首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Citrus postbloom fruit drop (PFD) is caused by Colletotrichum acutatum and C. gloeosporioides. These pathogens attack the flowers and cause premature fruit drop and the retention of fruit calyces. This study was designed to characterize the spatial and temporal dynamics of PFD in commercial citrus‐growing areas to better understand the disease spread. Experiments were carried out in three young orchards (500 trees each) in two municipalities in Sao Paulo State, Brazil. Symptoms of PFD on the flowers and presence of persistent calyces were assessed in each of three orchards for three years. Logistic, Gompertz and monomolecular models were fitted to the incidence data over time from the trees with symptoms. The spatial pattern of diseased trees was characterized by a dispersion index and by Taylor′s power law. An autologistic model was used for the spatiotemporal analysis. The logistic model provided the best fit to the disease incidence data, which had a fast progress rate of 0·53 per day. During the early epidemic of PFD, the spatial pattern of diseased trees was random, which suggested that inoculum spread was due to mechanisms other than rain splash. As the disease incidence increased (up to 12·6%), the spatial pattern of diseased trees became aggregated. The rapid rate of disease progress and the distribution of PFD suggest that dispersal of the pathogen is possibly related to a mechanism other than splash dispersal, which is more typical of other fruit diseases caused by Colletotrichum spp.  相似文献   

2.
In recent years, anthracnose has become a significant disease affecting avocado fruit in the state of Michoacan, Mexico, where it significantly reduces fruit quality and commercial yield. Anthracnose has been assumed to involve Colletotrichum gloeosporioides and C. acutatum as causal agents. However, because of the increasing incidence of anthracnose, a more precise identification of the Colletotrichum spp. involved in this disease has become desirable. During the years 2004–2007, avocado fruits of different sizes exhibiting brown‐black and reddish spots on the pericarp and soft rot in the mesocarp, were gathered from orchards in nine counties. Fungal isolates were cultured on potato dextrose agar, and among these, 31 were selected for molecular, morphological and pathogenicity analyses. The molecular approaches used sequence typing of the internal transcribed spacer region and the partial nuclear large ribosomal subunit, allowing the unequivocal identification of C. gloeosporioides (71%), C. acutatum (16%) and C. boninense (13%). This last species has not been previously reported as being associated with anthracnose symptoms in avocado fruits anywhere in the world. Various morphological characteristics such as the size and shape of conidia were determined, as well as the conidial mass colour. Pathogenicity tests performed with all three species were conducted by inoculating healthy fruits. In each case, identical symptoms developed within 3 days of inoculation. Knowledge of the Colletotrichum populations in the Michoacan state, including the newly encountered avocado pathogen C. boninense, will facilitate further studies addressing the relationships between these Colletotrichum spp. and their avocado host.  相似文献   

3.
The aim of the present study was to analyse the genetic and pathogenic variability of Colletotrichum spp. isolates from various organs and cultivars of mango with anthracnose symptoms, collected from different municipalities of São Paulo State, Brazil. Colletotrichum gloeosporioides isolates from symptomless citrus leaves and C. acutatum isolates from citrus flowers with post‐bloom fruit drop symptoms were included as controls. Sequencing of the ITS region allowed the identification of 183 C. gloeosporioides isolates from mango; only one isolate was identified as C. acutatum. amova analysis of ITS sequences showed larger genetic variability among isolates from the same municipality than among those from different populations. fAFLP markers indicated high levels of genetic variability among the C. gloeosporioides isolates from mango and no correlation between genetic variability and isolate source. Only one C. gloeosporioides mango isolate had the same genotype as the C. gloeosporioides isolates from citrus leaves, as determined by ITS sequencing and fAFLP analysis. Pathogenicity tests revealed that C. gloeosporioides and C. acutatum isolates from either mango or citrus can cause anthracnose symptoms on leaves of mango cvs Palmer and Tommy Atkins and blossom blight symptoms in citrus flowers. These outcomes indicate a lack of host specificity of the Colletotrichum species and suggest the possibility of host migration.  相似文献   

4.
Fire blight is the most damaging bacterial disease in apple production worldwide. Cankers and symptomless infected shoots are known as sites for the overwintering of Erwinia amylovora, subsequently providing primary inoculum for infection in the spring. In the present work, further potential sources of inoculum were investigated. Real‐time PCR assays covering a 3‐year‐period classified 19·9% of samples taken from fruit mummies as positive. Bacterial abundance in fruit mummies during autumn, winter and spring was up to 109 cells per gram of tissue and correlated well with later infection rates of blossoms. Blossoms of non‐host plants growing close to infected trees were also shown to be colonized by E. amylovora and to enable epiphytic survival and propagation of bacteria. The results indicate a potential role of fruit mummies and buds in overwintering and as a source of primary inoculum for dissemination of the pathogen early in the growing season. Non‐host blossoms may also serve as an inoculum source in the build‐up of the pathogen population. Both aspects may contribute significantly to the epidemiology of E. amylovora. The significance of infected rootstocks as an inoculum source is also discussed. Fruit mummies might be used to determine pathogen pressure in an orchard before the beginning of the blooming period.  相似文献   

5.
Both airborne spores of Rhynchosporium secalis and seed infection have been implied as major sources of primary inoculum for barley leaf blotch (scald) epidemics in fields without previous history of barley cropping. However, little is known about their relative importance in the onset of disease. Results from both quantitative real‐time PCR and visual assessments indicated that seed infection was the main source of inoculum in the field trial conducted in this study. Glasshouse studies established that the pathogen can be transmitted from infected seeds into roots, shoots and leaves without causing symptoms. Plants in the field trial remained symptomless for approximately four months before symptoms were observed in the crop. Covering the crop during part of the growing season was shown to prevent pathogen growth, despite the use of infected seed, indicating that changes in the physiological condition of the plant and/or environmental conditions may trigger disease development. However, once the disease appeared in the field it quickly became uniform throughout the cropping area. Only small amounts of R. secalis DNA were measured in 24 h spore‐trap tape samples using PCR. Inoculum levels equivalent to spore concentrations between 30 and 60 spores per m3 of air were only detected on three occasions during the growing season. The temporal pattern and level of detection of R. secalis DNA in spore tape samples indicated that airborne inoculum was limited and most likely represented rain‐splashed conidia rather than putative ascospores.  相似文献   

6.
Chili anthracnose is caused by Colletotrichum species mostly associated with the acutatum, truncatum and gloeosporioides complexes. Since 2009 the Colletotrichum taxonomy has been extensively revised based on multigene phylogenetics, which has had a large impact on the number of species known to cause anthracnose disease of chili. This review discusses (i) the taxonomy of Colletotrichum spp. infecting chili, and (ii) the impact of Colletotrichum pathotypes on breeding for resistance to anthracnose. To date, 24 Colletotrichum species have been identified as pathogens of chili anthracnose, with the three main pathogens being C. scovillei, C. truncatum and C. siamense. Identification of several pathotypes within these three Colletotrichum species, particularly pathotypes that can overcome resistance in the related Capsicum species, Ca. chinense and Ca. baccatum, will be of major concern to plant breeders as they develop resistant chili genotypes from the transfer of resistance genes from these Capsicum species into Ca. annuum. Accurate identification of the Colletotrichum species causing anthracnose and improved understanding of the biology of the Colletotrichum species and their interaction with the host will enable the application of improved integrated disease management techniques.  相似文献   

7.
Higher recovery of Colletotrichum acutatum , the causal agent of anthracnose (ripe-rot), from blueberry tissues during the growing seasons of 2002 and 2003 was found at bloom and ripe berry than at other stages of plant development. The effects of leaf-wetness duration and ambient temperature on fruit infection frequency were determined during the growing seasons of 2001–03. Potted 2-year-old blueberry plants were exposed for 1-week periods to prevailing environmental conditions and natural inoculum in a commercial field, and grown to harvest, when fruit infection was assessed. Three peaks of infection were observed: early during bloom, mid-season during the mature green berry stage, and later in the season when berries had ripened. Weather data collected simultaneously indicated that a minimum of 10 h of leaf wetness at 11°C was sufficient for fruit infection. These conditions preceded each peak of infection. To determine whether peaks of infection in the field were also caused by changes in host susceptibility or available inoculum, groups of potted blueberry plants were artificially inoculated at weekly intervals during the growing season of 2004, exposed to prevailing environmental conditions, and fruit infection assessed at harvest. Flowers and developing fruits were found to be susceptible throughout the season, indicating that specific peaks of infection were associated with environmental conditions and availability of inoculum.  相似文献   

8.
Anthracnose is the main fungal disease on cashew orchards in Brazil, occurring on both vegetative and reproductive organs of cultivated and noncultivated host plants. Understanding the effect of physical and chemical exogenous factors on the biological traits of Colletotrichum spp. and determining their host range are key to developing appropriate anthracnose control measures. The present study aimed to estimate the optimum temperatures for mycelial growth, sporulation, and conidial germination of seven Colletotrichum species (C. chrysophilum, C. fragariae, C. fructicola, C. gloeosporioides, C. queenslandicum, C. siamense, and C. tropicale) associated with cashew anthracnose in Brazil. Their aggressiveness on cashew leaves and six alternative host fruits, and their sensitivity to three fungicides were also investigated. The optimum temperatures for mycelial growth, sporulation, and conidial germination ranged from about 25 to about 33°C. All Colletotrichum species induced anthracnose symptoms on wounded cashew leaves, but none of them caused lesions on intact leaf surfaces. The Colletotrichum species, except for C. fragariae and C. fructicola, were pathogenic to wounded fruits of avocado, banana, guava, mango, and papaya, and some isolates also produced lesions on nonwounded fruit tissues. No symptoms were observed on passion fruits, regardless of the inoculation method. Mycelial growth, sporulation, conidial germination, and/or appressorial formation of the seven Colletotrichum species were inhibited by azoxystrobin, difenoconazole, and thiophanate-methyl to varying degrees. The present study will contribute to the development of forecasting models based on prevailing weather of cashew cropping zones and improve cashew anthracnose management in Brazil.  相似文献   

9.
Anthracnose is an important disease in vineyards in south and southeast Brazil, the main grape‐producing regions in the country. This study aimed to identify the causal agents of grapevine anthracnose in Brazil through multilocus phylogenetic analyses, morphological characterization and pathogenicity tests. Thirty‐nine Elsinoë ampelina and 13 Colletotrichum spp. isolates were obtained from leaves, stems and berries with anthracnose symptoms collected in 38 vineyards in southern and southeastern Brazil. For E. ampelina isolates, the internal transcribed spacer (ITS), histone H3 (HIS3) and elongation factor 1‐α (TEF) sequences were analysed. HIS3 was the most informative region with 55 polymorphic sites including deletions and substitutions of bases, enabling the grouping of isolates into five haplotypes. Colonies of E. ampelina showed slow growth, variable colouration and a wrinkled texture on potato dextrose agar. Conidia were cylindrical to oblong with rounded ends, hyaline, aseptate, (3.57–) 5.64 (?6.95) μm long and (2.03–) 2.65 (?3.40) μm wide. Seven species of Colletotrichum were identified: C. siamense, C. gloeosporioides, C. fructicola, C. viniferum, C. nymphaeae, C. truncatum and C. cliviae, with a wide variation in colony and conidium morphology. Only E. ampelina caused anthracnose symptoms on leaves, tendrils and stems of Vitis vinifera and V. labrusca. High disease severity and a negative correlation between disease severity and shoot dry weight were observed only when relative humidity was above 95%. In this study, only E. ampelina caused anthracnose symptoms on grapevine shoots in Brazil.  相似文献   

10.
Postbloom fruit drop (PFD) is an important citrus disease that causes up to 100% yield losses during years in which conditions are favourable for the occurrence of epidemics. The conidia of Colletotrichum acutatum and C. gloeosporioides, causal agents of PFD, are predominantly dispersed by rain splash. At the beginning of epidemics, the distribution of diseased plants is random and the disease progress rate is very high, which is unusual for pathogens spread by rain splash. As the pathogen produces abundant conidia on diseased petals, pollinating insects may contribute to disease dispersal. This study investigated honeybees (Apis mellifera) as dispersal agents of C. acutatum and C. gloeosporioides among citrus plants. Two experiments were carried out in a screenhouse in which citrus plants were protected (or not) in insect‐proof cages. The source of inoculum was placed on one side of the screenhouse, and a honeybee hive was placed on the opposite side. All uncaged plants showed symptoms of the disease, and none of the caged plants exhibited PFD symptoms. The monomolecular model showed a good fit to disease progress in both experiments. Conidium‐like structures of Colletotrichum spp. were identified attached to the bodies of the honeybees by scanning electron microscopy. These results have revealed that honeybees disperse Colletotrichum among citrus plants.  相似文献   

11.
Anthracnose is an important disease affecting mature olive fruits, causing significant yield losses, and poor fruit and oil quality. In Portugal, high anthracnose incidence was recorded during 2003–2007 with 41% of 908 orchards surveyed displaying disease symptoms. In another 14% of the orchards, the pathogen was recorded in symptomless plants. Disease severity was on average 36%, frequently reaching 100%. In Portugal, anthracnose is endemic to neglected orchards of susceptible cultivars, but under favourable conditions it can also severely affect less susceptible cultivars. Pathogens were genetically heterogeneous, with Colletotrichum acutatum genetic group A2 as the most frequent (80%), followed by group A4 (12%) and group A5 along with C. gloeosporioides (3–4%), while groups A3 and A6 of C. acutatum were sporadic. Important geographic variations were observed in the frequencies of these populations, accompanied by year‐to‐year populational shifts. Epidemiology and histopathology studies showed the presence of the pathogens on vegetative organs year‐round, particularly on olive leaves and branches, and on weeds. These represent inoculum reservoirs where secondary conidiation occurs, and conidia are then dispersed by spring rains reaching flowers and young fruits or by autumn rains reaching pre‐mature fruits. Unripe fruits were colonized without showing symptoms up to penetration of the cuticle, but further colonization and symptom production was completed only as fruits matured. These findings challenge current control practices, particularly the timing of fungicide treatment, and contribute to improved disease management.  相似文献   

12.
Anthracnose is a destructive disease that affects a wide range of crop plants especially in tropical and subtropical regions. Colletotrichum spp. are the major pathogens causing anthracnose. In this study, we collected and identified the pathogen from diseased samples of Stylosanthes, a major tropical forage crop. The ability of the pathogen to naturally infect Arabidopsis thaliana was examined. Sequence analysis of ITS, ACT, CHS, and GAPDH genes showed the pathogen to be Colletotrichum gloeosporioides sensu lato (s.l.), and this was supported further by morphological characterization of representative isolates. The disease symptoms and cellular infection process of aggressive isolates (DZ-19 and HK-04) and a weak isolate (CJ-04) were compared. DZ-19 and HK-04 caused more severe disease symptoms on both young seedlings and adult plants of Col-0 and Ws-2 ecotypes compared to CJ-04. Furthermore, the more aggressive isolates showed faster and earlier germination of conidia, formation of appressoria, and growth and development of hyphae during the infection. Genetic analysis of the defence response and expression profiling of defence marker genes demonstrated the involvement of MAP kinase, Ca2+-dependent protein kinase, salicylic acid, ethylene, and jasmonic acid pathways in the resistance against anthracnose. These results suggest that the ArabidopsisColletotrichum gloeosporioides pathosystem should provide a valuable tool for exploring the resistance mechanisms against this pathogen.  相似文献   

13.
Anthracnose caused by species of Colletotrichum is considered one of the main postharvest diseases for avocado. In this study, Colletotrichum isolates associated with avocado anthracnose, collected in different states of Brazil, were evaluated through phylogenetic analysis, morphological characterization, and pathogenicity assays. Moreover, the events during pathogen infection of avocados were examined by scanning electron microscopy. To assess the genetic diversity of 54 Colletotrichum isolates, partial sequence analysis of the gene gapdh was performed. According to the generated groupings and the geographical origins of isolates, a subset of 14 strains was selected for performing multilocus phylogeny analysis (using sequences of gapdh, act, tub2, and ApMat). Two species previously described were identified: C. siamense belonging to the C. gloeosporioides species complex and Colletotrichum karstii belonging to the C. boninense species complex. All Colletotrichum strains evaluated caused typical symptoms of anthracnose in avocado fruits. Conidia of the most virulent strain germinated between 6 and 12 hr after inoculation (hai). Penetration through wounds occurred 48 hai, tissue colonization occurred between 144 and 240 hai, and sporulation took place at 240 hai via the production of an acervulus, conidiophores, and conidia. The findings shed light on the aetiology of avocado anthracnose in Brazil and provide a better understanding of the infection process of this pathogen, which may assist in the development of disease management strategies.  相似文献   

14.
A. C. Pappas 《EPPO Bulletin》2000,30(2):269-274
Out-of-season tomatoes grown in unheated glasshouses in Greece annually suffer considerable losses from grey mould induced by Botrytis cinerea. Characteristic soft rots of young fruit by the calyx end, flower abortions and stem lesions or cankers are the most commonly occurring symptoms of the disease. Severe ghost spots on fruit only appear when fungicides inhibiting spore germination are not applied. Conidia produced on plant debris of the previous year's crop serve as primary inoculum. Disease starts in late autumn, increases rapidly during the winter period and ceases abruptly at the end of April. Infections caused by isolates resistant to dicarboximides or to both dicarboximides and benzimidazoles are uncommon at the beginning of each new crop cycle. These increase substantially as the season progresses and decline after cessation of fungicide sprays. By contrast, infections caused by benzimidazole-resistant strains are stable throughout the growing season. Efficient disease control implies use of proper glasshouse covering material, adequate indoor air circulation, partial night heating, strict indoor and outdoor hygiene and regular fungicide sprays. When disease pressure is low, application only of conventional compounds like dichlofluanid and chlorothalonil is recommended. Under conditions favourable to Botrytis infections, mixtures of conventional compounds with reduced strength specific botryticides should preferably be applied. Such regimes efficiently minimize losses from fungicide resistance development and ghost spot.  相似文献   

15.
Anthracnose, caused by Colletotrichum spp., is a major disease of cultivated strawberry, Fragaria × ananassa. This study identifies the Colletotrichum spp. which causes strawberry anthracnose in the southwest of Spain. A survey of the region was carried out, and the strains isolated were identified as C. acutatum by using the polymerase chain reaction (PCR) with genus and species-specific primers, demonstrating that this species is currently the causal agent of strawberry anthracnose in the studied region. The pathogenicity of C. acutatum and C. gloeosporioides strains was evaluated on two principal strawberry cultivars (cvs Camarosa and Ventana) under field conditions, the latter being more pathogenic than the former.  相似文献   

16.
Eight field surveys over three growing seasons (April to October in 2006, 2007, and 2008) were done in three commercial peach and nectarine orchards in order to determine the secondary inoculum dynamics of Monilinia spp. and relationship to the weather conditions and incidence of postharvest brown rot in the Ebro Valley, which is the main peach fruit growing region in Spain. After regression analysis of the epidemiological data of postharvest brown rot and the climatic variables, a disease outbreak can be predicted from (i) the times of the first appearance of airborne conidia, the first appearance of conidia on the surface of flowers and fruits, and the first latent infection, all of which occur 2?months before harvest (ii) the number of conidia on the fruit surface, 2?weeks and 1?week before harvest, (iii) the preharvest incidence of brown rot, and (iv) the mean environmental temperature from popcorn to harvest. From these results, we confirmed the importance of the secondary inoculum dynamics of Monilinia spp. and the utility of these dynamics to predict an outbreak of brown rot in peaches on the day of their harvest and after their harvesting.  相似文献   

17.
To identify the causal organism of anthracnose (ripe-rot), which reduces yield and postharvest quality of blueberries grown in British Columbia, Canada, 80 isolates were recovered from diseased fruits collected from commercial blueberry fields during 2002–04 and identified as Colletotrichum acutatum using colony morphology, growth rate and species-specific PCR primers. In vitro incubation of replicated sets of inoculated detached berries at various temperatures produced infection at temperatures of 7–30°C, with an optimum at 20°C. Colletotrichum acutatum could not survive on the soil surface as mummified berries but the pathogen was detected mostly within flower buds and less so in blueberry twigs and fruit trusses. Infection of developing flower buds in May–June of the preceding growing season gave the highest inoculum recovery in the following year. Two commercial fungal biocontrol agents, Prestop ( Gliocladium catenulatum ) and PlantShield ( Trichoderma harzianum ), each reduced anthracnose development in 2003 and 2004 by up to 45% when sprayed three times onto plants between flowering and fruit ripening.  相似文献   

18.
Fusarium crown and root rot of tomatoes in the UK   总被引:1,自引:0,他引:1  
Fusarium crown and root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici was found in the UK in 1988 and 1989 mainly in rockwool-grown tomato crops. Up to 14% of plants were affected in individual crops. In experiments, leaf and stem symptoms did not appear until the time of first fruit harvest even when the plants were inoculated at planting, first flowers or fruit set. Conidial inoculum at 106 spores/plant applied at seed sowing killed 70–83% of tomato seedlings, whereas similar levels of inoculum applied to young plants caused root and basal stem decay, and eventually death but only after fruit harvest began. Disease incidence and symptom severity increased with inoculum concentration. Experimentally, the disease was more severe in peat- or compost-grown plants than in rockwool. Disease spread was only a few centimetres in 50 days in experimental rockwool-grown plants. All tomato cultivars tested were highly susceptible. Prochloraz-Mn was highly effective against the pathogen in vitro and controlled the disease in the glasshouse, but only when applied preventively. Non-pathogenic Fusarium oxysporum isolates and Trichoderma harzianum also reduced FCRR disease levels.  相似文献   

19.
Colletotrichum spp. are known causal agents of anthracnose in a broad host range, causing severe losses. Currently, the most effective way to reduce disease is by fungicide application, which could give rise to resistant populations. This study aimed to determine the Colletotrichum species present in conventional and organic mango orchards and to evaluate their pathogenicity and sensitivity to the benzimidazole fungicide thiophanate-methyl. Seventy-one isolates from fruit with symptoms and symptomless leaves were obtained. From these, 20 representative morphotypes were analysed based on glyceraldehyde-3-phosphate dehydrogenase partial gene sequencing. A subset of 10 isolates based on different species, isolation source, and fungicide sensitivity was used for morphological and multilocus phylogenetic analysis. Colletotrichum queenslandicum was only identified in conventional production systems, Cchrysophilum only in organic systems, and Casianum and Csiamense in both. Pathogenicity tests showed all species were pathogenic, and only Casianum caused symptoms via both unwounded and wounded inoculation methods. Overall, 25.3% of isolates (n = 18) that belong to Csiamense, isolated from a conventional orchard, grew on thiophanate-methyl amended media at 1,000 µg/ml, suggesting high resistance. Resistance was not correlated with any common point mutations at positions 198 and 200 of the β-tubulin 2 protein, as commonly found in other fungal pathogens resistant to benzimidazole. The 74.7% remaining isolates (n = 53) belonging to the other species were sensitive, reaching 100% inhibition at <10 µg/ml. Even with benzimidazole application, anthracnose symptoms persist due to the emergence of pathogenic Colletotrichum subpopulations that are resistant to thiophanate-methyl.  相似文献   

20.
Colletotrichum species cause anthracnose disease in tropical and subtropical fruit crops worldwide. Mexico is the main producer and exporter of avocado (Persea americana) globally and has yearly outbreaks of anthracnose on this crop. However, which specific Colletotrichum spp. cause these outbreaks in avocado-producing regions remain uncertain; thus, the objective of the present study was to identify the species responsible. A survey performed in six production regions of Mexico yielded 232 isolates, from which a subset of 104 strains was selected based on morphological characteristics and origin. This subset was sequenced and haplotypes were analysed in the gapdh partial gene. Finally, 31 strains were identified through multilocus phylogenetic analyses using the sequences of the internal transcribed spacer region and six loci. This study revealed the presence of two species previously reported in Mexico (C. karsti and C. godetiae), three novel records in Mexico (C. siamense, C. fioriniae, and C. cigarro), four novel records on avocado (C. chrysophilum, C. jiangxiense, C. tropicale, and C. nymphaeae), and two novel lineages (Colletotrichum sp. 1 and Colletotrichum sp. 2). C. siamense was the most prevalent, while the species reported for the first time on avocado, including the novel lineages, were the least prevalent. C. karsti was the most widespread (four regions), followed by C. siamense, C. jiangxiense, and C. chrysophilum (three regions). Pathogenicity tests showed that all species caused anthracnose on avocado fruit. These findings will be useful for improving the management of avocado anthracnose outbreaks in Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号