首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The susceptibility/resistance to Aphanomyces euteiches of various genotypes (cultivars and breeding lines) of several grain legume species was assessed in controlled conditions. A total of 279 genotypes from the major grain legumes grown in temperate climates (faba bean, chickpea, lentil, lupin and common vetch) and three other legumes frequently cultivated in France (French bean, clover and alfalfa) were screened with one pea-infecting isolate from France. Four different categories of susceptibility/resistance were identified among the legume species/cultivars tested with the pea A. euteiches isolate: (1) susceptible legume species (lentil, alfalfa, French bean) among which low levels of partial resistance was observed; (2) legume species including susceptible genotypes and genotypes with high levels of resistance (common vetch, faba bean and clover), (3) species with a very high level of resistance (chickpea) and (4) species displaying no symptoms (lupin). It is therefore important to consider pathogen-species and pathogen-genotype interactions when defining the host specificity of A. euteiches and considering the possible role of different legume species in increasing or decreasing the soil inoculum potential.  相似文献   

2.
Aphanomyces euteiches (races 1 and 2) causes root rot of alfalfa; however, its population biology and distribution are poorly understood where alfalfa is a major crop. The objectives of this study were to (1) characterise the distribution and frequency of races of A. euteiches in Illinois alfalfa fields, (2) determine host range of A. euteiches on cultivated and native legumes, and (iii) to describe genetic diversity and population genetic structure of A. euteiches in alfalfa fields. To accomplish this, soil samples (n = 103) were collected from 30 alfalfa fields in 18 Illinois counties. Using the susceptible cv. ‘Saranac’, 148 isolates of A. euteiches were baited from the soil. The virulence phenotype of isolates representing all 18 counties was tested, and 54% were R1 and 46% were R2. Both races were detected in 61% of the counties, whereas only R1 was detected in 22% and R2 in 17%. Thirteen legume hosts for isolates from alfalfa fields were identified based on symptoms and/or production of oospores in roots. In addition to six previously known hosts, seven species were susceptible to infection: kura clover, purple prairie clover, white prairie clover, ladino clover, hairy vetch, Canadian milk vetch, and Illinois tick trefoil. AFLP analysis revealed high levels of genetic diversity among the isolates from different fields and counties and a lack of genetic structuring of populations based on race or geographical origin. The results suggest that populations of A. euteiches in alfalfa fields are diverse, often composed of races 1 and 2, and create risk for alfalfa and to multiple cultivated and native legume species.  相似文献   

3.
The consequence of 10 successive monocultural cycles involving different legume species/cultivars on the inoculum potential (IP) of soils naturally infested by Aphanomyces euteiches was investigated under greenhouse conditions. The results showed that the IP of a soil naturally infested by A. euteiches can be significantly modified not only by the non‐host or host status of crop species but also by the level of resistance of the cultivar. Susceptible species/cultivars (pea, lentil and susceptible cultivars of vetch and faba bean) are very favourable to pathogen multiplication, and continuous cultivation of each of these increased the IP values of a soil with a moderate initial IP (from 1·9 to 3·5 after 10 cycles). Conversely, non‐host species and resistant cultivars of vetch or faba bean contributed to reducing the IP values of soils irrespective of the initial IP (from 1·9 to 0·5 and from 4 to 2, respectively, after 10 cycles). Aphanomyces root rot severity values on the resistant legume species/cultivars were not affected by the successive cultural cycles. This study, which showed that the IP of A. euteiches in soil can be reduced by planting appropriate legume species and cultivars in greenhouse conditions, will be useful for defining better crop successions for legumes.  相似文献   

4.
Pathogenicity of Aphanomyces spp. from Different Leguminous Crops in Sweden   总被引:1,自引:0,他引:1  
Host range and pathogenicity of a range of Aphanomyces spp. isolates obtained from pea roots but also from a range of other field-grown leguminous crops in southern Sweden was investigated. The Aphanomyces euteiches isolates originating from pea and the few obtained isolates originating from alfalfa, green bean and yellow sweet-clover were highly pathogenic only to pea. The A. euteiches isolated from common vetch differed from these isolates by being weakly pathogenic to pea and other legumes, but highly pathogenic to common vetch. Vetch isolates also formed a well-defined separate cluster based on principal component analysis of pathogenicity pattern on tested crops. Oospores of A. euteiches were observed in root tissue of pea as well as common vetch, alfalfa, green bean, broad bean, red clover and yellow sweet-clover in the greenhouse pathogenicity tests. An Aphanomyces sp. that morphologically differed from A. euteiches, was frequently isolated from several leguminous plants, but was non-pathogenic to all tested crops in the pathogenicity tests. In isozyme analysis the banding pattern of these isolates resembled the pattern of A. cladogamus. Another, different and so far unidentified Aphanomyces sp. from roots of green bean and broad bean, was also non-pathogenic to the tested legume species. Based on the isolates tested, the results obtained suggest that the population of Aphanomyces spp. infecting legume roots in Sweden consists of a pea-specific and a vetch-specific group of A. euteiches. Two other groups comprised (i) Aphanomyces sp. isolates that resembled A. cladogamus, and (ii) isolates, which resembled neither A. euteiches nor A. cladogamus. In addition, the host range of Swedish A. euteiches isolates was not as broad as reported for A. euteiches isolates from other countries.  相似文献   

5.
Aphanomyces euteiches causes severe root rot of peas. Resistance is limited in commercial pea cultivars. Real-time fluorescent PCR assay specific for A. euteiches was used to study the relationship between disease severity and pathogen DNA content in infected peas. Five pea genotypes ranging in levels of resistance were inoculated with five isolates of A. euteiches. Plants were visually rated for disease development and the amount of pathogen DNA in roots was determined using the PCR assay. The susceptible genotypes Genie, DSP and Bolero tended to have significantly more disease and more pathogen DNA than the resistant genotypes 90-2079 and PI 180693. PI 180693 consistently had less disease, while 90-2079 had the lowest amount of pathogen DNA. The Spearman correlation between pathogen DNA quantity and disease development was positive and significant (P < 0.05) for three isolates, but was not significant for two other isolates. This suggests that the real-time PCR assay may have limited application as a selection tool for resistance in pea to A. euteiches. Its utility as a selection tool would be dependent on the correlation between disease development and pathogen DNA content for a given pathogen isolate. The accuracy and specificity of the real-time PCR assay suggests considerable application for the assay in the study of mechanisms of disease resistance and the study of microbial population dynamics in plants.  相似文献   

6.
Fusarium oxysporum f. sp. cubense (Foc) is the causal pathogen of Fusarium wilt of banana. To understand infection of banana roots by Foc race 4, we developed a green fluorescent protein (GFP)-tagged transformant and studied pathogenesis using fluorescence microscopy and confocal laser scanning microscopy. The transformation was efficient, and GFP expression was stable for at least six subcultures with fluorescence clearly visible in both hyphae and spores. The transformed Foc isolate also retained its pathogenicity and growth pattern, which was similar to that of the wild type. The study showed that: (i) Foc race 4 was capable of invading the epidermal cells of banana roots directly; (ii) potential invasion sites include epidermal cells of root caps and elongation zone, and natural wounds in the lateral root base; (iii) in banana roots, fungal hyphae were able to penetrate cell walls directly to grow inside and outside cells; and (iv) fungal spores were produced in the root system and rhizome. To better understand the interaction between Foc race 4 and bananas, nine banana cultivars were inoculated with the GFP-transformed pathogen. Root exudates from these cultivars were collected and their effect on conidia of the GFP-tagged Foc race 4 was determined. Our results showed that roots of the Foc race 4-susceptible banana plants were well colonized with the pathogen, but not those of the Foc race 4-resistant cultivars. Root exudates from highly resistant cultivars inhibited the germination and growth of the Fusarium wilt pathogen; those of moderately resistant cultivars reduced spore germination and hyphal growth, whereas the susceptible cultivars did not affect fungal germination and growth. The results of this work demonstrated that GFP-tagged Foc race 4 isolates are an effective tool to study plant–fungus interactions that could potentially be used for evaluating resistance in banana to Foc race 4 by means of root colonization studies. Banana root exudates could potentially also be used to identify cultivars in the Chinese Banana Germplasm Collection with resistance to the Fusarium wilt pathogen.  相似文献   

7.
The oomycete pathogen Aphanomyces euteiches causes root rot in various legume species. In this study we focused on A. euteiches causing root rot in pea (Pisum sativum), thereby being responsible for severe yield losses in pea production. We aimed to understand the genetic diversity of A. euteiches in Europe, covering a north-to-south gradient spanning from Sweden, Norway and Finland to the UK, France and Italy. A collection of 85 European A. euteiches strains was obtained, all isolated from infected pea roots from commercial vining pea cultivation fields. The strains were genotyped using 22 simple-sequence repeat markers. Multilocus genotypes were compiled and the genetic diversity between individual strains and population structure between countries was analysed. The population comprising strains from Italy was genetically different and did not share ancestry with any other population. Also, strains originating from Finland and the eastern parts of Sweden were found to be significantly different from the other populations, while strains from the rest of Europe were more closely related. A subset of 10 A. euteiches strains from four countries was further phenotyped on two susceptible pea genotypes, as well as on one genotype with partial resistance towards A. euteiches. All strains were pathogenic on all pea genotypes, but with varying levels of disease severity. No correlation between the genetic relatedness of strains and virulence levels was found. In summary, our study identified three genetically distinct groups of A. euteiches in Europe along a north-to-south gradient, indicating local pathogen differentiation.  相似文献   

8.
The biochemical processes underlying the expression of resistance in the roots of Medicago truncatula against Aphanomyces euteiches infection was investigated, with emphasis on oxidative stress. The levels of H2O2, superoxide dismutase, peroxidase, ascorbate peroxidase, catalase, soluble phenolics and lignin were measured in the roots of two lines, A17 partially resistant and F83005.5 susceptible to A. euteiches at three infection stages; penetration of the epidermis (1 dpi), colonization of the cortex (3 dpi) and invasion of the root stele (6 dpi). A rapid and large decrease of the H2O2 levels in A17 roots occurred. However, in F83005.5 roots, the decrease in H2O2 levels was delayed until 3 dpi. In A17 roots, the activities of ascorbate peroxidase, peroxidase and catalase were induced as early as 1 dpi, whereas a general decrease in the activity of the four antioxidant enzymes was observed in F83005.5 roots. The levels of soluble phenolics and lignin were increased in A17 roots at 3 and 6 dpi, respectively. The H2O2 levels were negatively correlated to ascorbate peroxidase, catalase and lignin production at 1, 3 and 6 dpi, respectively in A17 roots. Physiological concentrations of H2O2 found in M. truncatula infected roots had no detrimental effect on the in vitro growth of this oomycete. Our data suggest that H2O2 does not have a direct antimicrobial effect on M. truncatula resistance to A. euteiches, but is involved in cell wall strengthening around the root stele, preventing pathogen invasion of the vascular tissues.  相似文献   

9.
The effects of the arbuscular mycorrhizal (AM)-fungi Glomus intraradices and Glomus claroideum on pea root-rot development caused by the pathogen Aphanomyces euteiches were investigated in a greenhouse pot-experiment, over the course of three harvests, using oospores as pathogen inoculum. Signature whole cell fatty acids 16:15c and 14:19 were used to quantify AM-fungi and A. euteiches, respectively in both roots and soil. Disease incidence was reduced in AM plants, though this effect was more pronounced in plants with G. intraradices than plants with G. claroideum, and corresponded with a greater mycorrhiza development, both intra- and extra radical in plants with G. intraradices than with G. claroideum. At the final harvest, percentage of root length with oospores was similar in roots of mycorrhizal and non-mycorrhizal plants. Despite the fact that pea root-rot development was only slightly lower in mycorrhizal plants compared to that of non-mycorrhizal plants, in terms of shoot growth and disease severity, mycorrhizal plants suffered less. This suggests a possible mycorrhiza-induced tolerance against pea root-rot. Furthermore, the degree of tolerance induction differed between the two AM-fungi included in the present study.  相似文献   

10.
In 1983, seed dressing of peas with fosetyl-Al (Aliette) compared favourably with all other treatments on a field heavily contaminated with foot and root rot pathogens. Experiments carried out in 1983 and 1984 could not establish the reason for this phenomenon. Artificial inoculation with the most frequently isolated pathogens (Fusarium oxysporum, Phoma medicaginis var.pinodella, Pythium ultimum andFusarium solani f.sp.pisi) of sterilized soil before planting treated seeds did not reproduce the field observations, but glasshouse experiments using soil from the experimental field did. Glasshouse experiments in 1989, afterAphanomyces euteiches had been identified as a frequently occurring pea pathogen in the Netherlands, confirmed the favourable effect of fosetyl-Al as a seed treatment whenA. euteiches was in the pathogen flora.Samenvatting In 1983 bleek op een zwaar met voetrotpathogenen besmet veld zaaizaadbehandeling van erwten met fosetyl-Al (Aliette) gunstig af te steken bij alle andere behandelingen. De oorzaak kon toen niet worden gevonden. Kunstmatige besmetting van gesterilisserde grond vóór het planten van behandelde zaden met de meest geïsoleerde pathogenen (Fusarium oxysporum, Phoma medicaginis var.pinodella, Pythium ultimum enFusarium solani f.sp.pisi) gaf resultaten die niet overeenstemden met die van het proefveld, maar kasproeven met grond van het proefveld deden dat wel. Nadat was aangetoond dat het erwtepathogeenAphanomyces euteiches in Nederland veel voorkomt, bevestigden nieuwe kasproeven in 1989 het gunstige effect van fosetyl-Al als zaaizaadbehandeling wanneerA. euteiches deel uitmaakt van de pathogene bodemflora.  相似文献   

11.
Subterranean clover (Trifolium subterraneum) is an important pasture legume in Australia (29 million ha) and elsewhere. However, severe pasture decline occurs in association with several root pathogens, including Aphanomyces trifolii, that has been misidentified for decades as A. euteiches until recently confirmed as A. trifolii. A series of controlled environment experiments was undertaken to identify host resistance to A. trifolii in subterranean clover and to compare virulence and phylogeny of isolates. In experiment 1, Dalkeith, Bacchus Marsh, Riverina and Yarloop were the most resistant of 38 cultivars with a percentage disease index (PDI) ≤10 for both tap and lateral roots. Experiment 2 confirmed resistance of Yarloop, but a change in some relative varietal resistances suggested physiological specialization among A. trifolii isolates. Experiment 3 confirmed extensive variation in virulence and physiological specialization across 23 isolates of A. trifolii, with three distinct clades, two of which were distinct from isolates collected previously. Experiment 4 identified host resistance(s) effective against a mixture of 20 A. trifolii isolates, but the most resistant cultivars (Antas, Uniwager, Leura) still showed significant disease. This is the first study to show physiological specialization in A. trifolii and to identify host resistance. This study defines A. trifolii as a significant but largely unknown contributor to severe root disease of subterranean clover in southern Australia. Finally, development and calibration of a new soil commercial DNA test not only enables field quantification of the disease, but development of appropriate breeding, selection and farm management strategies to reduce its impact.  相似文献   

12.
Common root rot (Aphanomyces euteiches Drechs.) has become a very destructive disease in the French pea crops since 1993. For an accurate investigation of the virulence variability among French A. euteiches populations and between French and foreign populations, a new set of differential pea genotypes was developed. Thirty-three American and European pea lines, displaying different levels of resistance, were screened in a growth chamber against two French isolates. Symptoms (disease severity from 0 to 5, evaluating symptom surface on roots and epicotyl) and percentage of top fresh weight (inoculated/uninoculated top fresh weight ratio) were measured. From this screening 12 relatively resistant lines, from various genetic backgrounds, were identified along with a highly susceptible control. This set of 13 genotypes was inoculated under controlled conditions with 14 isolates from France, Sweden, USA, Canada and New Zealand, to investigate genotype–isolate interactions. Root symptoms were rated (disease severity), and a susceptibility/resistance threshold was established at disease severity = 1. Significant quantitative interactions were observed, and five 'resistance patterns' were identified, leading to a set of six pea genotypes: Baccara (susceptible), Capella, MN313, 902131, 552 and PI180693. Fields trials of this set in 1999 and 2000 gave the same resistance rankings than in growth chamber conditions. This set will allow more accurate assessments of the variability in virulence/aggressiveness of A. euteiches isolates from France and foreign countries, and further investigations of the epidemiological and genetic basis of pea–A. euteiches interactions.  相似文献   

13.
ABSTRACT A polymerase chain reaction (PCR) assay using a set of specific primers and a dual-labeled probe (TaqMan) was developed to quantify the amount of Aphanomyces euteiches DNA in alfalfa plants exhibiting varying levels of disease severity. The study included isolates of race 1 and race 2 of A. euteiches. The assay also discriminated between alfalfa populations for resistance based on analysis of DNA extracted from bulked plant samples. Analysis of individual plants and bulked plant samples of standard check populations with both pathogen isolates resulted in Spearman rank correlations between pathogen DNA content and disease severity index ratings that were greater than 0.75 and highly significant (P < 0.0005). In experiments with a race 1 isolate, the amount of pathogen DNA present in the resistant check WAPH-1 was significantly less than in the susceptible check Saranac. In experiments with a race 2 isolate, the amount of pathogen DNA in the resistant check WAPH-5 was significantly less than in either of the susceptible checks, Saranac and WAPH-1. Discrimination between commercial cultivars based on quantitative PCR analysis of bulked plant samples was similar to classification based on visual assessment of disease severity.  相似文献   

14.
Research on root rot pathogens of peas in the Netherlands has confirmed the prevalence ofFusarium solani, F. oxysporum, Pythium spp.,Mycosphaerella pinodes andPhoma medicaginis var.pinodella. Aphanomyces euteiches andThielaviopsis basicola were identified for the first time as pea pathogens in the Netherlands. Other pathogens such asRhizoctonia solani andCylindrocarpon destructans were also found on diseased parts of roots. F. solani existed in different degrees of pathogenicity, and was sometimes highly specific to pea, dwarf bean of field bean, depending on the cropping history of the field.A. euteiches was specific to peas, whereasT. basicola showed some degree of physiological specialization.  相似文献   

15.
Ditylenchus dipsaci, the stem nematode of alfalfa (Medicago sativa), Mycosphaerella pinodes, cause of Ascochyta blight in pea (Pisum sativum) and Aphanomyces euteiches, cause of pea root rot, result in major yield losses in French alfalfa and pea crops. These diseases are difficult to control and the partial resistances currently available are not effective enough. Medicago truncatula, the barrel medic, is the legume model for genetic studies, which should lead to the identification and characterization of new resistance genes for pathogens. We evaluated a collection of 34 accessions of M. truncatula and nine accessions from three other species (two from M. italica, six from M. littoralis and one from M. polymorpha) for resistance to these three major diseases. We developed screening tests, including standard host references, for each pathogen. Most of the accessions tested were resistant to D. dipsaci, with only three accessions classified as susceptible. A very high level of resistance to M. pinodes was observed among the accessions, none of which was susceptible to this pathogen. Conversely, a high level of variation, from resistant to susceptible accessions, was identified in response to infection by A. euteiches.  相似文献   

16.
Thirty-nine genotypes ofCucumis melo (plant introduction entries, open-pollinated cultivars and F1 hybrids) were evaluated for resistance to powdery mildew under either natural field conditions or artificial inoculation in growth chambers at the cotyledonary stage and the 2-true-leaf stage. Results confirmed that susceptibility in cotyledons was not necessarily associated with susceptibility in either true leaves in growth chambers or adult plants in the field. However, resistance at the 2-true-leaf stage in growth chambers was highly correlated with resistance of field-grown plants. Results also showed that 20 muskmelon genotypes resistant to race 1 at the cotyledonary stage were also resistant at the 2-leaf-stage and as adult plants in the field. The same was true for ten genotypes with race 2 inoculations. Because muskmelon genotypes expressing resistance in cotyledons were also resistant in true leaves in growth chambers or the field, the use of plants at the cotyledonary stage is recommended for screening for powdery mildew resistance caused by race 1 or race 2 ofS. fuliginea. When cotyledons are susceptible, screening should be done at the 2-true-leaf stage.  相似文献   

17.
Abstract

Brassicaceae plants have the potential as part of an integrated approach to replace fumigant nematicides, providing the biofumigation response following their incorporation is not offset by reproduction of plant-parasitic nematodes on their roots. Forty-three Brassicaceae cultivars were screened in a pot trial for their ability to reduce reproduction of three root-knot nematode isolates from north Queensland, Australia: M. arenaria (NQ1), M. javanica (NQ2) and M. arenaria race 2 (NQ5/7). No cultivar was found to consistently reduce nematode reproduction relative to forage sorghum, the current industry standard, although a commercial fodder radish (Raphanus sativus) and a white mustard (Sinapis alba) line were consistently as resistant to the formation of galls as forage sorghum. A second pot trial screened five commercially available Brassicaceae cultivars, selected for their biofumigation potential, for resistance to two nematode species, M. javanica (NQ2) and M. arenaria (NQ5/7). The fodder radish cv. Weedcheck, was found to be as resistant as forage sorghum to nematode reproduction. A multivariate cluster analysis using the resistance measurements, gall index, nematode number per g of root and multiplication for two nematode species (NQ2 and NQ5/7) confirmed the similarity in resistance between the radish cultivar and forage sorghum. A field trial confirmed the resistance of the fodder radish cv. Weedcheck, with a similar reduction in the number of Meloidogyne spp. juveniles recovered from the roots 8 weeks after planting. The use of fodder radish cultivars as biofumigation crops to manage root-knot nematodes in tropical vegetable production systems deserves further investigation.  相似文献   

18.
The occurrence ofAphanomyces euteiches Drechs. in Dutch soils is reported for the first time. Isolates of the pathogen were obtained from peas (Pisum sativum L.). A bioassay was used that baited the pathogen from soil into the cortex of stem and root of seedlings of a highly susceptible pea cultivar. The pathogen could subsequently be isolated on a semi-selective medium. Screening of soil samples from 13 fields known to be infested with fungi causing foot and root rot demonstrated the presence ofA. euteiches in 10 cases. In a second screening on soil samples from 43 fields, the pathogen was present in 16 cases. A positive correlation was found between the disease severity caused byA. euteiches in the seedling bioassay and the disease severity caused by the complex of foot and root pathogens in the same soils as evidenced by a mature plant bioassay. It is considered probable thatA. euteiches has since long been a common component of the foot and root rot complex in Dutch soils but has not been detected previously due to inadequate sampling and isolation techniques.Samenvatting De aanwezigheid vanAphanomyces euteiches Drechs. in Nederlandse gronden is voor het eerst aangetoond. Isolaten van het pathogeen werden verkregen van erwten (Pisum sativum L.). De pathogene schimmel werd in petrischalen uit grond in het schorsweefsel van wortel en stengel van een zeer vatbaar erwteras gelokt. Met behulp van een semiselectief medium konden vervolgens isolaten van de schimmel worden verkregen. Toetsing van grondmonsters afkomstig van 13 percelen, waarvan bekend was dat ze besmet waren met schimmels die voetziekten in erwten veroorzaken, toonde de aanwezigheid vanA. euteiches aan in 10 gevallen. In een tweede biotoets op grondmonsters van 43 percelen bleken 16 monsters het pathogeen te herbergen. Er werd een positieve correlatie gevonden tussen de ernst van de aantasting doorA. euteiches van kiemplanten en de aantasting van volwassen planten in een biotoets in de kas. Het is waarschijnlijk dat de schimmel reeds lang in Nederlandse akkers voorkomt, maar door inadequate bemonsterings- en isolatietechnieken over het hoofd is gezien.  相似文献   

19.
Aphanomyces euteiches Drechsler is an oomycete pathogen of leguminous crops that causes root rot, a severe disease of pea (Pisum sativum L.) worldwide. An improved understanding of the genetic structure of A. euteiches populations would increase knowledge of pathogen evolution and assist in the design of strategies to develop pea cultivars and germplasm with stable disease resistance. Twenty six primers pairs were used to amplify Sequence Related Amplified Polymorphisms (SRAP) among 49 A. euteiches isolates sampled from pea. A total of 190 polymorphic SRAP bands were generated, of which 82 were polymorphic between all the A. euteiches isolates. The percentage of polymorphic bands per primer pair ranged from 22 to 75%. According to the PIC value estimated for each marker, 60% of the SRAP markers were highly to reasonably informative (PIC > 0.25). Genetic structure of A. euteiches populations sampled in different American and French locations showed low to high genetic diversity within populations. The largest variation occurred within countries, with a total estimated genetic diversity of 0.477 and 0.172 for American and French populations, respectively. This was particularly evident from a principal component analysis (PCA) and a Minimum Spanning Networks (MSN) based on genetic profiles of isolates, which generated two different clusters, one corresponding to the French isolates and four American isolates (MV1, MV5, MV7, Ath3), and the other to American isolates. A. euteiches populations from cultivated pea in France appeared as a single unstructured population, whereas American isolates of A. euteiches diverged into three different populations.  相似文献   

20.
The effects on growth, asexual and sexual reproduction of different Aphanomyces species by the new fungicide ampropylfos ((RS)-1-aminopropylphosphonic acid) were tested using highly synchronized cultures. Ampropylfos reduced mycelial growth in Aphanomyces astaci, A. euteiches and A. stellatus. The fungicide was found to reduce zoospore numbers in all Aphanomyces species tested except A. euteiches. In one species, A. stellatus, zoospore production was inhibited at much lower fungicide concentrations than in the other species tested. In the pea pathogen A. euteiches, ampropylfos reduced the number of oospores, whereas the fungicide had little effect on asexual reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号