首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
对山东淄博市淄川水土保持生态修复区不同修复措施类型枯落物持水特征进行的调查和定位监测表明:①有林地封禁型植物群落枯落物蓄积量、饱和吸水率和饱和吸水量均较其他修复类型高;与修复前的荒草坡相比,天然林封禁和人工林封禁群落枯落物水容量分别增加25.85 mm和21.51 mm;疏林补植、荒坡造林、荒坡封禁和退耕还林型植物群落修复后枯落物蓄积量和水容量分别比修复前提高了22.74、54.96、22.11、28.70 t/km2和2.84、2.96、0.96、1.47 mm。②对现有森林植被实施封禁是生态修复的重要措施,在人工造林时,应尽量引进适生树种混交,以增加林地枯落物的蓄积量。  相似文献   

2.
对山东淄博市淄川水土保持生态修复区不同修复措施类型枯落物持水特征进行的调查和定位监测表明:①有林地封禁型植物群落枯落物蓄积量、饱和吸水率和饱和吸水量均较其他修复类型高;与修复前的荒草坡相比,天然林封禁和人工林封禁群落枯落物水容量分别增加25.85mm和21.51mm;疏林补植、荒坡造林、荒坡封禁和退耕还林型植物群落修复后枯落物蓄积量和水容量分别比修复前提高了22.74、54.96、22.11、28.70t/km^2和2.84、2.96、0.96、1.47mm。②对现有森林植被实施封禁是生态修复的重要措施,在人工造林时,应尽量引进适生树种混交,以增加林地枯落物的蓄积量。  相似文献   

3.
[目的]揭示人工水土保持林林下枯落物以及土壤持水特征,为太行山区水土保持林的建造和规划提供理论依据。[方法]运用烘干法,室内浸泡法,环刀法等得出不同林分林下枯落物蓄积量、持水量、吸水速率、最大持水能力和拦蓄量,比较了不同林分枯落物和土壤的持水能力。[结果]枯落物总储量范围为9.96~19.19t/hm2,表现为栓皮栎林总储量最大,荒坡总储量最小。枯落物最大持水量变化范围为23.76~66.72t/hm2,栓皮栎—侧柏混交林最大,荒坡最小。栓皮栎—侧柏混交林有效拦蓄量可达51.50t/hm2,在各林分中最大;荒坡有效拦蓄量为19.55t/hm2,在各林分中最小。枯落物持水量、吸水速率均与浸泡时间呈相关关系,前者为对数关系(R0.97),后者为幂函数关系(R0.98)。各林分土壤容重均值介于1.14~1.55g/cm3,总孔隙度介于38.62%~43.76%。各林分土壤有效持水量表现为:刺槐林栓皮栎—侧柏混交林栓皮栎林荒坡,其中刺槐林最大(为106.85t/hm2),荒坡最小(为89.37t/hm2)。[结论]水土保持林持水能力远大于荒坡。  相似文献   

4.
对柞蚕场和柞蚕场根刈后封山育林9年、12年、21年的4种类型柞林枯落物储量和持水性能进行了研究,结果表明:柞蚕场和封育9年、12年、21年的枯落物储量分别为3.69 t/hm2,7.92 t/hm2,8.41 t/hm2,8.74t/hm2.最大持水量分别为6.23 t/hm2,14.71 t/hm2,15.81 t/hm2,17.18 t/hm2;持水过程显示枯落物均1h持水量最大,8 h开始趋于饱和,枯落物吸水速率与浸水时间的关系可用S=Ktn来表达;柞蚕场和封育9年、12年、21年枯落物层有效拦蓄量分别为4.75 t/hm2,10.87 t/hm2,11.70 t/hm2,12.78 t/hm2,有效拦蓄降水深度分别比柞蚕场增加了0.60 mm,0.69 mm,0.80 mm.  相似文献   

5.
不同林分枯落物层的水文生态功能   总被引:69,自引:13,他引:69  
分析了八达岭林场4种林分枯落物层的蓄积量、持水能力、阻滞径流速度和减流减沙的效应。结果表明:①油松的总蓄积量为29 20t/hm2,最大持水量为61 36t/hm2,有效拦蓄量为19 38t/hm2;侧柏总蓄积量为4 62t/hm2,最大持水量为57 84t/hm2,有效拦蓄量为16 58t/hm2;元宝枫总蓄积量为17 76t/hm2,最大持水量为30 92t/hm2,有效拦蓄量为71 73t/hm2;刺槐总蓄积量为10 26t/hm2,最大持水量为43 12t/hm2,有效拦蓄量为24 63t/hm2;在这4种林分枯落物中,元宝枫的有效拦蓄量为最大,相当于7 17mm的降雨。②4种枯落物未分解层和半分解层持水量与浸水时间的关系为:W=Aln(t) B,未分解层持水量均大于半分解层持水量,吸水速度同浸水时间的关系式为V=ktn,在0~2h之间,枯落物未分解层和半分解层吸水速率较快,在4~6h后下降速率逐渐减缓。③随坡度增加,枯落物阻滞径流速率、减沙减流的效果更加明显,元宝枫在此效应中表现最佳。  相似文献   

6.
北京百花山森林枯落物层和土壤层水文效应研究   总被引:29,自引:7,他引:22  
对百花山4种林分枯落物层和土壤层的水文效应进行了初步研究。结果表明:1核桃楸林枯落物的总蓄积量为9.99 t/hm2,最大持水量为27.72 t/hm2,有效拦蓄量为29.55 t/hm2;华北落叶松林枯落物的总蓄积量为10.27 t/hm2,最大持水量为12.84 t/hm2,有效拦蓄量为13.53 t/hm2;黑桦林枯落物的总蓄积量为7.04 t/hm2,最大持水量为19.01 t/hm2,有效拦蓄量为19.18 t/hm2;辽东栎林枯落物的总蓄积量为8.22 t/hm2,最大持水量为14.72 t/hm2,有效拦蓄量为18.33 t/hm2。2半分解层枯落物浸泡8 h已基本达到饱和,而未分解层10 h基本达到饱和,持水量与浸泡时间的关系为Q=aln(t) b;枯落物在浸水的前半小时内吸水速率最大,4 h左右时下降速度明显减缓,枯落物吸水速率与浸泡时间的关系为V=ktn。3辽东栎林土壤层持水能力最强,为266.22 t/hm2,黑桦林土壤的持水能力最差,为219.39 t/hm2,利用幂函数对入渗速率与入渗时间进行拟合,其相关系数均在0.98以上。  相似文献   

7.
河北太行山典型水土保持经济林枯落物持水特性   总被引:1,自引:0,他引:1  
选取河北太行山区典型坡面经济林板栗、苹果与立地条件相近的荒坡的枯落物蓄积量与持水能力进行研究。结果表明:枯落物总蓄积量范围为6.62~15.83 t/hm2,表现为板栗林总蓄积量最大,荒坡总蓄积量最小。枯落物最大持水量变化范围为13.41~53.9t/hm2。板栗林有效拦蓄量可达42.23 t/hm2,在各林分中最大;荒坡有效拦蓄量为19.55 t/hm2,在各林分中最小。枯落物持水量、吸水速率均与浸泡时间呈相关关系,前者为对数关系(R>0.97),后者为幂函数关系(R>0.98)。综合分析各林分枯落物层的持水能力,可知水土保持经济林持水能力远大于荒坡。  相似文献   

8.
华北土石山区典型森林枯落物层和土壤层水文效应   总被引:15,自引:5,他引:10  
以河北省围场县北沟林场内4种不同林分的枯落物层和土壤层为研究对象,对其水文效应进行初步研究.结果衰明:(1)落叶松、油松混交林枯落物蓄积量最大,为12.28 t/hm2,最大持水量为24.60 t/hm,2,有效拦蓄量为27.19 t/hm2;油松林的枯落物蓄积量为11.74 t/hm2,最大持水量为19.30 t/hm2,有效拦蓄量为22.21 t/hm2;落叶松林的枯落物蓄积量为9.32 t/hm2,最大持水量为11.60 t/hm2,有效拦蓄量为16.20 t/hm2;落叶松白桦混交林的枯落物蓄积量为5.58 t/hm2,最大持水量为12.90 t/hm,2,有效拦蓄量为13.53 t/hm2.(2)半分解层枯落物浸泡8 h已基本达到饱和,而未分解层需浸泡10 h,通过分析得出持水量与浸泡时间的关系为Q=aln(t)+b;枯落物在浸水的前30 min内吸水速率最大,6 h左右时吸水速率明显减缓,枯落物吸水速率与浸泡时间的关系为V=ktn.(3)落叶松白桦混交林土壤层持水能力最强,为377.03 t/hm2;落叶松油松混交林土壤层的持水能力最差,为241.9 t/hm,2,利用幂函数对入渗速率与入渗时间进行拟合,其相关系数均在0.95以上.  相似文献   

9.
北京十三陵不同林分枯落物层和土壤层水文效应研究   总被引:15,自引:3,他引:12  
对北京十三陵林场4种林分枯落物层及土壤层进行了初步研究.结果表明:①侧柏林枯落物的总蓄积量为3.67 t/hm2,最大持水量为8.54 t/hm2.有效拦蓄量为9.83 t/hm2;油松林枯落物的总蓄积量为12.44 t/hm2,最大持水量为20.45 t/hm2.有效拦蓄量为26.75 t/hm2;黄栌林枯落物的总蓄积量为12.29 t/hm2,最大持水量为21.81 t/hm2,有效拦蓄量为26.67 t/hm2;黄栌、油松混交林枯落物的总蓄积量为13.27 t/hm2,最大持水量为21.10 t/hm2,有效拦蓄量为27.29 t/hm2;②未分解层枯落物10 h基本达到饱和.半分解层在8 h已经达到饱和,持水量与浸泡时间的关系为Q=aln(t)+6;枯落物在浸水的0.5 h内吸水速率最大,4 h左右时下降速度明显减缓,枯落物吸水速率与浸泡时间的关系为V=ktn.③油松林土壤层持水能力最强,为206.9 t/hm22,黄栌、油松林土壤层的持水能力最差,为130.2 t/hm2,并利用幂函数对入渗速率和入渗时间进行拟合.  相似文献   

10.
以青藏高原东北边缘云杉属-冷杉属林火烧迹地为研究对象,基于典型抽样法于2020年8月和2021年7—8月在火烧迹地和未过火天然林采集枯落物样品,采用室内浸泡法测定分析枯落的蓄积量、持水量、有效拦蓄量等指标,探究林火干扰下不同坡位枯落物的水文效应,为更好地促进森林水源涵养以及水土保持功能提供依据。结果表明:(1)在植被恢复过程中,枯落物的厚度和蓄积量随着恢复年限的增加而增加,且厚度为3.75~8.31 cm,蓄积量为6.16~8.13 t/hm2。恢复5,15年火烧迹地上、中、下坡枯落物厚度和蓄积量与天然林差异显著。(2)枯落物的最大持水量为20.94~26.22 t/hm2,恢复5,15年火烧迹地枯落物最大持水量与天然林差异达显著水平。在枯落物持水达到饱和前,不同恢复年限下各坡位枯落物持水量与浸水时间呈对数函数关系,吸水速率与浸水时间呈幂函数关系。(3)枯落物的有效拦蓄量为14.58~16.95 t/hm2,有效拦蓄深为1.44~1.78 mm。恢复5年火烧迹地枯落物有效拦蓄量表现为中坡>上坡>下坡,恢复15...  相似文献   

11.
太行山区主要森林生态系统水源涵养能力   总被引:9,自引:1,他引:8  
森林生态系统水源涵养功能是林冠层、枯落物层和土壤层对大气降水进行再分配的过程。本文通过文献收集整理太行山地区森林植被林冠一次降水截留量、枯落物层持水量和土壤层贮水量数据,分析该地区主要森林植被对降水的截留和贮蓄能力,采用综合蓄水能力法对森林植被的综合涵养水源能力进行评价,旨在为合理经营和管理森林生态系统提供依据。结果表明:1)土壤非毛管孔隙度与生态系统综合持水量呈正相关,且最大持水量占整个森林生态系统综合持水量的90%以上,表明土壤层作为森林生态系统水文效应最重要的一层,是整个森林系统水分循环的主要贮蓄库和调节器;2)针叶林中油松和侧柏的冠层一次降水截留量显著高于其他林型,其林冠结构更加适应该地区气象条件,林冠层降水再分配能力也优于其他林型;3)混交林郁闭度低,有利于林下灌、草丛的生长,其枯落物现存量比纯林和人工林更高,虽然林冠一次截留量低但林下具有丰富的枯落物层而更易涵养水源;4)天然林综合蓄水能力整体高于人工林,侧柏人工林和油松人工林综合蓄水能力仅次于刺槐、侧柏和油松天然林。综上可见,合理利用森林资源防止水土流失、天然林长期封育和合理控制优势树种密度及增加植被覆盖率对太行山地区植被恢复和生态建设具有重要意义。为提高该区综合水源涵养能力,可增加乡土树种油松和侧柏人工林的种植面积。  相似文献   

12.
永嘉县四海山林场森林枯落物及土壤持水能力研究   总被引:2,自引:0,他引:2  
为掌握永嘉县四海山林场不同森林枯落物和土壤的持水能力,采用野外调查和室内浸泡法,对该林场4种主要森林类型的枯落物及林下土壤持水性进行了研究,并对林地水源涵养功能进行了估算,结果表明:森林枯落物总储量大小为马尾松林>柳杉林>针叶混交林>针阔混交林,枯落物有效拦蓄量大小表现为柳杉林>马尾松林>针叶混交林>针阔混交林;柳杉林和针阔混交林0~10 cm土层土壤非毛管孔隙度、非毛管持水量显著高于马尾松林和针叶混交林;森林水源涵养能力大小表现为针阔混交林>柳杉林>针叶混交林>马尾松林;四海山林场林地水源涵养总量为7 530 343.4 t,经济价值量为6 174.8万元。  相似文献   

13.
丹江口湖北库区不同林分类型枯落物储量及持水性能   总被引:2,自引:1,他引:2  
对丹江口湖北库区马尾松林、柏木林、松柏混交林、针阔混交林、栎类林5种主要林分类型的枯落物储量、持水量、吸水速率进行研究。结果表明:不同林分类型枯落物现存量具有一定的差异,松柏混交林枯落物储量最大(29.26t/hm2),其次为马尾松林(24.49t/hm2)、针阔混交林(21.93t/hm2)、栎类林(6.56t/hm2),以柏木林枯落物储量最小(9.47t/hm2)。各林分不同层次持水量、吸水速率与浸水时间之间的动态变化规律基本相似,随着浸泡时间的增加,枯落物吸水速率具有差异,0~1h枯落物吸水最快,1~2h逐渐减缓,而到了2~10h枯落物吸水基本饱和,逐渐趋向于0。拟合回归发现,枯落物持水量与浸泡时间按指数方程Q=aln t+b增加,吸水速率与浸泡时间按幂函数V=ktn递减。同时,最大持水量均是半分解层>已分解层>未分解层,而吸水速率则是针叶林分半分解层>已分解层>未分解层,阔叶林为已分解层>半分解层>未分解层。  相似文献   

14.
对元阳梯田水源区优势树种枯落物水文特性的研究,有利于进一步揭示森林的水源涵养功能。通过野外调查采样与室内试验分析,对元阳梯田优势树种枯落物储量、持水能力、拦蓄能力以及持水过程进行了研究。结果表明:枯落物总储量为6.06~8.2 t/hm2,半分解层的枯落物储量绝大多数要大于未分解层;枯落物总厚度为6.1~8.8 cm,半分解层厚度大于未分解层;枯落物半分解层自然含水率要明显高于未分解层;枯落物半分解层最大持水量要大于未分解层最大持水量,但是优势不明显,总枯落物层最大持水率为132.1%~247.3%;枯落物总的有效拦蓄量为2.07~8.01 t/hm2,其中未分解层的有效拦蓄量要大于半分解层;枯落物层持水量与吸水速率随时间变化过程中,在0~2 h时间段内变化较大,浸水8 h后,持水量与吸水速率两者的变化曲线均比较平缓,变化幅度较小;枯落物层持水量与浸水时间存在显著的对数关系,枯落物吸水速率与时间存在显著的幂函数关系。  相似文献   

15.
黔中不同龄组柳杉人工林枯落物水源涵养能力综合评价   总被引:2,自引:5,他引:2  
杨家慧  谭伟  卯光宪  冯艳 《水土保持学报》2020,34(2):296-301,308
为了解不同林龄柳杉人工林枯落物的水源涵养能力,为森林水土保持措施的确定和实施提供依据,于2018年10月选取平坝区大坡林场5个龄组柳杉人工林作为研究对象,采用烘干法和实验室浸水法对枯落物的持水性能进行研究,并采用熵权法对柳杉人工林5个龄组枯落物水源涵养能力进行综合评价。结果表明:(1)随着柳杉人工林的生长发育,枯落物储量及持水特性呈现先增加后减小的趋势,表现出成熟林最大,幼龄林最小。其中成熟林枯落物厚度为7.40cm,蓄积量为2.21t/hm^2,最大持水量为6.46t/hm^2,最大持水率为265.14t/hm^2,有效拦蓄量为3.94t/hm^2,有效拦蓄率为175.74%。(2)利用熵权法计算出柳杉人工林5个龄组枯落物的水源涵养能力为成熟林(11.46)>近熟林(10.79)>过熟林(8.26)>中龄林(4.83)>幼龄林(3.94),柳杉成熟林具有最佳的水源涵养能力。  相似文献   

16.
为了解东莞市内不同森林公园的森林地表枯落物和土壤水源涵养能力,于2020年7月选取东莞市5个森林公园5种30年的生态公益林作为研究对象,采用烘干法和浸水法对枯落物、土壤的持水能力及物理性质进行研究。结果表明:生态公益林林地枯落物层厚度变动为1.5~10.5 cm,生物量变化范围为0.32~5.73 t/hm~2,最大持水量、有效拦蓄力量均呈现湿地松-九节林马占相思-岭南山竹子林浙江润楠-豺皮樟林木荷-油茶林桉树-鹅掌柴林。通过回归拟合发现,累积持水量与浸水时间呈显著的对数关系,吸水速率与浸水时间呈显著的幂函数关系;累积失水量与失水时间呈显著的3次关系,失水速率与失水时间呈显著的倒数关系。不同类型林分土壤持水量与不同孔隙度的大小直接相关,土壤总孔隙度和毛管孔隙度越高,土壤的容重越小,土壤保水能力越强。研究结果可为该区森林可持续经营管理和生态效益评价提供参考。  相似文献   

17.
以康定县折多山高寒山地灌丛草甸凋落物为研究对象,采用室外调查及室内测定结合的方法分析了凋落物蓄积量、持水及失水过程,以期探讨不同海拔和坡向凋落物水源涵养功能的差异。结果表明:(1)研究区凋落物的蓄积量在4.02~4.77 t/hm2波动,均表现出随着海拔的升高而逐渐降低,且半阴坡>半阳坡,海拔对凋落物蓄积量呈极显著影响(P<0.01);(2)研究区凋落物最大持水量与蓄积量表现出一致的规律,有效拦蓄量最大为3 800 m半阳坡(5.95 t/hm2),最小为3 800 m半阴坡(2.53 t/hm2);(3)枯落物持水量与浸水时间关系式为:Wt=aln (t)+b;枯落物吸水速率与浸水时间关系式为:V=ktn;失水量与失水时间呈显著对数关系(R2>0.95,P<0.01),失水速率与失水时间呈显著幂函数关系(R2>0.99,P<0.01)。可见,该地区灌丛草甸凋落物的水源涵养功能在不同海拔和坡向间有明显分异特征,控制放牧减轻草甸退化和增加该生态系统的物种多样性能有效提高该区凋落物水源涵养功能。  相似文献   

18.
通过2004和2009年两次对江西上犹长防林不同森林植被类型土壤持水特性的测定分析,结果表明:同一植被类型随着其生长发育,其土壤蓄水能力相应提高;各植被类型的土壤蓄水能力均明显高于荒山地;土壤容重、毛管孔隙度及非毛管孔隙度三者的综合特征对土壤蓄水能力有着重要影响;不同植被类型的土壤蓄水能力存在差异,针阔混交林的土壤蓄水能力优于杉木纯林、针叶混交林、湿地松纯林和马尾松纯林;2004、2009年各植被类型土壤蓄水能力分别在25200~40320 t hm-2和30240~63360 t hm-2之间,若蓄存1×108 m3的水则所需的相应森林面积分别在2480.2~3968.3 hm2和1578.3~3206.9 hm2之间,而荒山地则分别为7142.9 hm2和7440.5 hm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号