首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
化学萃取修复尾渣土壤的金属形态变化特征   总被引:4,自引:0,他引:4  
The efficiency of EDTA, HNO3 and CaCl2 as extractants to remove Pb, Zn and Cu from tailing soils without varying soil pH was investigated with distributions of Pb, Zn and Cu being determined before and after extraction using the sequential extraction procedure of the optimized European Community Bureau of Reference (BCR). Results indicated that EDTA and HNO3 were both effective extracting agents.The extractability of extractants for Pb and Zn was in the order EDTA 〉 HNO3 〉 CaCl2, while for Cu it was HNO3 〉 EDTA 〉 CaCl2. After EDTA extraction, the proportion of Pb, Zn and Cu in the four fractions varied greatly, which was related to the strong extraction and complexation ability. Before and after extraction with HNO3 and CaCl2, the percentages of Pb, Zn and Cu in the reducible, oxidizable and residual fractions changed little compared to the acid-extractable fraction. The lability of metal in the soil and the kinds of extractants were the factors controlling the effects of metal extraction.  相似文献   

2.
Laboratory batch and greenhouse pot experiments were conducted to determine the extraction efficiency of ethylenediaminetetraacetic acid (EDTA) for solubilizing lead (Pb) and cadmium (Cd) and to explore the natural and chemically induced Pb and Cd phytoextraction efficiencies of spinach and mustard after EDTA application. The EDTA was applied at 0, 1.25, 2.5, and 5.0 mM kg?1 soil in three replicates. Addition of EDTA increased significantly the soluble fraction Pb and Cd over the control and maximum increases for Pb (1.42- and 1.96-fold) and Cd (1.45- and 1.38-fold) were observed with the addition of 5.0 mM EDTA kg?1 in Gujranwala and Pacca soils, respectively. Similarly, addition of EDTA increased significantly the Pb and Cd concentrations in the plant shoots, soil solution, bioconcentration factor, and phytoextraction rate. Mustard exhibited better results than spinach when extracting Pb and Cd from both contaminated soils.  相似文献   

3.
Although lead (Pb) emissions have dropped drastically with the phase-out of tetra-ethyl lead (TEL) as a fuel additive, Pb deposited along highway corridors continues to be of concern because of its toxicity. This paper provides comprehensive data on the extent and distribution of Pb in roadside soils, Pb interaction with soils as a function of soil composition, the retention capacity of soil based on batch adsorption tests, the retention mechanism of Pb using selective sequential extraction, the potential for mobility using batch desorption tests with simulated rain and winter road salt, and column leach tests. Highway soils on high-traffic sections near Burnaby, Canada were found to have Pb accumulations up to 1628mg/kg soil. Contamination was mainly in the top 0.3m, with concentrations rapidly decreasing to the background level at a depth of 0.6m. The top layer contained more organic material and had a high adsorption capacity. Highway soils were found to have 3–10 times higher Pb adsorption capacities than the amount currently deposited. Selective sequential extraction indicated low exchangeable Pb in highway soils. Batch desorption tests with leaching solutions of H2O (pH 5.5), HNO3 solution (pH 4.0) and aqueous NaCl solution (0.17M) indicate low likelihood of significant leaching. Selective sequential extraction, leachate extraction and desorption tests show that Pb has limited mobility in highway soil.  相似文献   

4.
Behaviour of heavy metals in soils. 2. Extraction of mobile heavy metals with CaCl2 and NH4NO3 156 soil samples from arable fields, grassland and forest stands were analysed for the CaCl2? and NH4NO3? extractable contents of Cd, Zn, Mn, Cu and Pb. The average amounts of Cd, Zn, Cu and Pb extracted with CaCl2 are higher compared with NH4NO3 whereas the relation for Mn is vice versa. The proportion of the NH4NO3? extractable contents in percent of the CaCl2? extractable contents of Cd, Zn and Pb decrease with increasing pH, whereas the contents of Mn and Cu increase. Inspite of a differing extraction behaviour of the two salt solutions the CaCl2? and NH4NO3? extractable amounts of Cd, Mn, Zn und Pb are highly correlated and can be converted one into another. The mobile (CaCl2, NH4NO3) proportion of the corresponding total, EDTA and DTPA heavy metal contents is in close relation to the pH of the soils. Using CaCl2 solution the threshold pH values for an increasing mobility decrease in the order Cd > Mn > Zn > Cu > Pb, using NH4NO3 as extractant the order is Mn > Cd > Zn > Cu > Pb. In the case of CaCl2 as extractant soluble chloro-Cd-complexes will be formed so that the Cd mobility in soils will be overestimated in most cases.  相似文献   

5.
Because the economics of soil extraction processes depend on conservation and reuse of costly chelating agents, the ability of various electrolytes to modify EDTA extraction of Pb from a grossly-contaminated soil (PbT=21%) was investigated using batch equilibration experiments. In the absence of added electrolyte, a single 5-hr. extraction with 0.04 M EDTA (corresponding to 1∶1 PbT to EDTA ratio) released 65% of PbT over the pH 5 to 9 range. Under these conditions, Na+-, Li+-, and NH4ClO4 salts at 0.5 M increased Pb desorption to nearly 80%, probably from exchange displacement of soilbound Pb2+ and increased solubility of Pb-containing phases at higher ionic strength. Because Cl? and ClO4 ? salts were equally effective, chlorocomplex formation was insignificant. Under slightly acidic conditions, Ca(ClO4)2 and Mg(ClO4)2 at 0.167 M caused roughly the same elevation in Pb recovery as 0.5M of the monovalent electrolytes. However, with progressively higher pH, Ca, and to a lesser extent Mg, suppressed Pb solubilization by competitive chelation of EDTA. Pb recovery by EDTA soil washing could be enhanced by addition of Ca salts at pH 4 to 6. Subsequent pH elevation in the presence of Ca would promote decomposition of Pb-EDTA complexes and separation of Pb as a hydroxide precipitate.  相似文献   

6.

Purpose

Extensive deposition of Pb, As, and Cs in soils may damage ecosystems and human’s health. Soil washing is the most conventional remediation method, and its efficiency depends on metal solubility in soil. This study aims to optimize operating variables of electro-kinetic field (EKF)-enhanced soil washing procedures.

Materials and methods

Soil samples from a Mississippi River Delta rice field were homogeneously spiked with Pb, As, and Cs, and contaminated soil was aged for 3 months. The remediation involved a first stage electro-kinetic process, followed by a soil washing procedure. Soil pH changes under EKF were studied. Effects of citric acid and reversed EKF were investigated for alleviating possible alkaline precipitation. In the washing procedure, soil washing time and cycles with different extractants were examined. The overall EKF-enhanced soil washing efficiencies were discussed as well.

Results and discussion

The implement of EKF offered an acidic soil environment around the anode areas for solubilizing metal(loid)s. Combined with EKF, citric acid was more conductive to desorb metal(loid)s. In addition, the reversed EKF effectively alleviated metal(loid) precipitation caused by alkalization in the first stage cathode areas. The EKF significantly enhanced metal(loid) extractions in the anode area of soils using Na2EDTA, CaCl2, and citric acid at pH of 2. The most preferable removal of Pb (80–98 %), As (48–63 %), and Cs (10–13 %) was achieved with three extractants. CaCl2 and citric acid were proved to be suitable alternatives to Na2EDTA for Pb extraction. A washing process of 2 h extraction with double washing cycles was optimized.

Conclusions

Soil washing time and cycles were major factors governing the metal(loid) removal from soil. Washing process of 2 h extraction with double cycles was optimized for further extraction based on higher washing efficiency. The EKF effectively improved washing efficiency while some electrical parameters need further studies for cost performance consideration.
  相似文献   

7.
The aim of this paper was to compare the concentration of P in soil extracts prepared with water and a ‘soil solution proxy’ (‘SSP’, that is, a salt solution similar in ionic composition and strength to the actual soil solution) with that in 0.01 m CaCl2 extracts, which is usually taken as a measure of soil P intensity. Seventy widely ranging agricultural soils from the Mediterranean part of Spain were used. Soil/solution ratio was 1:10 and extraction time 3 days. For 0.01 m CaCl2, a short extraction time of 30 min was also used as the reference method. CaCl2‐P(3 days) and CaCl2‐P(30 min) were not significantly different for the 40 noncalcareous soils group, but CaCl2‐P(3 days) was significantly larger than CaCl2‐P(30 min) for the 30 calcareous soils group. The Water‐P/CaCl2‐P(30 min) ratio was not significantly related to any soil property, its mean being 6.3 for the noncalcareous and 5.8 for the calcareous soils group. The mean SSP‐P/CaCl2‐P(30 min) ratio was 2.6 for the noncalcareous and 3.1 for the calcareous soils group, and decreased slightly with increasing ionic strength of the soil solution in the noncalcareous soils group. These results are consistent with the promoting influence of the Ca ion and ionic strength on P adsorption by permanent‐charge soils. The fact that extraction with 0.01 m CaCl2 generally results in underestimation of the actual concentration of P in the soil solution should be considered when CaCl2‐P is used as a soil P test.  相似文献   

8.
Behaviour of heavy metals in soils. 1. Heavy metal mobility 158 soil samples with widely varying composition were analysed for their total, EDTA, DTPA and CaCl2 extractable contents of Cd, Zn, Mn, Cu and Pb. By means of single and multiple regressions the relations between the different heavy metal fractions and the pH, organic carbon and clay content were considered. The correlations between the total, EDTA and DTPA extractable contents are very close, whereas the CaCl2 extractable contents are not or only weakly correlated with these fractions. According to these statistical results the former fractions are considered to be the total quantity (total content) and the reactive quantity (EDTA and DTPA extractable contents) of the heavy metals, whereas the CaCl2 extractable fraction represents the mobile fraction of the heavy metals in soils. The multiple regressions show that the mobile content of heavy metals is closely correlated with each of the quantity fractions and with soil pH. In the same way the proportion of the mobile fraction (in %) of the total, EDTA and DTPA extractable heavy metal content of the soil samples is closely related to the soil pH. Hereby the proportion of the mobile content of the various elements increases in the pH range 6,5 - 3 below element-specific threshold pH values (in brackets) in the order Cd (6,5) > Mn (5,7) > Zn (5,3) > Cu (4,5) > Pb (3,5). In the pH range 6,5 - 7,5 mainly Cu and to a lesser degree also Pb show an increasing mobility due to the influence of soluble organic substances.  相似文献   

9.
Abstract

Knowledge of the change in soil extractable phosphorus (P) as a consequence of soil P fertilization could be useful in discriminating soils with a potential for soil P release to runoff or movement of P along the soil profile. In this research, soils with low to medium P retention capacity were equilibrated for 90 days with soluble P (KH2PO4) at rate of 100 mg P kg‐1 soil. After this period, soil samples both with and without the P addition were analyzed using six conventional methods: 1) Olsen, 2) Bray 1,3) Mehlich3,4) Egner, 5) Houba, dilute CaCl2 solution, and 6) distilled water, and three “innovative”; P‐sink methodologies: 1) Fe oxide‐coated paper strip, 2) anion exchange resin membrane, and 3) cation‐anion exchange resin membrane. The soils without P addition had low levels of extracted P as determined by all nine procedures. Net increases in the amount of P extracted from the soils with added P ranged from 4.2 mg kg‐1 (CaCl2 extraction) to 57.6 mg kg‐1 (cation‐anion resin membrane extraction). Relationships between change in extracted P and i) physical and chemical characteristics, and ii) soil P sorption properties are also presented and discussed.  相似文献   

10.
The effect of six organic amendments on Pb solubility and availability was studied from May to September 1978 in a sandy soil low in organic matter. Three extractants were used to essay the Pb solubility: BaCl2 0.5M, AcNH4 2.5% at pH 7.0 and EDTA 0.05M at pH 7.0. During the aging process both increases and decreases of Pb solubility were observed in manured soils with respect to the control. Only in the soil treated with cow manure was a decrease of Pb solubility in ammonium acetate always noted. From regression lines of Pb concentration on soil/solution ratio it was possible to observe that only the soil treated with cow manure showed a significant decrease of slope of regression line when it was dispersed in ammonium acetate solution. The regression lines of Pb concentration on organic matter extracted by ammonium acetate and, especially, EDTA showed that these reagents extract mainly Pb complexed with organic compounds. A physiological test on Pb availability showed that only in the presence of cow manure was the Pb assimilation greatly decreased.  相似文献   

11.
Chelating agents are commonly used to enhance the phytoremediative ability of plants. The type of chelating agent applied and the selection of plant species are important factors to consider for successful phytoremediation. This study investigates the effects of four different rates (0, 2, 4, 8 mmol kg?1) of ethylenediaminetetraacetic acid (EDTA) on lead (Pb) dissolution, plant growth, and the ability of two spring wheat varieties (Auqab-2000 and Inqalab-91) to accumulate Pb from contaminated soils in a pot study. The results indicated that the addition of EDTA to the soil significantly increased the aqueous solubility of Pb and that wheat variety Inqalab-91 was more tolerant to Pb than Auqab-2000. Application of EDTA at 8 mmol kg?1 resulted in biomass yield, photosynthetic rate, and transpiration rate significantly lower in Auqab-2000 than in Inqalab-91. Although EDTA enhanced the uptake of Pb by both wheat varieties, Auqab-2000 accumulated significantly more Pb in the shoots than Inqalab-91. The results of the present study suggest that under the conditions used in this experiment, EDTA at the highest dose was the best amendment for enhanced phytoextraction of Pb using wheat. High concentrations of Pb were found in leachates collected from the bottom of columns treated with EDTA. Application of EDTA in the column leaching experiment increased the concentration of Pb in leachate with increasing EDTA dosage (0–8 mmol kg?1). These results suggest that EDTA addition for enhancing soil cleanup must be designed properly to minimize the uncontrolled release of metals from soils into groundwater.  相似文献   

12.
Immobilization of metals by two materials (zeolite, AZ, and a synthetic, carbonate-rich material, “slovakite”, SL) was tested in a pot experiment with two soils from urban areas of Sevilla and two soils affected by a mine spill. Barley (Hordeum vulgare L. Hispanic) was grown in the pots, and metal contents were measured after 31 days in shoots and roots. Available metal was estimated by extraction with CaCl2 (readily soluble), ethylenediaminetetraacetic acid (EDTA; plant available), a mixture of organic acids (soluble by root exudates), and glycine (bioaccessible by ingestion). Neither treatment caused significant differences on plant growth or metal contents of shoots, whereas roots contained more Cu in the SL treatments. Root Zn uptake was reduced in all cases, but reduction of Pb in roots was observed only in AZ treatments of the mine-spill soils. The effects on metal availability were often method-dependent. Decrease of CaCl2 data were observed only in the mine-spill soils. EDTA-soluble metals were clearly decreased by both materials. Bioaccessible Zn were decreased by either material in several cases (but not in the most heavily polluted soil), whereas Cu or Pb data were less conclusive.  相似文献   

13.
Batch and upflow column leaching experiments were used to evaluate the nature and extent of Cu and Zn solubilization from contaminated soil by nitrilotriacetic acid (NTA) in 0.025 M NaClO4. In batch soil suspensions, NTA levels of 10?5 to 10?3 M substantially promoted Cu and Zn release from the metal-enriched soil. The ability of NTA to enhance Cu and Zn solubility decreased with increasing solution acidity probably due to competitive binding of NTA by protons and Fe released by hydrous oxide dissolution. However, in the pH range typically encountered in northeastern U.S. soils, soluble metal levels were nearly constant for a given NTA concentration. Leaching soil columns with NTA solutions enhanced Cu release more than Zn, as the enrichment ratio (cumulative metal leached by NTA compared to the 0.025 M NaClO4 control leachate) after 85 pore volumes displacements was 23.6 and 4.3 for Cu and Zn, respectively. While Cu release by 0.01 M CaCl2 differed little from the control, 0.01 M CaCl2 was substantially more effective than 10?5 M NTA in displacing bound Zn. The data reflect different retention mechanisms for Cu and Zn in this soil.  相似文献   

14.
With the electro–ultrafiltration (EUF) technique, the plant availability of several plant nutrients in soils can be characterized. The basic principle of EUF is that an electric field is induced using platinum electrodes. Ions in the soil suspension move either to the cathode or to the anode and are filtrated through ultra‐membrane filters. In the standard EUF procedure, two extractions steps are used: 30 min at 20°C and 5 min at 80°C. However, the determination of micronutrients and heavy metals with the standard EUF procedure is not possible, because the solubility of these elements in water is low and most of the watersoluble elements are precipitated when passing the platinum electrodes. The addition of DTPA, a well known complexing agent, during a third EUF fraction (5 min at 80°C) enables extraction of micronutrients and heavy metals. Highest concentrations in the 33 soils of the study were found for iron, followed by zinc, manganese, lead, copper, and nickel. Lower concentrations were obtained for cobalt, chromium, cadmium, and molybdenum. For two soils, the EUF/DTPA procedure was compared to CaCl2/DTPA and EDTA soil extraction methods, showing that higher or comparable amounts were found with CaCl2/DTPA and much higher amounts with the EDTA method. These results reveal that the EUF/DTPA technique in principle can be used for the determination of plant‐available micronutrients and heavy metals. However, in a next step the relationship between EUF/DTPA‐extractable elements and their availability for plants needs to be quantified.  相似文献   

15.
Abstract

The effects of heavy metals (Cu, Pb, and As) accumulated in apple orchard surface soils on the microbial biomass, dehydrogenase activity, and soil respiration were investigated. The largest concentrations of total Cu, Pb, and As found in the soils used were 1,010, 926, and 166 mg kg?1 soil, respectively. The amounts of microbial biomass C and N, expressed on a soil organic C and soil total N basis, respectively, were each negatively correlated with the amounts of total, 0.1 M HCI-extractable, and 0.1 M CaCl2-extractable Cu as logarithmic functions, the correlation coefficient being lowest for the 0.1 M CaCl2extractable Cu. Nevertheless, they were not correlated with the soil pH which was controlling the solubility of Cu in 0.1 M CaCl2. The dehydrogenase activity expressed per unit of soil organic C was also negatively correlated with the amounts of total, 0.1 M HCI-extractable Cu, and 0.1 M CaCl2-extractable Cu as logarithmic functions. However, the correlation coefficient was highest for the 0.1 M CaCl2-extractable Cu. Although the soil respiration per unit of soil total organic C did not show any significant correlations with the total concentrations of heavy metals, it showed negative significant correlations with the amount of 0.1 M HCI-extractable Cu, and to a greater extent, with the amount of 0.1 M CaCl2-extractable Cu. Both the dehydrogenase activity and respiration per unit of soil total organic C increased significantly with increasing soil pH. These results suggested that in apple orchard soils with heavy metal accumulation the microbial biomass was adversely affected by the slightly soluble Cu, whereas the microbial activities by the readily soluble Cu whose amount depended on the soil pH. The respiration per unit of microbial biomass C showed a positive significant correlation with the logarithmic concentration of total Cu. Furthermore, the contribution of fungi to substrate-induced respiration increased with increasing total Cu content in the soils.  相似文献   

16.
Abstract

The applicability of 0.01 M CaCl2 solution as a single extraction agent for soils as a basis for fertilizer recommendation was tested on a variety of soils both from the Netherlands and from some tropical countries. Air‐dry soil samples were subjected to extraction with 0.01 M CaCl2 and to several conventional extraction procedures, and the results were compared. In the soil suspensions pH was measured, whereas in the extracts Na, K, Mg, P, different extractable N‐forms and Zn were measured. The values found in CaCl2 extracts are discussed in relation to results of other extraction procedures and as to their potential value in soil quality assessment. It is concluded that a single extraction procedure with 0.01 M CaCl2 can be applied for fertilizer recommendation purposes. The possibility of determining different extractable N‐forms (NH4, NO3, soluble organic N) significantly enhances the value of the method in predicting the N‐fertilizer needs. Furthermore it was found that the concentration of Zn in 0.01 M CaCl2 extracts was a good indicator of phytotoxicity in a polluted area. Additional advantages of this extraction are low costs, simplicity and repro‐ducibility.  相似文献   

17.
Knowledge of the release of heavy metals (HM) and their chemical speciation is necessary for characterizing HM behavior in soils. The kinetics and characteristics of iron (Fe) and manganese (Mn) release were studied in 10 contaminated calcareous soils using 0.01 M calcium chloride (CaCl2), 0.01 M ethylenediamine tetraacetic acid (EDTA), and 0.01 M malic acid (malic acid) extractions. Iron and Mn in soil samples were fractionated before and after 2084 h kinetic release using a sequential extraction procedure. The proportion of Fe and Mn released by EDTA was greater than that with CaCl2 and malic acid. A power model satisfactorily described Fe and Mn release from soils. In general, the mean release rate of Fe was greater than that of Mn, indicating a greater rate of Fe release from contaminated soils. It was shown that Fe and Mn distributions were similar in native soils and they were mainly found in Fe-Mn oxides and organic-matter (OM) fractions. There were changes in the proportional distribution of Fe and Mn in all soils during the 2084 h kinetic study with different extraction solutions. In general, the proportions of Fe and Mn associated with carbonate (CARB) and OM fractions tended to decrease, with corresponding increases in the Fe-Mn oxides for Mn and residual (RES) fractions for Fe during the kinetic study with all extraction solutions. The Fe and Mn solubility at the initial and final stages of release was controlled by siderite (FeCO3), vivianite [(Fe)3(PO4)2·8H2O], MnCO3(am), MnHPO4, and rhodochrosite (MnCO3) minerals in all extraction solutions. Based on a risk assessment and percentage of release of metals, there is a high potential for Mn release into the food chain from contaminated soils.  相似文献   

18.
贵州铅锌冶炼区农田土壤镉铅有效性评价与预测模型研究   总被引:2,自引:1,他引:2  
张厦  宋静  高慧  张强  刘赣 《土壤》2017,49(2):328-336
农田土壤重金属的不同活性库分布和土壤-溶液分配模型能够提供重金属的生物有效性和浸出能力等信息,因而在风险评价和修复实践中非常重要。本研究采集毕节铅锌冶炼区30个历史污染农田土壤,同时在贵州省范围内采集5种类型背景土壤制成不同浓度Pb/Cd单一污染土壤;经3个月老化,分别测定由0.43 mol/L HNO_3、0.1 mol/L HCl和0.005 mol/L DTPA提取态表征的重金属反应活性库以及由0.01 mol/L CaCl_2提取态表征的直接有效库;分析铅锌冶炼区农田土壤Cd、Pb不同有效库的分布特征,建立土壤-溶液分配模型,并讨论土壤理化性质的影响。结果表明:历史污染土壤中Cd和Pb的直接有效库占全量比例分别比人工污染土壤低4倍和223倍,然而历史污染土壤Cd和Pb的反应活性库(0.43 mol/L HNO_3提取态)占全量比例要高于相应人工污染土壤中的比例。拓展Freundlich形式吸附方程能够准确描述各提取态表征的Cd和Pb活性库与土壤全量Cd和Pb的关系,尤其0.43 mol/L HNO_3提取方法能够克服土壤理化性质对土壤Cd和Pb提取的影响而与总量建立极显著的相关关系。pH依附性Freundlich吸附方程准确描述了Cd和Pb的总反应活性库分别与土壤溶液Cd和Pb的关系,对于Pb而言,还要考虑土壤有机质和有效磷的影响。本研究可为矿区农田土壤重金属污染评价、修复以及农田有效态标准的推导提供参考。  相似文献   

19.
The effect of in situ immobilization of lead (Pb) and arsenic (As) in soil with respectively phosphate and iron is well recognized. However, studies on combined Pb and As-contaminated soil are fewer, and assessment of the effectiveness of the immobilization on mobility and bioaccessibility is also necessary. In this study, a Pb and As-contaminated soil was collected from an abandoned lead/zinc mine in Shaoxing, Zhejiang province of China, which has been treated with three phosphates, i.e., calcium magnesium phosphate (CMP), phosphate rock, and single super-phosphate (SSP) for 6 months in a field study. The ferrous sulfate (FeSO4) at 20 g kg?1 was then amended to the soil samples and incubated for 8 weeks in a greenhouse. The solubility and bioaccessibility tests were used to assess the effectiveness of the in situ immobilization. The result showed that phosphates addition decreased the concentrations of CaCl2-extractable Pb; however, the concentrations of water-soluble As increased upon CMP and SSP addition. With the iron addition, the water-soluble As concentrations decreased significantly, but CaCl2-extractable Pb concentrations increased. The bioaccessibility of As and Pb measured in artificial gastric and small intestinal solutions decreased with phosphate and iron application except for the bioaccessibility of As in the gastric phase with SSP addition. Combined application of phosphates and iron can be an effective approach to lower bioaccessibility of As and Pb, but has opposing effects on mobility of As and Pb in contaminated soils.  相似文献   

20.
Human exposure to toxic heavy metals via dietary intake is of increasing concern. Heavy-metal pollution of a rice production system can pose a threat to human health. Thus, it was necessary to develop a suitable extraction procedure that would represent the content of metal available to rice plants (Oryza sativa L.). The aim of this study was to predict, on the basis of single extraction procedures of soil heavy metals, the accumulation of heavy metals (cadium, lead, copper, and zinc) in rice plants. Six extracting agents [Mehlich 1, Mehlich 3, EDTA (ethylenediaminetetraacetic acid), DTPA–TEA (diethylenetriaminepentaacetic acid–triethanolamine), ammonium acetate (NH4OAc), and calcium chloride (CaCl2)] were tested to evaluate the bioavailability of heavy metals from paddy soils contaminated with lead–zinc mine tailings to rice. The extraction capacity of the metals was found to be of the order EDTA > Mehlich 3 > Mehlich 1 > DTPA–TEA > NH4OAc > CaCl2. The correlation analysis between metals extracted with different extractants and concentrations of the metals in the grain and stalk of the plant showed positive correlations with all metals. The greatest values of correlation coefficients were determined between the NH4OAc- and CaCl2-soluble fractions of soil and contents in plants in all four metals studied. Therefore, NH4OAc and CaCl2 were the most suitable extractants for predicting bioavailability of heavy metals in the polluted soils to rice. The results suggested that uptake of heavy metals by rice was mostly from exchangeable and water-soluble fractions of the metals in the soils. Soil-extractable metals were more significantly correlated with metal accumulation in the stalk than in the grain. The pH had more significant influence on availability of heavy metals in the soils than total content of metals and other soil properties. The bioavailability of metals for rice plants would be high in acidic soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号