首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycolipid antibiotic rhamnolipid B isolated from Pseudomonas aeruginosa strain B5 was evaluated for in vitro antifungal activity and in vivo control against phytophthora blight and anthracnose under glasshouse conditions. Rhamnolipid B showed antifungal activity against Cercospora kikuchii, Cladosporium cucumerinum, Colletotrichum orbiculare, Cylindrocarpon destructans, Magnaporthe grisea and Phytophthora capsici. Microscopic observation revealed that the high level of antifungal activity (10 µg ml −1) against P capsici was mainly due to a lytic effect on zoospores. Zoospore lysis began in the presence of 10 µg ml −1 of rhamnolipid B and most of the zoospores were collapsed at 25 µg ml −1. Rhamnolipid B showed inhibitory activity against the germination of zoospores and hyphal growth of P capsici at concentrations of 50 µg ml −1. Spore germination of the anthracnose plant pathogen C orbiculare was also inhibited in the presence of 50 µg ml −1 of rhamnolipid B, although hyphal growth was not affected at this concentration. In the glasshouse, the efficacy of rhamnolipid B against phytophthora blight was similar to that of metalaxyl on pepper plants when treated just before inoculation with P capsici. Treatment with either at 500 µg ml −1 completely protected pepper plants from phytophthora blight. Rhamnolipid B also suppressed the development of C orbiculare infection on leaves of cucumber plants. © 2000 Society of Chemical Industry  相似文献   

2.
The antibiotic nucleoside tubercidin produced by Streptomyces viola-ceoniger was evaluated for in-vivo efficacy and in-vitro activity against Phytophthora capsici, Magnaporthe grisea and Colletotrichum gloeosporioides. Tubercidin was more effective against P. capsici and M. grisea than against C. gloeosporioides in inhibiting mycelial growth. The bioassay on TLC plates was the most sensitive method and allowed the evaluation of antifungal activity of tubercidin even at a low concentration of 0.1 μgml?1. As compared to the systemic fungicide metalaxyl, tubercidin was similar or somewhat higher in inhibition of mycelial growth of P. capsici. When applied to pepper stems, tubercidin was equally as effective as metalaxyl in the control of phytophthora blight in pepper plants, irrespective of application time and concentration. The treatment with 1000 μg ml?1 tubercidin induced phytotoxicity in pepper plants. No control efficacy of phytophtora blight was observed in pepper plants supplied with a soil drench of tubercidin. Treatment with tubercidin at 500 μg ml?1 completely protected pepper plants at first branch stage from phytophthora blight until four days after application. The control efficacy of tubercidin drastically declined seven days after application.  相似文献   

3.
Phytophthora root rot of sweet pepper   总被引:1,自引:0,他引:1  
Phytophthora capsici proved to be the causal agent of a root and crown rot of sweet pepper in the Netherlands.P. capsici was pathogenic on sweet pepper, tomato and sometimes on eggplant but not on tobacco Xanthi. Of these test plants only tomato was infected byP. nicotianae.No different symptoms in plants infected with eitherP. capsici orP. nicotianae were found. Dipping the roots of tomato and sweet pepper plants in a suspension ofP. capsici resulted in a more severe attack than pouring the suspension on the stem base.Resistance in tomato toP. nicotianae did not include resistance toP. capsici. A method to distinguishP. capsici fromP. nicotianae after isolation from soil is described. Both species were able to infect green fruits of tomato and sweet pepper.p. capsici survived in moist soil in the absence of a host for at least 15 months.Samenvatting Phytophthora capsici bleek de oorzaak te zijn van een voet-en wortelrot in paprika op twee bedrijven in 1977 in Nederland.P. capsici was pathogeen op paprika, tomaat en soms op aubergine maar niet op tabak Xanthi.P. nicotianae tastte van deze toetsplanten alleen tomaat aan. Verschillen in symptomen tussenP. nicotianae enP. capsici werden bij tomaat niet waargenomen.Het dompelen van de wortels in eenP. capsici suspensie gaf een ernstiger aantasting dan het begieten van de wortelhals met deze suspensie.Resistentie in tomaat tegenP. nicotianae bleek geen resistentie tegenP. capsici in te houden. P. capsici kan in grond worden aangetoond door groene paprikavruchten als vangsubstraat te gebruiken.P. capsici enP. nicotianae kunnen beide zowel vruchten van tomaat als paprika aantasten. P. capsici overleefde een periode van 15 maan den in vochtige grond waarop geen waardplant werd geteeld.  相似文献   

4.
为明确山苍子精油防治植物疫病的应用前景,在室内离体条件下测定其对辣椒疫霉Phytophthora capsici菌丝生长、孢子囊形成与萌发、游动孢子萌发的毒力,观测经山苍子精油处理后菌丝生长量及形态结构、细胞膜通透性和可溶性蛋白含量的变化;采用离体叶片法和灌根法分别测定山苍子精油对辣椒疫病的预防效果和治疗效果。结果表明,山苍子精油对辣椒疫霉的菌丝生长、孢子囊形成与萌发以及游动孢子萌发的有效中浓度EC_(50)分别为161.49、29.68、231.80、90.68 mg/L;EC_(50)和EC_(75)的山苍子精油处理显著降低了辣椒疫霉菌丝的鲜重和干重,抑制率均在49.71%以上,亦可显著降低菌丝中可溶性蛋白含量,抑制率分别为10.77%和18.47%;用山苍子精油处理菌丝后,其顶端生长受到抑制,分枝明显增多、间距缩短;细胞膜通透性增大。1 000 mg/L山苍子精油对辣椒疫病的预防效果达63.33%(离体叶片法),2 000 mg/L精油对辣椒疫病的预防效果和治疗效果分别达80.00%和68.00%(灌根法,7 d),均显著高于对照药剂嘧菌酯。表明山苍子精油是辣椒疫霉的有效抑制剂,在辣椒疫病综合治理中具有较大的应用潜力。  相似文献   

5.
Treatment of pepper plants with the nonprotein amino acid, DL-ß-amino-n-butyric acid (BABA) induced resistance to subsequent infection byPhytophthora capsici. In contrast, theα-, andγ-isomers of aminobutyric acid were ineffective as inducers of resistance. A relatively high concentration of BABA at 1,000μg ml?1, which had no antifungal activityin vitro againstP. capsici, was required to induce resistance against Phytophthora blight with a foliar and stem spray, thus leading to complete control of the disease. About 1 day interval between BABA-treatment and challenge inoculation was sufficient to induce resistance in pepper plants. High inoculum levels ofP. capsici caused Phytophthora development slowly in pepper stems treated with BABA, especially at early plant growth stage, which suggests that the induced resistance in pepper plants may be more quantitative rather than qualitative. BABA applied to the root system also protected pepper stems fromP. capsici infection.  相似文献   

6.
Quantitative trait loci (QTL) for resistance to phytophthora root rot caused by Phytophthora capsici were investigated using two Korean P. capsici isolates and 126 F8 recombinant inbred lines derived from a cross of Capsicum annuum line YCM334 (resistant parent) and local cv. Tean (susceptible parent). The experimental design was a split plot with two replications. Highly significant effects of pathogen isolate, plant genotype, and genotype × isolate were detected. QTL mapping was performed using a genetic linkage map covering 1486·6 cM of the pepper genome, and consisted of 249 markers including 136 AFLPs (Amplified Fragment Length Polymorphisms), 112 SSRs (Simple Sequence Repeats) and one CAPS (Cleaved Amplified Polymorphic Sequence). Fifteen QTLs were detected on chromosomes 5 (P5), 10 (P10), 11 (P11), Pb and Pc using two data processing methods: percentage of wilted plants (PWP) and relative area under the disease progress curves (RAUDPC). The phenotypic variation explained by each QTL (R2) ranged from 6·0% to 48·2%. Seven QTLs were common to resistance for the two isolates on chromosome 5 (P5); six were isolate‐specific for isolate 09‐051 on chromosomes 10 (P10) and Pc, and two for isolate 07‐127 on chromosomes 11 (P11) and Pb. The QTLs in common with the major effect on the resistance for two isolates explained 20·0–48·2% of phenotypic variation. The isolate‐specific QTLs explained 6·0–17·4% of phenotypic variation. The result confirms a gene‐for‐gene relationship between C. annuum and P. capsici for root rot resistance.  相似文献   

7.
A PCR-based method was developed for the identification and detection of Phytophthora capsici in pepper plants. Three PCR primers (CAPFW, CAPRV1 and CAPRV2) specific for P. capsiciwere designed based on the sequence of its internal transcribed spacer regions. CAPFW/CAPRV1 amplify a 452 bp product from P. capsici DNA whereas CAPFW/CAPRV2 a 595 bp fragment; neither set amplifies DNA from pepper or several fungi pathogenic to pepper. In conventional (single-round) PCR, the limit of detection was 5 pg DNA for both primer sets, whereas in nested PCR the detection limit for both was of 0.5 fg. However, when the dilution series of target DNA were spiked with plant DNA, amplification declined two-fold in both conventional and nested PCR. The CAPFW/CAPRV2 set in conventional PCR was used to detect P. capsici DNA in inoculated plants. Detection occurred as soon as 8h post-inoculation in stem samples from infected but still symptomless plants. The method was also tested to detect fungal DNA in infected soils.  相似文献   

8.
为探讨枯草芽胞杆菌Bacillus subtilis菌株B1409对番茄早疫病和辣椒疫霉病的防效和生防机制,采用平板对峙法和盆栽法测定了该菌株对番茄早疫病菌和辣椒疫霉病菌菌丝生长的抑制作用、对2种病害的盆栽防效以及对番茄和辣椒植株促生长效果和防御酶活性的影响。结果表明:菌株B1409能明显抑制番茄早疫病菌和辣椒疫霉病菌菌丝生长,且导致菌丝发生畸变。10~8CFU/mL菌株B1409菌液对番茄早疫病和辣椒疫霉病的预防效果分别为67.82%和61.22%,治疗效果分别为41.22%和56.43%。不同浓度B1409菌液均能促进番茄和辣椒植株生长,并能增强其体内超氧化物歧化酶、过氧化物酶和过氧化氢酶活性,且浓度越高促进效果越明显。番茄和辣椒植株的平均干重分别在10~2CFU/mL和10~4CFU/mL B1409菌液处理后显著高于对照,增长率分别为42.35%和4.87%。番茄和辣椒植株经10~2CFU/mL B1409菌液处理后,体内超氧化物歧化酶活性比对照显著增加,增长率分别为91.23%和19.58%。研究表明枯草芽胞杆菌B1409菌株可通过直接抑制菌丝生长及诱导植物体自身抗病性等方式来有效防治番茄早疫病和辣椒疫霉病。  相似文献   

9.
利用环介导等温扩增(LAMP)技术快速检测辣椒疫霉菌   总被引:1,自引:0,他引:1  
<正>辣椒疫霉(Phytophthora capsici)是一种重要植物病原菌,能造成植株坏死、果实腐烂,严重影响产量[1]。辣椒疫霉侵染植物的早期病症并不明显,易被忽视。因此,对辣椒疫霉早期快速、准确检测显得尤为重要。聚合酶链式反应(PCR)为动植物病原物检测的重要方法,但需要较昂贵的仪器、试剂与耗材,后期的电泳检测也费时费力,致使这一技术很难在生产一线普及推广。Notomi等2000年研发了环介  相似文献   

10.
韭菜和辣椒间作对辣椒疫病的防治效果及其化感机理   总被引:2,自引:0,他引:2  
为明确韭菜和辣椒间作对辣椒疫病的防治效果及其化感机理,比较了韭菜和辣椒不同行比间作对辣椒疫病的防治效果,测定了韭菜茎、叶挥发物与浸提液对辣椒疫霉菌的抑制作用,并分析了韭菜根系对辣椒疫霉菌游动孢子侵染和传播行为的影响。结果表明,韭菜与辣椒行比为3∶1间作能显著控制辣椒疫病的扩展与传播;2.0 g/皿韭菜茎挥发物及0.15 m L/m L茎浸提液对辣椒疫霉菌菌丝生长的抑制活性可达33.33%和88.75%;辣椒疫霉菌游动孢子对韭菜根系具有明显的趋化活性,且于根围迅速休止并萌发,丧失在土壤中继续寻找寄主的能力,其传播侵染行为受到干扰。研究表明,韭菜和辣椒间作可以有效控制辣椒疫病的扩展蔓延,实现对辣椒疫病的生态防控。  相似文献   

11.
Different isoforms of chitinases were purified from pepper (Capsicum annuumL. cv. Hanbyul) stems treated with mercuric chloride. The acidic isoform a1 (69kDa, pI5.0), basic isoforms b1 (32kDa, pI9.0) and b2 (22kDa, pI9.1) were purified by chitin-affinity chromatography, with subsequent electroelution from nondenaturing polyacrylamide gel electrophoresis (PAGE) gels. The acidic isoform a1 has chitin-binding properties, but no antifungal activity. The basic isoforms b1 and b2 contain high ratios of cysteine and glycine at the N-terminal chitin-binding domain, exhibit chitinase activity, and show antifungal activities againstColletotrichum gloeosporioides, Fusarium oxysporumf.sp.cucumerinum, Magnaporthe grisea, andTrichoderma viride in vitro.Moreover, their antifungal activity shows a high degree of specificity to filamentous fungi. The chitinases b1 and b2 show a high sequence identity in their N-terminal residues with those from wheat, tobacco, potato, rice andArabidopsis thaliana.None of the purified isoforms of chitinases inhibited hyphal growth of the Oomycete fungus which lacks chitinPhytophthora capsici. In contrast, zoospore germination and germ tube elongation ofP. capsiciwere effectively inhibited by treatment with b1 and b2.  相似文献   

12.
Phytophthora capsici infection of chili pepper seedlings can cause substantial losses due to damping-off and collar rot diseases. Chemical control is no longer effective due to reported resistance development, on top of the related environmental concerns and the consumer demands for reduced use of fungicides. Biological control is a sustainable option, with several agents having been reported to be effective against this pathogen. This research focused on optimizing the application of strain THSW13 of Trichoderma hamatum and a bacterial isolate BJ10–86 with the objectives of improving chili pepper seed germination, reduce damping-off disease incidence, and improve the growth of the seedlings. Bacterial isolate BJ10–86 was subjected to molecular identification and found to be Pseudomonas aeruginosa. Chili pepper seeds treated with the biocontrol agents, individually or in combination, were seeded into commercial nursery media that had been pre-inoculated with P. capsici zoospores. Over a period of 35 days the chili pepper seed treatments significantly (P = 0.008) reduced the disease incidence of seedlings damping-off. Combined application of T. hamatum and P. aeruginosa was the best biocontrol treatment with an area under disease curve of only 36.61 units compared to 92.87 units for the control treatment. Similar results were observed in vitro where T. hamatum and P. aeruginosa synergistically inhibited P. capsici growth by 73.2 %. The inhibition activity of this treatment was similar to mefenoxam treatment, which implies that it is an effective and sustainable alternative for chili pepper seed treatment. The biocontrol seed treatment had no effect on seed germination and seedling growth.  相似文献   

13.
The effect of pepper seed and root treatments with Trichoderma harzianum spores on necrosis caused in stems by Phytophthora capsici inoculation and on the course of capsidiol accumulation in the inoculated sites were studied. The results indicate that seed treatments significantly reduced stem necrosis, which fell by nearly a half compared with the values observed in plants grown from non-treated seeds. Necrosis was also reduced in plants whose roots were drenched with various doses of T. harzianum spores, although the extent of necrosis was not correlated with the dose used. Attempted isolation of P. capsici and T. harzianum from the zones immediately contiguous with the necrotic zones revealed the presence of the former but not of the latter, suggesting that there was no direct contact between them in the zones of isolation, which means that there was no competition for space. The percentage of P. capsici isolated 9 days after inoculation was greater in non-treated inoculated plants than in treated inoculated plants. These results suggest that T. harzianum, introduced into the subterranean part of the plant, induces a systemic defense response against P. capsici in the upper part of the plant. Analysis of capsidiol in the stems of treated inoculated plants by the end of the sixth day after inoculation, revealed that its concentration was more than seven-fold greater than in non-treated and inoculated plants, while after 9 days, the concentration of capsidiol decreased in the treated inoculated plants and increased in the non-treated inoculated plants. The high concentration of capsidiol detected in treated and inoculated stems after 6 days might be one of the contributing factors, but not necessarily the main factor, in delaying lesion development in the stems of pepper plants.  相似文献   

14.
Phytophthora capsici causes root, crown, and fruit rot of vegetable and tropical hosts. Cucumber, zucchini, tomato, and pepper fruits were inoculated using 6-mm-diameter agar plugs of P. capsici, incubated in clear plastic boxes at room temperature (25 ± 2°C and 100% relative humidity), and virulence was estimated by measuring the lesion diameter, pathogen growth diameter, and pathogen sporulation density three (cucumber, zucchini) or four (tomato, pepper) days later. When isolates were grouped by genetic cluster, significant differences in virulence were observed on cucumber and zucchini, with isolates belonging to genetic cluster five causing larger lesions than isolates from genetic cluster six. On tomato, no significant differences were observed for isolates grouped by genetic cluster, but isolates from vegetable crops were generally more virulent than isolates from tropical hosts. Isolates from fabaceous hosts sporulated better on cucumber fruits than isolates from solanaceous hosts. Isolates from vegetable hosts sporulated better on zucchini than isolates from tropical hosts. No significant differences in lesion diameter were noted on pepper when isolates were grouped by host family of origin or genetic cluster, but differences in pathogen sporulation were apparent by host family. Our findings suggest that isolate characteristics such as host family of origin and genetic cluster membership may be used to guide initial isolate selection for cucurbit fruit resistance screening. Final isolate selection should incorporate the phenotypic and genetic diversity of P. capsici, including isolates with differing virulence to the host organ of interest.  相似文献   

15.
In this study fusaricidin, a cyclic depsipeptide isolated from Paenibacillus polymyxa E681 (E681), was demonstrated to control Phytophthora blight infection caused by Phytophthora capsici in red-pepper. The minimal inhibitory concentration (MIC) of fusaricidin was found to be 16 ppm against P. capsici. The disease severity of P. capsici was 40% at 0.1 ppm of fusaricidin when compared with water-treated control (81.7%) on post-treatment, whereas the disease severities on pre-treatment were 45% and 83.3% in fusaricidin (0.1 ppm) and water-treated control, respectively, in red-pepper plants. Significant (P?<?0.05) disease suppression was observed on treatment with fusaricidin (0.1 ppm) by foliar spray and soil drench. The disease severity was drastically reduced to 3.3% by soil drench of fusaricidin (1.0 ppm), whereas in water-treated control, the disease severity was 83.3% in the first experiment. Fusaricidin at 0.1 ppm reduced disease severity of P. capsici to 27.5% when compared with positive control (43.1%) and water-treated control (66.2%) in the second experiment. Soft rot disease in tobacco was suppressed upon treatment with fusaricidin at 1.0 ppm by leaf infiltration. RT-PCR analyses of Arabidopsis thaliana revealed that there was an up-regulation of pathogenesis-related (PR) gene expression in wild type A. thaliana (Col-0), while there was no accumulation of PR genes, which implies that the mechanism of protection might be based on a salicylic acid-dependent pathway. This is the first report that fusaricidin exhibits protection against plant pathogens in addition to activity as an antibiotic agent. Hence, E681 can play a role in plant protection by secretion of ISR elicitors including fusaricidin.  相似文献   

16.
The antifungal activities of hyoscyamine and scopolamine, major alkaloids extracted from the desert plant Hyoscyamus muticus, against two rice pathogens, Magnaporthe oryzae and Rhizoctonia solani, were studied. The minimum inhibitory concentration of hyoscyamine that resulted in distinctive inhibition (MIC50) was 1 μg/ml for both fungi. Exposure to hyoscyamine caused the leakage of electrolytes from the mycelia of both fungi. Hyoscyamine (>1 μg/ml) irreversibly delayed or inhibited conidial germination and appressorium formation in M. oryzae grown on polystyrene plates. Hyoscyamine effectively inhibited the attachment of conidia to the surface of rice (Oryza sativa) leaves and inhibited appressorium formation on the leaves. A high concentration of scopolamine (1000 μg/ml) also delayed or inhibited conidial germination in M. oryzae, but conidial germination was restored after washing the conidia with water. Antifungal activity of hyoscyamine was reduced by scopolamine. Magnaporthe oryzae infection was significantly suppressed (by >95%) in leaves of intact rice plants treated with hyoscyamine (10 μg/ml). Moreover, 10 μg hyoscyamine/ml significantly reduced the disease severity index for sheath blight to ≤0.2, when compared with the disease index of control plants (>7.0). Hyoscyamine (>20 μg/ml) completely inhibited sclerotial germination and development of R. solani by delaying the initiation, maturation, and melanization of the sclerotia. These results suggest that tropane alkaloids may be useful for controlling blast and sheath blight diseases of rice and for studying the mechanisms that regulate conidial germination in M. oryzae and sclerotial germination and development in R. solani.  相似文献   

17.
Colletotrichum truncatum (syn. C. capsici) has been identified as the causal agent of anthracnose on various hosts, predominantly pepper (Capsicum spp.) plants. The aim of this study was to determine whether C. truncatum isolates infecting papaya, pepper and physic nut in southeastern Mexico are morphologically, genetically and pathogenically different, in order to improve disease management strategies. A total of 113 C. truncatum isolates collected from five producer states were subjected to phenotypic characterization and divided into six different morphological groups. These morphological traits and the location of the isolates were used to select a subset of 20 isolates for further studies. Differences in the pathogenicity of the isolates were tested with a cross‐inoculation assay using pepper, papaya and physic nut. The pathogenicity tests revealed that all isolates could infect the three hosts and produce typical anthracnose symptoms, indicating a lack of host specificity for this species and therefore its pathogenic potential on other plants. Phylogenetic analysis using internal transcribed spacer (ITS) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) sequences of the C.   truncatum isolates from this study and reference strains was performed, grouping the isolates into a monophyletic clade. This study reports for the first time the characterization of C. truncatum causing anthracnose disease on three different hosts in Mexico.  相似文献   

18.
BACKGROUND: Phytophthora nicotianae Breda de Haan is a common pathogen of ornamental plants in recycled irrigation systems. In a previous study, annual vinca (Catharanthus roseus Don) inoculated with zoospore suspensions using a CO2‐pressurized sprayer had less foliage blight than plants inoculated using a hand sprayer. Here, the impact of hydrostatic pressure, agitation and aeration with CO2 on the survival of P. nicotianae zoospores was examined. RESULTS: Exposure of zoospores to 840 kPa hydrostatic pressure for 8 min or agitation at a mixing intensity (G) of 6483 s?1 for 4 min at 22–23 °C did not kill zoospores, but resulted in viable cysts. Motile and forcefully encysted zoospores of P. nicotianae were equally infectious on vinca or lupine (Lupinus polyphylus Lindl.). Bubbling CO2 into zoospore‐infested water at 110.4 mL (0.2 g) min?1 for 5 min caused 81% reduction in the number of germinated zoospores. Pressure at 630 kPa (16.3 g CO2) or 70 kPa (3.85 g CO2) facilitated CO2 injection and shortened the zoospore inactivation time to 30 s. When air was bubbled through the suspension, germination was similar to the control. CONCLUSIONS: Exposure to CO2 killed P. nicotianae zoospores in water. Neither pressure nor agitation had an effect on zoospore viability or infectivity. Based on results of this study, the authors designed a recycling CO2 water treatment system that is currently under evaluation. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
A study on biochemical factors involved in black pepper defense response against Phytophthora capsici, was carried out in P. capsici susceptible (Sreekara) and resistant (04-P24, shows root resistance to the pathogen) black pepper lines. Seven important factors – change in membrane conductance, total phenols, orthodihydroxy (OD) phenols, lignin and defense related enzymes (peroxidase, β-1,3 glucanase and β-1,4 glucanase) – were studied under uninoculated and pathogen (P. capsici, isolate 06-04) inoculated condition to know the preformed and induced responses. The pathogen was inoculated (soil inoculation) and plants were observed for changes, at 24 h intervals for 10 days. On 8th day after inoculation symptoms started appearing on Sreekara and increased the severity till 10th day. Both root and stem samples were subjected for biochemical analysis. Of the factors analyzed, it was found that membrane conductance, OD phenol, lignin and peroxidase activity play significant role in root resistance to P. capsici in 04-P24. Light microscopy of the portion of root – where pathogen found attached – was also done.  相似文献   

20.
The efficacy of the essential oil and various organic extracts from flowers of Cestrum nocturnum L. was evaluated for controlling the growth of some important phytopathogenic fungi. The oil (1000 ppm) and the organic extracts (1500 μg/disc) revealed antifungal effects against Botrytis cinerea, Colletotrichum capsici, Fusarium oxysporum, Fusarium solani, Phytophthora capsici, Rhizoctonia solani and Sclerotinia sclerotiorum in the growth inhibition range of 59.2-80.6% and 46.6-78.9%, respectively, and their MIC values were ranged from 62.5 to 500 and 125 to 1000 μg/mL. The essential oil had a remarkable effect on spore germination of all the plant pathogens with concentration and time-dependent kinetic inhibition of P. capsici. Further, the oil displayed remarkable in vivo antifungal effect up to 82.4-100% disease suppression efficacy on greenhouse-grown pepper plants. The results obtained from this study may contribute to the development of new antifungal agents to protect the crops from fungal diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号