low genetic diversity. The aggressiveness of seven isolates, selected according to geographic origin and their clustering in the ISSR-based dendogram, was determined by inoculation of a hybrid Eucalyptus grandis × E. urophylla clone under controlled conditions. Disease severity was assessed by both measuring the percentage of plant defoliation and assigning a score according to a diagrammatic scale of symptoms. A high correlation between the two evaluation methods was observed, which revealed significant differences in aggressiveness among the isolates. The diagrammatic scale is recommended for disease evaluation because results are obtained much faster, before the occurrence of severe defoliation. No correlation between clustering in the ISSR-based phylogenetic analysis and aggressiveness was observed.  相似文献   

12.
Three begomovirus isolates were obtained from tomato plants showing leaf curl symptoms in Guangxi province of China. Typical begomovirus DNA components representing the three isolates (GX-1, GX-2 and GX-3) were cloned and their full-length sequences were determined to be 2752 nucleotides. Nucleotide identities among the three viral sequences were 98.9–99.7%, but all shared <86.7% nucleotide sequence identity with other reported begomoviruses. The sequence data indicated that GX-1, GX-2 and GX-3 are isolates of a distinct begomovirus species for which the name Tomato leaf curl Guangxi virus (ToLCGXV) is proposed. Further analysis indicated that ToLCGXV probably originated through recombination among viruses related to Ageratum yellow vein virus, Tomato leaf curl China virus and Euphorbia leaf curl virus. PCR and Southern blot analyses demonstrated that isolates GX-1 and GX-2 were associated with DNAβ components, but not isolate GX-3. Sequence comparisons revealed that GX-1 and GX-2 DNAβ components shared the highest sequence identity (86.2%) with that of Tomato yellow leaf curl China virus (TYLCCNV). An infectious construct of ToLCGXV isolate GX-1 (ToLCGXV-GX) was produced and determined to be highly infectious in Nicotiana benthamiana, N. glutinosa, tobacco cvs. Samsun and Xanthi, tomato and Petunia hybrida plants inducing leaf curl and stunting symptoms. Co-inoculation of tomato plants with ToLCGXV-GX and TYLCCNV DNAβ resulted in disease symptoms similar to that caused by ToLCGXV-GX alone or that observed in infected field tomato plants.  相似文献   

13.
The tomato chlorosis virus (ToCV), transmitted by whitefly species of the genera Bemisia and Trialeurodes in a semipersistent manner, causes significant losses in solanaceous crops including tomato (Solanum lycopersicum) and sweet pepper (Capsicum annuum). Worldwide reports of natural and experimental infection of sweet pepper plants with ToCV are contradictory, raising the question of whether the critical factor determining infection is related to the susceptibility of sweet pepper cultivars or the genetics of virus isolates. In this work, ToCV isolates obtained from different hosts and geographical origins were biologically and molecularly analysed, transmitted by B. tabaci MEAM1 and MED, and the reaction of different sweet pepper cultivars was evaluated under different environmental conditions. Brazilian ToCV isolates from tomato, potato (S. tuberosum), S. americanum, and Physalis angulata did not infect plants of five sweet pepper cultivars when transmitted by B. tabaci MEAM1. Temperatures did not affect the sweet pepper susceptibility to tomato-ToCV isolates from São Paulo, Brazil, and Florida, USA. However, sweet pepper-ToCV isolates from Spain and São Paulo, Brazil, were transmitted efficiently to sweet pepper plants by B. tabaci MEAM1 and MED. Although the results indicated that ToCV isolates from naturally infected sweet pepper plants seem to be better adapted to plants of C. annuum, phylogenetic analyses based on the complete nucleotide sequences of RNA1 and RNA2 as well as the p22 gene did not reveal significant nucleotide differences among them. Additional studies are needed to identify intrinsic characteristics of ToCV isolates that favour infection of sweet pepper plants.  相似文献   

14.
The pathogenic type (form and race) of Fusarium oxysporum, which generates wilt symptoms on tomato, was rapidly identified with a polymerase chain reaction (PCR)-based technique. We compared the partial nucleotide sequences of endo polygalacturonase (pg1) and exo polygalacturonase (pgx4) genes from isolates of F. oxysporum ff. sp. lycopersici (FOL) and radicis-lycopersici (FORL) from Japan and designed specific primer sets (uni, sp13, sp23, and sprl) based on the nucleotide differences that appeared among the pathogenic types. PCR with the uni primer set amplified a 670∼672-bp fragment from all isolates of FOL and FORL. With the sp13 primer set, an amplicon of 445 bp was obtained only from isolates of FOL race 1 and 3. With the sp23 primer set, a 518-bp fragment was obtained from isolates of FOL race 2 and 3. The sprl primer set yielded a 947-bp fragment from isolates of FORL, but not from FOL. A combination of amplifications with these primer sets effectively differentiated the pathogenic types of F. oxysporum in tomato.  相似文献   

15.
Italian ryegrass is a major pasture crop cultivated mainly for feeding cattle in southern Brazil. The choice of crop is based on nutritional quality and the shortage of pastures that occur during the winter in the southernmost part of Brazil. In this region, the production of biomass and seeds are threatened by diseases, in particular fungal diseases that affect the foliage. In this study we identified and monitored the natural occurrence of a complex of leaf spotting diseases and evaluated the effects of combined management practices to reduce the intensity of foliar diseases: seed treatment with Trichoderma atroviride, soil amendment with silicon and cutting frequency (none, one or two cuts). Three diseases were present in a two-season experiment: grey leaf spot (Pyricularia oryzae), brown leaf spot (Bipolaris sorokiniana) and parrot's eye leaf spot (Cercospora sp.). Grey leaf spot had the highest severity, regardless of treatment, during the first season, and was the only disease present in the following season. Grey leaf spot dominated, and plants receiving only one cut were more prone to P. oryzae infection. The treatments with silicon or T. atroviride reduced the relative disease by 40% to 80%, in relation to untreated and uncut regimes. This study showed the main leaf spot diseases associated with L. multiflorum. Moreover, it demonstrates for the first time in the region the effectiveness of reducing leaf spot via the application of silicon in the soil, inoculation of seeds with T. atroviride and managing the cutting regime.  相似文献   

16.
Fungi isolated in Brazil, from lettuce, broccoli, spinach, melon and tomato, were identified as Rhizoctonia solani. All lettuce isolates anastomosed with both AG 1-IA and IB subgroups and all isolates from broccoli, spinach, melon and tomato anastomosed with AG 4 subgroup HG-I, as well as with subgroups HG-II and HG-III. DNA sequence analyses of ribosomal internal transcribed spacers showed that isolates from lettuce were AG 1-IB, isolates from tomato and melon were AG 4 HG-I, and isolates from broccoli and spinach were AG 4 HG-III. The tomato isolates caused stem rot symptoms, the spinach, broccoli and melon isolates caused hypocotyl and root rot symptoms on the respective host plants and the lettuce isolates caused bottom rot. This is the first report on the occurrence in Brazil of R. solani AG 4 HG-I in tomato and melon, of AG 4 HG-III in broccoli and spinach and of AG 1-IB in lettuce.  相似文献   

17.
Foot rot of mature tomato plants was found in four cities of Hokkaido, Japan, from 2004 to 2007. Six of eight isolates obtained from damaged tissues were identified as Rhizoctonia solani anastomosis group (AG)-3, and the remaining two isolates belonged to AG-2-1. We compared these isolates with nine reference isolates including the different subgroups in AG-3 (PT, TB and TM) and AG-2-Nt (pathogen of tobacco leaf spot) within AG-2-1 in terms of pathogenicity to tomato, tobacco and potato. All eight isolates caused foot rot on tomato. The six AG-3 isolates caused stem rot on young potato plants. While, all reference isolates of AG-3 PT causing stem rot of young potato plants incited foot rot on tomato. The two AG-2-1 isolates and an AG-2-Nt reference isolate caused severe leaf spot on tobacco leaves. The sequences of rDNA- ITS region and rDNA-IGS1 region of the AG-3 isolates showed high similarity to that of AG-3 PT isolates. Phylogenetic tree based on ITS and IGS1 regions of rDNA indicated that the AG-2-1 isolates from tomato formed a single clade with AG-2-Nt isolates and that they were separate from Japanese AG-2-1 isolates (culture type II). Pathogenicity tests and DNA sequence evaluation of the causal fungi revealed that the present isolates of AG-3 and AG-2-1 belonged to AG-3 PT and AG-2-Nt, respectively. This is the first report of tomato foot rot caused by R. solani in Japan.  相似文献   

18.
A leaf spot disease of scarlet sage (Salvia splendens Sellow ex J.A. Shultes) found in Kanagawa and Tokyo prefectures was demonstrated to be caused by Corynespora cassiicola (Berk. and Curt.) Wei based on inoculation experiments, and morphological identification of the pathogenic fungus. Isolates of C. cassiicola from cucumber, green pepper, and hydrangea were also pathogenic to scarlet sage leaves. Although the isolates from cucumber, green pepper, and hydrangea were pathogenic to scarlet sage leaves, the scarlet sage isolate was not pathogenic to cucumber, green pepper, hydrangea, eggplant, tomato or soybean.  相似文献   

19.
We selected a reduced-pathogenicity mutant of Fusarium oxysporum f. sp. lycopersici, a tomato wilt pathogen, from the transformants generated by restriction enzyme-mediated integration (REMI) transformation. The gene tagged with the plasmid in the mutant was predicted to encode a protein of 321 amino acids and was designated FPD1. Homology search showed its partial similarity to a chloride conductance regulatory protein of Xenopus, suggesting that FPD1 is a transmembrane protein. Although the function of FPD1 has not been identified, it does participate in the pathogenicity of F. oxysporum f. sp. lycopersici because FPD1-deficient mutants reproduced the reduced pathogenicity on tomato.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB110097  相似文献   

20.
Asian grapevine leaf rust (AGLR) causes severe crop losses in Brazilian viticulture, mainly in latitudes <25°S. The purpose of this study was to identify the pathogen(s) involved with AGLR in Brazil, based on phylogenetic and morphological analysis and pathogenicity tests. In total, 56 monouredinial isolates from six Brazilian states were identified using the internal transcribed spacer 2 and the large subunit rRNA gene D1/D2 regions. All 50 isolates from the south-central region were classified as Neophysopella tropicalis, and the other six isolates from the north-east region as Neophysopella meliosmae-myrianthae. This result provides evidence that two pathogen introductions from different sources may have occurred in the country. For both species, paraphyses were cylindrical, incurved, aseptate, and hyaline, while urediniospores were short-pedicellate, obovoid or obovoid-ellipsoid, with the wall colourless or pale yellowish, evenly echinulate. Representative isolates from both species caused typical AGLR symptoms on Vitis vinifera 'Merlot' and V. labrusca 'Niagara Rosada'. Overall, regardless of the Neophysopella species, isolates caused similar leaf disease severities. Higher disease severity was observed in Niagara Rosada (average of 40.3% of diseased leaf area) compared to Merlot (20.5%). This study reports, for the first time, the characterization of Neophysopella species associated with AGLR in Brazil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号