首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cowpea mottle carmovirus (CPMoV) causes grain yield losses of up to 75% in cowpea (Vigna unguiculata [L.] Walp.). There is no resistance to this virus among cultivated cowpea lines, but a high level of resistance exists in Vigna vexillata, a wild Vigna species. Fifty‐four accessions of V. vexillata germplasm collection at IITA were tested for resistance to CPMoV. Seedlings were mechanically inoculated with the virus and susceptibility or resistance was assessed by visual scoring of disease symptoms and serological analysis using antigen‐coated plate enzyme‐linked immunosorbent assay (ACP‐ELISA). All but three V. vexillata lines belonging to the variety angustifolia were resistant to CPMoV. Crosses were made between two resistant V. vexillata lines and the three susceptible lines. Segregation patterns observed in the F2 and the backcross populations of all the crosses showed that resistance to CPMoV in V. vexillata is controlled by a single dominant gene, and the level of resistance conferred by this gene in V. vexillata is very high.  相似文献   

2.
Male and female genetic linkage map of hops, Humulus lupulus   总被引:2,自引:0,他引:2  
A male and female linkage map of hop has been constructed using 224 DNA polymorphisms (106 amplified fragment length polymorphisms (AFLPs), three random amplified polymorphic DNAs (RAPDs), one RAPD‐sequence‐tagged‐site (STS), and three microsatellite (STSs) segregating in an F1 population of the English cultivar ‘Wye Target’‐the German male breeding line ‘85/54/15’. Linkage between these loci was estimated using JOINMAP Version 2.0. The final map for the female parent consisted of 110 loci assigned to eight linkage groups covering a distance of 346.7 cM. For the male map, 57 loci could be mapped on nine linkage groups spanning over 227.4 cM. One of these male linkage groups (Gr09‐M) presumably represents the Y chromosome, since all markers assigned (10 AFLPs, three RAPDs and one STS) were closely linked to the male sex (M). Because of their sex‐specific segregation, 10 doubly heterozygous AFLPs spanning a distance of 18.7 cM could be identified as markers describing the X chromosome, which is part of the male and female map. Three STMSs, which had already proved useful in hop genotyping, could be integrated as codominant locus‐specific markers and thus allowed to produce reliable allelic bridges between the female and male counterparts.  相似文献   

3.
A genetic linkage map based on an intraspecific cross between two inbred lines of witloof‐chicory (Cichorium intybus L. var. foliosum Hegi) has been constructed. In total, 129 RAPD markers were scored in 565 F2 plants. Grouping of these markers at a LOD of threshold 4.0 resulted in nine linkage groups, which is equal to the chicory haploid genome. The nine linkage groups covered 609.6 cM. All 129 RAPD markers were linked to one of the nine groups. Three RAPD markers could not be mapped. Out of the 126 remaining RAPD markers, 18 showed segregation distortion with significance value of P < 0.01.  相似文献   

4.
The radish displays great morphological variation but the genetic factors underlying this variability are mostly unknown. To identify quantitative trait loci (QTLs) controlling radish morphological traits, we cultivated 94 F4 and F5 recombinant inbred lines derived from a cross between the rat-tail radish and the Japanese radish cultivar ‘Harufuku’ inbred lines. Eight morphological traits (ovule and seed numbers per silique, plant shape, pubescence and root formation) were measured for investigation. We constructed a map composed of 322 markers with a total length of 673.6 cM. The linkage groups were assigned to the radish chromosomes using disomic rape-radish chromosome-addition lines. On the map, eight and 10 QTLs were identified in 2008 and 2009, respectively. The chromosome-linkage group correspondence, the sequence-specific markers and the QTLs detected here will provide useful information for further genetic studies and for selection during radish breeding programs.  相似文献   

5.
A genetic map of Spinach (Spinacia oleracea) was constructed in a classical back cross population using 101 AFLP and 9 microsatellite markers. The map was divided into seven linkage groups with a total length of 585 cM and an average distance between the markers of 5.18 cM. The linkage map was constructed with LOD 3.5, but was quite stable with seven linkage groups remaining until LOD 7.0. Gender segregated 1 male to 1 female in the mapping population and was mapped to a small area of one linkage group with a distance of 1.9 cM to a microsatellite marker termed SO4. This small chromosomal region co-segregating with sex determination in the species is in contrast to previous reports on a heterologous XY chromosome system in spinach. Microsatellite markers used as anchors in the map construction were isolated from sequences of known nuclear encoded genes in spinach. This enabled simultaneous positioning on the map of these genes: Rubisco activase (Rca), Photosytem 1 subunit V (PsaG), Protein Kinase (Pk), Nitrate reductase (Nir), ferrodoxin:thioredoxin reductase (Ftr), Ribosomal protein L1 (Rps22), Choline monooxygenase (Cmo), Pseudogene for BZIP protein (Bzip), Glycerol-3-phosphate acyltransferase (Act1) and stromal ascorbate peroxidase, thylakoid-bound ascorbate peroxidase (Apx2). Spinach has a small genome, which makes it suitable for basic genomic studies and many physiologically important genes have been cloned from the species. The present map anchored with user friendly microsatellite markers will be useful for future studies of physiology and genetics of the species as well as studies of the nature of gender determination.  相似文献   

6.
A few linkage maps of tea have been constructed using pseudo-testcross theory based on dominant marker systems. However, dominant markers are not suitable as landmark markers across a wide range of materials. Therefore, we developed co-dominant SSR markers from genomic DNA and ESTs and constructed a reference map using these co-dominant markers as landmarks. A population of 54 F1 clones derived from reciprocal crosses between ‘Sayamakaori’ and ‘Kana-Ck17’ was used for the linkage analysis. Maps of both parents were constructed from the F1 population that was taken for BC1 population. The order of most of the dominant markers in the parental maps was consistent. We constructed a core map by merging the linkage data for markers that detected polymorphisms in both parents. The core map contains 15 linkage groups, which corresponds to the basic chromosome number of tea. The total length of the core map is 1218 cM. Here, we present the reference map as a central core map sandwiched between the parental maps for each linkage group; the combined maps contain 441 SSRs, 7 CAPS, 2 STS and 674 RAPDs. This newly constructed linkage map can be used as a basic reference linkage map of tea.  相似文献   

7.
High-density marker-based QTL mapping can serve as an effective strategy to identify novel genomic information to facilitate crop improvement. In this study, we genotyped an F2 population (KB12-1 × PP12-1) using a RAD-seq approach and constructed a high-density linkage map for radish. After a series of filtering procedures were performed, 17,124 SNPs and 3,336 indels with aa × bb genotyping were retained to obtain bin markers. Then, a linkage map comprising a total of 1,221 bin markers in nine linkage groups spanning 1,467.3 cM with an average marker interval of 1.2 cM was constructed. We evaluated the resistance of the F2 mapping population to black rot using F3 progeny, and two major QTLs related to black rot resistance were identified based on this map. Among these QTLs, qBRR2 on Chr.2 explained 26.97% of the phenotypic variation with a LOD score of 11.93, and qBRR7 on Chr.7 accounted for 27.06% of the phenotypic variation with a LOD score of 11.83. The additive effect of qBRR2 was positive (14.97); however, qBRR7 had the opposite effect (−11.99). The high-density linkage map and the major QTLs qBRR2 and qBRR7 provide new important information for disease resistance gene discovery and utilization in genetic improvement.  相似文献   

8.
豌豆(Pisum sativum L.)是一种重要的食用豆类作物,在全世界范围内广泛种植,既可作为人类食物,也可作为牲畜饲料。用SSR标记构建的遗传连锁图谱在豌豆和其他作物的标记辅助育种中发挥着重要的作用。尽管对豌豆遗传连锁作图的研究已有悠久历史,但公众可获得且可转移的SSR标记以及基于遗传独特的中国豌豆种质的高密度遗传连锁图谱仍然有限。为了获得更多可转移的SSR标记和中国豌豆的高密度遗传连锁图谱,本研究首先从自主开发和文献获取的12,491个全基因组SSR标记中筛选了617个多态性SSR标记,并用于G0003973×G0005527 F_2群体遗传连锁图谱的加密。加密后的图谱全长扩展到5330.6 cM,包含603个SSR标记,标记平均间距离8.8 cM,相比之前的图谱有明显改善。基于上述结果,我们又筛选了119个具有多态性的SSR标记,用于构建大样本W6-22600×W6-15174 F_2群体的遗传连锁图谱,新图谱累积长度为1127.1 cM,包含118个SSR标记,装配在7条连锁群上。最后,将来自以上2个遗传图谱的数据进行整合,得到了一张覆盖范围6592.6 cM的整合图谱,包含668个SSR标记,由509个基因组SSR、134个EST-SSR和25个锚定标记组成,分布在7条连锁群上。这些SSR标记和遗传连锁图谱将为豌豆的遗传研究和标记辅助育种提供有力工具。  相似文献   

9.
An SSR-based molecular genetic map of cassava   总被引:7,自引:2,他引:7  
E. Okogbenin  J. Marin  M. Fregene 《Euphytica》2006,147(3):433-440
Summary Microsatellites or simple sequence repeats (SSR) are the markers of choice for molecular genetic mapping and marker-assisted selection in many crop species. A microsatellite-based linkage map of cassava was drawn using SSR markers and a F2 population consisting of 268 individuals. The F2 population was derived from selfing the genotype K150, an early yielding genotype from an F1 progeny from a cross between two non-inbred elite cassava varieties, TMS 30572 and CM 2177-2 from IITA and CIAT respectively. A set of 472 SSR markers, previously developed from cassava genomic and cDNA libraries, were screened for polymorphism in K150 and its parents TMS 30572 and CM 2177-2. One hundred and twenty two polymorphic SSR markers were identified and utilized for linkage analysis. The map has 100 markers spanning 1236.7 cM, distributed on 22 linkage groups with an average marker distance of 17.92 cM. Marker density across the genome was uniform. This is the first SSR based linkage map of cassava and represents an important step towards quantitative trait loci mapping and genetic analysis of complex traits in M. esculenta species in national research program and other institutes with minimal laboratory facilities. SSR markers reduce the time and cost of mapping quantitative trait loci (QTL) controlling traits of agronomic interest, and are of potential use for marker-assisted selection (MAS).  相似文献   

10.
Summary Linkage among loci controlling various morphological traits in cowpea were determined using F2 progenies. Data were collected on individual plants of four crosses segregating for several loci. Recombination estimates between the following pairs of loci were as follows: Sw (swollen vs normal stem base)-Fbc (cream vs green flower buds) (41±4.8%), Pus(purple vs green stems)-Cbr (cocoa-brown vs straw-yellow dry pods) (31±5.7%), Pup(purple vs green immature pods)-Cbr (30±5.7%), Pus-Pup (4±1.5%), Ndt (non-determinate vs determinate)-Pd (peduncle colour) (26±2.8%), Ndt-Hg (semi-erect vs erect plant type) (26±2.8%), Pt(purple vs green pod tips)-Bk (greyish-black vs straw-yellow dry pods) (19±2.4%) and Hg-Bpd (normal vs branching peduncle (24±9.5%). Four linkage groups (LG) were identified in these studies. The proposed LG I contained loci Sw and Fbc; LG II loci Pus, Pup, and Cbr; LG III loci Pd, Ndt, Gh, and Bpd; and LG IV loci Ptand Bk.  相似文献   

11.
A genetic map of sugar beet (Beta vulgaris) based on RAPD markers   总被引:1,自引:0,他引:1  
H. Uphoff  G. Wricke 《Plant Breeding》1995,114(4):355-357
Linkage analysis of sugar beet (Beta vulgaris L.) was performed with random amplified polymorphic DNA (RAPD)-markers. From three segregating populations, a combined genetic map was constructed which comprises 85 RAPD, five isozyme, one RFLP marker and the genes for resistance against the nematode Heterodera schachtii Schm., one restorer locus for male sterility and the genes for annuality and hypocotyl colour. For mapping of the two unlinked restorer genes a statistical model was developed based on the maximum-likelihood function.  相似文献   

12.
B. Saal  G. Wricke 《Plant Breeding》2002,121(2):117-123
Amplified fragment length polymorphisms (AFLPs) are now widely used in DNA fingerprinting and genetic diversity studies, the construction of dense genetic maps and in fine mapping of agronomically important traits. The AFLP markers have been chosen as a source to extend and saturate a linkage map of rye, which has previously been generated by means of restriction fragment length polymorphism, random amplified polymorphic DNA, simple sequence repeat and isozyme markers. Gaps between linkage groups, which were known to be part of chromosome 2R, have been closed, thus allowing the determination of their correct order. Eighteen EcoRI‐MseI primer combinations were screened for polymorphism and yielded 148 polymorphic bands out of a total of 1180. The level of polymorphism among the different primer combinations varied from 5.7% to 33.3%. Eight primer combinations, which revealed most polymorphisms, were further analysed in all individuals of the F2 mapping population. Seventy‐one out of 80 polymorphic loci could be integrated into the linkage map, thereby increasing the total number of markers to 182. However, 46% of the mapped AFLP markers constituted four major clusters located on chromosomes 2R, 5R and 7R, predominantly in proximity to the centromere. The integration of AFLP markers caused an increase of 215 cM, which resulted in a total map length of almost 1100 cM.  相似文献   

13.
Immature embryos resulting from the cross V. vexillata × V. unguiculata were cultured on MS medium supplemented with 2,4-D (2 mg/l) and resulted in embryogenic calli. Thirteen hybrid regenerants were obtained via organogenesis by subculturing the calli on MS medium supplemented with BAP (2 mg/l) + adenine sulphate (40 mg/l) + CH (500 mg/l) + cowpea tender pod extract (10%). The interspecific regenerants showed intermediate morphological traits between the parents for leaf shape, pod colour and seed coat colour. The hybrid plants inherited stem, leaf and pod hairiness of the wild species which could serve as a mechanical barrier against viral vectors. Electrophoretic studies of two isozyme systems, peroxidase and esterase, also confirms the hybrid nature of the regenerants as they expressed unique bands of both parents. Cytological study of the meiotic chromosomes revealed high frequency of univalent formation in the hybrids suggesting that the genomes of the parental species are structurally differentiated. The hybrid regenerants exhibited high enzyme activity for three enzymes viz., peroxidase, polyphenol oxidase and phenyl alanine ammonia lyase over the cultivated parent which may be useful in conferring resistance against viral pathogens. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
A genetic map of Lolium has been produced using isozyme, restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers applied to a segregating family derived from an F1 hybrid plant of L. perenne × L. multiflorum provenance, crossed on to a doubled haploid L. perenne. A total of 106 markers, out of a total of 160 polymorphic loci analysed, have been ascribed to seven linkage groups covering a map distance of 692cM, Two of these groups may be allocated to chromosomes 2 and 6 of the Lolium genome. The remaining unallocated markers, the majority of which showed severe segregation distortion, could be associated into small groups of two or three markers which showed no linkage with the main groups at a LOD of 2.8 or, if associated, could not be mapped in a satisfactory manner. This high incidence of disturbed segregations could be accounted for by the use of an interspecific hybrid between two species of differing genome size, with consequent cytological imbalance.  相似文献   

15.
B. E. Ubi    M. Fujimori    Y. Mano  T. Komatsu 《Plant Breeding》2004,123(3):247-253
The linkage relationships between 164 polymorphic amplified fragment length polymorphism (AFLP) and 25 restriction fragment length polymorphism (RFLP) fragments assayed in a pseudo‐testcross population generated from the mating of single genotypes from two divergent cultivars were used to construct female, ‘Katambora’ (‘Kat’) and male, ‘Tochirakukei’ (‘Toch’) parental genetic maps for rhodesgrass. The ‘Kat’ genetic map consists of 84 marker loci (72 AFLP and 12 RFLP markers) distributed on 14 linkage groups and spans a total length of 488.3 cM, with an average distance of 7.8 cM between adjacent markers. The ‘Toch’ genetic map consists of 61 marker loci (52 AFLP and nine RFLP) mapped on 12 linkage groups spanning a total length of 443.3 cM, with an average spacing of 9.0 cM between adjacent markers. About 23% of the markers remained unassigned. The level of segregation distortion observed in this cross was 11.1%. In both maps, linked duplicated RFLP loci were found. These linkage maps will serve as a starting point for linkage studies in rhodesgrass with potential application for marker‐assisted selection in breeding programmes.  相似文献   

16.
Genetic mapping for faba bean lags far behind other major crops. Density enhancement of the faba bean genetic linkage map was carried out by screening 5,325 genomic SSR primers and 2033 expressed sequence tag (EST)‐SSR primers on the parental cultivars '91825' and 'K1563'. Two hundred and fifteen genomic SSR and 133 EST‐SSR primer pairs that detected polymorphisms in the parents were used to screen 129 F2 individuals. This study added 337 more SSR markers and extended the previous linkage map by 2928.45 cM to a total of 4516.75 cM. The number of SSR markers in the linkage groups varied from 12 to 136 while the length of each linkage group ranged from 129.35 to 1180.21 cM. The average distance between adjacent loci in the enhanced genetic linkage map was 9.71 cM, which is 2.79 cM shorter than the first linkage map of faba bean. The density‐enhanced genetic map of faba bean will be useful for marker‐assisted selection and breeding in this important legume crop.  相似文献   

17.
The first genetic linkage map of blackcurrant (Ribes nigrum L.) was constructed using AFLP, SSR (genomic and EST-derived) and SNP markers, in a mapping population derived from two diverse breeding clones of blackcurrant from the SCRI breeding programme. Cluster analysis of the population revealed that the individuals within the population formed two distinct sub-populations, with segregation ratios consistent with one sub-population having the two intended parents, and the other being selfed segregants. The latter sub-population improves the map by providing a more informative estimate of recombination frequency than the crossed sub-population for some marker configurations, and also revealed the presence of two unlinked loci affecting viability. Several important phenological, agronomic and fruit quality traits were evaluated in the mapping population, and QTLs affecting these are located on the linkage map. This provides a framework for the development of marker-assisted breeding strategies for blackcurrant, to improve breeding efficiency and time to cultivar.  相似文献   

18.
An AFLP-based linkage map of Zoysiagrass (Zoysia japonica)   总被引:7,自引:0,他引:7  
H. Cai    M. Inoue    N. Yuyama  S. Nakayama 《Plant Breeding》2004,123(6):543-548
To construct an amplified‐fragment length polymorphism (AFLP)‐based molecular linkage map of zoysiagrass, the selfed progenies of a clone consisting of 78 individuals were analysed using 471 AFLP markers derived from 126 PstI/MseI primer combinations. Of these markers, 364 were grouped into 26 linkage groups. The maps covered a total length of 932.5 cM, with an average spacing of 2.6 cM between markers. This information proves useful for gene targeting, quantitative trait loci mapping, and marker‐assisted selection in zoysiagrass.  相似文献   

19.
Rhizomania, one of the most important diseases of sugar beet, is caused by beet necrotic yellow vein virus, a Furovirus vectored by the fungus Polymyxa betae Keskin. Reduction of the production losses caused by this disease can only be achieved by using tolerant cultivars. The objective of this study was the identification and mapping of random amplified polymorphic DNA (RAPD) markers linked to a rhizomania resistance gene. The RAPD markers were identified using bulked segregant analysis in a segregating population of 62 individuals derived by intercrossing plants of the resistant commercial hybrid GOLF, and the resistance locus was positioned in a molecular marker linkage map made with a different population of 50 GOLF plants. The resistance locus, Rr1, was mapped to linkage group III of our map of Beta vulgaris L. ssp. vulgaris, which consisted of 76 RAPDs, 20 restriction fragment length polymorphisms (RFLPs), three sequence characterized amplified regions (SCARs) and one sequence tagged site (STS). In total, 101 molecular markers were mapped over 14 linkage groups which spanned 688.4 cM with an average interval length of 8.0 cM. In the combined map, Rr1 proved to be flanked by the RAPD loci RA4111800 and AS71100 at 9.5 and 18.5cM, respectively. Moreover, in our I2 population, we found that a set of markers shown by Barzen et al. (1997) to be linked to the ‘Holly’ type resistance gene was also linked to the ‘GOLF’-type resistance gene. These results appeared to indicate that the rhizomania resistance gene present in the GOLF hybrid could be the same gene underlying resistance in ‘Holly’-based resistant genotypes. Two other explanations could be applied: first, that two different alleles at the same locus could have been selected; second, that two different genes at two different but clustered loci underwent the selection process.  相似文献   

20.
To generate a genetic linkage map of cassava ( Manihot esculenta Crantz), 58 F1 progenies from a cross between Rayong 90 (female) and Rayong 5 (male) were examined in amplification fragment length polymorphism (AFLP) and simple sequence repeat (SSR) analyses. A total of 469 polymorphic markers consisting of 378 AFLPs generated from 76 primer combinations and 91 SSRs were identified. These markers were analyzed using the joinmap ® 3.0 package program to construct a genetic linkage map. A total of 33 linkage groups of a common map were constructed from 119 AFLPs and 18 SSRs, spanning 1095 cM with an average of 7.99 cM between markers. The genetic linkage map generated in this study will be useful for genetic studies in cassava particularly for the identification of genetic markers linked to traits of interest, although the complex cassava genome suggests that maybe a long term objective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号