首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this study, the tensile strength and elongation of polyester/viscose blended needle-punched nonwovens were analyzed. For this purpose, five different blend ratios of polyester/viscose webs were produced, cross-lapped and needled in four different mass per unit areas and three different needling/punching densities. The tensile properties of the nonwovens were determined by performing the standard test methods and the data obtained from tests were statistically analyzed in Design Expert software. In addition, a mixture process crossed regression model with two mixture components (polyester and viscose blend ratios) and two process variables (fabric mass per unit area and needling density) was developed to analyze the tensile strength and elongation of polyester/viscose blended needled nonwovens. In conclusion, the regression model indicated that the tensile strength of the needle-punched nonwovens decreases with the increase of polyester proportion in the mixture and increases with the increase in mass per unit area and punching density.  相似文献   

2.
In this study, an artificial neural network (ANN) and a statistical model are developed to predict the unevenness of polyester/viscose blended open-end rotor spun yarns. Seven different blend ratios of polyester/viscose slivers are produced and these slivers are manufactured with four different rotor speed and four different yarn counts in rotor spinning machine. A back propagation multi layer perceptron (MLP) network and a mixture process crossed regression model (simplex lattice design) with two mixture components (polyester and viscose blend ratios) and two process variables (yarn count and rotor speed) are developed to predict the unevenness of polyester/viscose blended open-end rotor spun yarns. Both ANN and simplex lattice design have given satisfactory predictions, however, the predictions of statistical models gave more reliable results than ANN.  相似文献   

3.
Three vat dyes have been applied to regular viscose rayon and their dyeing and wash fastness properties were evaluated. Particle size determination was undertaken to obtain information about the size of dye particles converted by a reducing agent, to see if dye particle size has an affect on dyeing properties of regular viscose rayon. It is observed that viscose rayon exhibits more dyeability with reducing agent concentrations between 5–7.5 g/l. Also, we found that the vat dyeing system is greatly affected by the particle size of the vat dye converted to leuco form by a reducing agent.  相似文献   

4.
Regenerated silk fibroin(SF)/Poly(vinyl alcohol)[PVA] blend films were prepared using different casting solvents, water and formic acid, to elucidate the effect of casting solvent on the structure and miscibility of SF/PVA blends. FTIR and XRD measurement suggested thatβ-sheet conformation of SF was not changed by addition of PVA in case of formic acid casting and the casting solvent determined the crystallized component of SF/PVA, leading to a different trend in the overall crystallinity between the two blends. The casting solvent had a dominant role in deciding phase behavior and molecular miscibility of blend films. SEM observation and DMTA measurement elucidated that water solvent produced phase-separated blend films while formic acid yielded one phase blend films with partial miscibility in molecular level indicating that the miscibility of SF blend can be improved by choosing a proper co-solvent.  相似文献   

5.
The effect of blend percentage on comfort and handle related properties of fabrics made from polyester/viscose blended air-jet textured yarn weft were studied and the results were compared with fabrics made from polyester/viscose ring-spun yarn wefts of similar linear densities. It is observed that with increase in polyester content in the blend, the air permeability and water vapour permeability reduces whereas thermal resistance, transverse wicking and shear rigidity increases both in ring-spun yarn and textured yarn fabrics and bending rigidity increases in textured yarn fabrics. Textured yarn fabrics exhibit lower air permeability and extensibility, higher thermal resistance, relative water vapour permeability, transverse wicking values and bending rigidity as compared to the ring-spun yarn fabrics.  相似文献   

6.
Five temporarily solubilized reactive disperse dyes were synthesized and characterized. They were applied to polyester/cotton blend fabric using one-bath dyeing method without dispersing agent. The dye that has azonaphthalene chromophore seemed to not only be exhausted on polyester but also react with cotton. But other dyes were selectively dyed on polyester and showed limited uptake on cotton. Good levelling as well as moderate to good colour fastness was obtained with the dyes on P/C blend fabric.  相似文献   

7.
Protein and polysaccharide was the most important extracellular matrix in dermal tissue. In this study, Silk fibroin (SF) / hyaluronic acid (HA) blend films mimicking the dermal tissue components were prepared and investigated. The results indicated that HA and SF has a good miscibility, HA interfered with SF to form crystal structure. By using EDC as cross-linker, effective cross-linking function on SF and HA macromolecules was reacted, the water solubility of the blend films decreased obviously after being cross-linked by EDC. The existence of EDC could promote SF to form Silk I structure. L929 cells were seeded on these blend films and showed normal attachment morphology. Cell-matrix interactions established by newly formed extracellular matrix were observed after 5 days in culture. The MTT assay showed that cell proliferation on the SF/HA blend films were enhanced significantly compared with that on the SF and HA films. These new 2D SF/HA blend films provided a favorable microenvironment for the proliferation of L929 cells and hold a potential for dermal tissue regeneration.  相似文献   

8.
In this study, an analysis on the breaking elongation mechanism of the polyester/viscose blended open-end rotor spun yarns has been carried out. In addition, a back propagation multi layer perceptron (MLP) network and a mixture process crossed regression model with two mixture components (polyester and viscose blend ratios) and two process variables (yarn count and rotor speed) are developed to predict the breaking elongation of polyester/viscose blended open-end rotor spun yarns. Seven different blend ratios of polyester/viscose slivers are produced and these slivers are manufactured with four different rotor speed and four different yarn counts in rotor spinning machine. In conclusion, ANN and statistical model both have given satisfactory predictions; however, the predictions of ANN gave relatively more reliable results than those of statistical models. Since the prediction capacity of statistical models is also obtained as satisfactory, it can also be used for breaking elongation (%) prediction of yarns because of its simplicity and non-complex structure. In addition, it is also found in this study that yarn count, rotor speed and breaking elongation of polyester-viscose fibers and the blend ratios of these fibers in the yarn have major effects on yarn breaking elongation.  相似文献   

9.
Three unreported cationic reactive dyes based on azobenzene were synthesized using a novel synthetic route. Synthesized dyestuffs containing three primary color dyes were characterized by FTIR, H-NMR, LC-MS, Element Analysis and UV-vis spectroscopic techniques. The absorption spectra of dyes were measured in three solvents with different polarities. The dyeing and color fastness properties of three cationic reactive dyes on wool, acrylic and wool/acrylic blend fabrics were determined. The optimum pH for wool and acrylic fabrics were 6 and 5, respectively. Effect of temperature, time on dyeing properties and color fastness properties on wool fabric showed the same tendency with acrylic fabric. The K/S value of wool fabric dyed with three dyes was similar to that of acrylic fabric when both fabrics were dyed simultaneously in the same dyebath using low dye concentration. Wool/acrylic blend fabric dyed with three cationic reactive dyes using onebath one-step method achieved good union dyeing property and excellent color fastness.  相似文献   

10.
Six nano disperse dyes were prepared using corresponding O/W nanoemulsions which were obtained with sodium laurylsulphate and caprylic triglyceride. The average particle size of the dyes prepared were in the range of 110–130 nm. Exhaust dyeing using nano dyes resulted in low exhaustion yields of 17–26 % on regular polyester fiber and 28–38 % on ultramicrofiber polyester. The observed low exhaustion yields of nano disperse dye can be explained by the solubilization of dye particles into surfactant micelles as well as the high stability of the nanoemulsions, these might reduce the capacity of dye uptake onto the fibers. However, higher K/S values of dyeings with nano dyes on ultramicrofiber sites compared to those on regular polyester sites suggested their potential to be more efficient dyes for finer denier microfiber polyesters.  相似文献   

11.
Biodegradable materials are considered as alternative to synthetic materials to alleviate the environmental burdens caused by petroleum based synthetic materials. Biopolymer blends have been extensively researched to improve the material properties of biopolymer-based materials for potential replacement of non-biodegradable materials. Compatible blends of pre-gelatinized maize starch (uncomplexed or complexed with stearic acid) and commercial zein in 0.1 M NaOH were used to produce the films. The effect of the ratio of uncomplexed starch, zein and starch complexed with stearic acid on the tensile, water vapour and oxygen barrier and thermal properties of the composite films were investigated. Blending zein with starch increased the tensile strength and reduced the tensile strain compared to starch films. Addition of starch complexed with stearic acid to the blend further increased the tensile strength and decreased the elongation at break. Both blending zein with starch and addition of starch complexed with stearic acid to the blend decreased the water vapour permeability, however, the oxygen permeability was increased compared to starch films. The starch-zein blend films had an endothermic temperature and thermal transition in between the uncomplexed maize starch and zein films suggesting possible compatibility at molecular level. The microstructure of the blend films also showed good miscibility of pre-gelatinized starch and commercial zein. In conclusion alkaline solvent (0.1 M NaOH) could produce compatible starch-zein blends that can produce films with improved tensile strength and water vapour permeability compared to starch films.  相似文献   

12.
This paper discusses the inter fiber cohesion in man made and blended yarns. The fiber parameters such as fiber length and fineness influence the cohesion. Studies have been focused on polyester and viscose spun yarns. Though polyester and viscose yarns show similar trend in cohesion, viscose yarns exhibit better cohesion due to their serrated cross section. Studies on the effect of blend proportion of polyester cotton and polyester viscose yarns reveal that increase of polyester and viscose in the respective blends improve the inter fiber cohesion.  相似文献   

13.
In this study, the dimensional, physical and thermal comfort properties of the plain knitted fabrics made from 50/50 blend of modal viscose fiber in microfiber form with cotton fiber are compared with those of the similar fabrics made from 50/50 blend of conventional modal viscose fiber with cotton fiber and made from 100 % cotton fiber. All the fabric types are produced in three different stitch lengths. The slight differences among the fabric types are observed in terms of the stitch density results and the dimensional constants calculated in the fully relaxed state. In the fully relaxed state, the dimensional K values of the modal microfiber blended knitted fabrics are found to be more closely resemble those of the cotton fabrics rather than those of the conventional modal fiber blended fabrics. The lowest fabric thickness and bursting strength results are obtained for the modal microfiber blended fabrics. The modal microfiber blended fabrics reveal lower air permeability than the conventional modal fiber blended fabrics and higher air permeability than the cotton fabrics. It is also observed from the thermal comfort results that the modal microfiber blended fabrics have the lowest thermal resistance and the highest thermal absoptivity values. The thermal conductivity results of the modal microfiber blended fabrics are lower than those of the cotton fabrics and higher than those of the conventional modal fiber blended fabrics. Because of the highest thermal absorptivity values, the modal microfiber blended fabrics provide the coolest feeling when compared with the other two fabric types.  相似文献   

14.
A pineapple protease, bromelain, was used to improve the dyeing properties of protein fibers such as wool and silk. The optimal condition for the activity of the pineapple protease was about 60 °C at pH 7. The wool and silk were treated with the protease extracted from a pineapple and the K/S values of the dyed wool and silk were measured using a spectrophotometer in order to compare the dye uptake. The protease treatment enhanced the dyeing properties of protein fibers without severe changes in mechanical properties. The surface appearances of protease-treated fibers were observed by microscopy.  相似文献   

15.
Two proteolytic enzymes were used as auxiliaries in the dyeing of wool fabrics with acid dyes. The effect of the enzymes on dye exhaustion (%E) and dye uptake (K/S) was studied at 70, 85, and 98 °C and compared to the corresponding values obtained for the control samples which were dyed without enzymes under the same conditions. Two commercially available dyeing auxiliaries commonly used for the dyeing of wool at low temperatures were also used under the same conditions and compared with the dyeings made with and without enzymes. Treatment with transglutaminase was done in order to compensate the damaging effects of protease. The study shows that the enzymes could be used as auxiliaries in the dyeing of wool at lower temperatures.  相似文献   

16.
To develop reusable incontinence products, blend nonwovens of hollow viscose rayon (HVR) and super absorbent fibers (SAFs) were prepared using a needle-punching process and their liquid handling properties, such as the fluid absorption capacity, fluid retention capacity, fluid absorption under load, moisture evaporation rate, and repeated water absorption were investigated. As the SAF content in the HVR/SAF blend nonwovens was increased, the fluid absorption capacity, fluid retention capacity, and fluid absorption under load increased, whereas the moisture evaporation rate decreased. SAF had a more significant effect on fluid retention than fluid absorption. In the case of HVR/SAF(8/2) and HVR/SAF(7/3), more than 100 % of the fluid absorption capacity was retained even after 5 cycles of repeated water absorption tests. Overall, the HVR/SAF blend nonwovens are good candidates for reusable incontinence products.  相似文献   

17.
Fruits obtained from shrubs of the Crataegus elbursensis (C. elbursensis) plant demonstrate significant antioxidant and antibacterial properties. In this study, natural dye was sono-extracted from fresh and dried fruits and applied in dyeing and antibacterial finishing of wool. The maximum sono-extraction yield was obtained when optimal conditions of ethanol/ water (4/1 v/v) as extracting solvent, time 30 min, pH 4, temperature 50 oC, and C. elbursensis concentration 10 g/l were used. When wool yarns were dyed with the extracted natural dye, the maximum dye uptake was achieved using dye concentration 75 % owf, and dyeing condition of 100 oC, 60 min, pH 4, and LR 100:1. Different metal salts like aluminum sulfate, copper sulfate, and tin chloride were applied on wool by pre-mordanting method and their effects on dye uptake, color variation, and color fastness were examined. Results showed that the natural dye itself had relatively high uptake and good color fastness on un-mordanted wool. Further, each mordant had different effect on dye uptake, color variation, and color fastness properties depending on its coordination ability with dye molecules and wool chains. Moreover, dyed yarns showed good antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria.  相似文献   

18.
The silk fibroin (SF)/chitosan (CHI) blend films were prepared by dissolving them in formic acid. The morphology of the films was examined by scanning electron microscopy (SEM). The roughness of the membranes was determined by atomic force microscopy (AFM). These films were treated with the extracts of Pistacia terebinthus, Pistacia lentiscus, and Hypericum empetrifolium. Folin-Ciocalteu assay was used to determine the amount of total phenols adsorbed on these blend films. The antibacterial properties of films were tested using disc diffusion and turbidity measurement methods against Escherichia coli and Staphylococcus epidermidis. The release of adsorbed phenolics from the film surface resulted in antibacterial properties.  相似文献   

19.
The present study is focused on studying the swelling kinetics, thermal and aqueous stabilities, and determination of various forms of water in the chitosan (CS) and polyacrylonitrile (PAN) blend and semi-interpenetrating polymer network (sIPN). CS/PAN blend hydrogel films were prepared by solution casting technique. The blend film with optimum swelling properties was selected for the synthesis of sIPN. CS in the blend was crosslinked with the vapors of Glutaraldehyde (GTA) to prepare sIPN. The fabricated CS/PAN blend and sIPN hydrogels films were characterized with Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA) and field emission scanning electron microscope (FESEM). The kinetics of swelling, bound and unbound waters and aqueous stability were determined experimentally. FESEM showed good miscibility between CS and PAN, FTIR showed no chemical interaction between CS and PAN; however, it did show a doublet for the sIPN, TGA showed improved thermal stability and swelling kinetic followed second order kinetics. The degree of swelling of the sIPN hydrogels samples at room temperature varied from ~2200 % (with a fair degree of stability (~30 %)) to ~1000 % (with high degree of aqueous stability (43 %)) with increase in the crosslinking time. The calculated unbound water (WUB) max., for the blend was 52.3 % whereas for the bound (WB) the max., was 41.9 %. However, for sIPN hydrogel films, the WUB water decreased (max. 21.0 %) where as the WB increased (max. 52.0 %). The decrease in WUB and increase in the WB is attributed to the formation of a compact structure and increase in the contact area between the water and polymers in sIPN hydrogels due to the induction of new water contacting point in these hydrogel films, respectively.  相似文献   

20.
Solution-cast films of polymethylmethacrylate (PMMA) and polyurethane (PU) containing polymeric styryl dye up to 5% by weight were prepared to investigate their acid-sensitivity and mechanical and thermal properties. Original red samples due to styryl dye turned out yellow very rapidly as they were exposed to acid vapor of hydrochloric acid or p-toluenesulfonic acid. According to UV/VIS spectroscopic measurements, characteristic peak intensities near 430 nm and 520 nm increased or decreased relatively with exposed amounts of acid, respectively. Both PMMA and PU samples showed uniform color distribution due to a good miscibility between polymer and dye which can be evidenced by measurements of glass transition temperature. No significant difference in acid-sensitivity was found between PU and PMMA except relative absorbance. However, dependence of their mechanical properties on dye content was somewhat different with PU or PMMA. In case of PMMA, modulus and breaking stress increased up to about 50% with increasing dye content, whereas those of PU samples showed only slight increase. It was ascribed to whether the matrix polymer was in the glassy or rubbery state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号