首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To isolate and characterize bone marrow-derived equine mesenchymal stem cells (MSCs) for possible future therapeutic applications in horses. SAMPLE POPULATION: Equine MSCs were isolated from bone marrow aspirates obtained from the sternum of 30 donor horses. PROCEDURES: Cells were cultured in medium (alpha-minimum essential medium) with a fetal calf serum content of 20%. Equine MSC features were analyzed to determine selfrenewing and differentiation capacity. For potential therapeutic applications, the migratory potential of equine MSCs was determined. An adenoviral vector was used to determine the transduction rate of equine MSCs. RESULTS: Equine MSCs can be culture-expanded. Equine MSCs undergo cryopreservation in liquid nitrogen without altering morphologic characteristics. Furthermore, equine MSCs maintain their ability to proliferate and differentiate after thawing. Immunocytochemically, the expression of the stem cell marker CD90 can be detected on equine MSCs. The multilineage differentiation potential of equine MSCs was revealed by their ability to undergo adipogenic, osteogenic, and chondrogenic differentiation. CONCLUSIONS AND CLINICAL RELEVANCE: Our data indicate that bone marrow-derived stromal cells of horses can be characterized as MSCs. Equine MSCs have a high transduction rate and migratory potential and adapt to scaffold material in culture. As an autologous cell population, equine MSCs can be regarded as a promising cell population for tissue engineering in lesions of the musculoskeletal system in horses.  相似文献   

2.
Objective— To characterize equine adipose tissue-derived stromal cell (ASC) frequency and growth characteristics and assess of their adipogenic and osteogenic differentiation potential.
Study Design— In vitro experimental study.
Animals— Horses (n=5; aged, 9 months to 5 years).
Methods— Cell doubling characteristics of ASCs harvested from supragluteal subcutaneous adipose tissue were evaluated over 10 passages. Primary, second (P2), and fourth (P4) passage ASCs were induced under appropriate conditions to undergo adipogenesis and osteogenesis. Limit dilution assays were performed on each passage to determine the frequency of colony-forming units with a fibroblastic (CFU-F) phenotype and the frequency of ASC differentiation into the adipocyte (CFU-Ad) and osteoblast (CFU-Ob) phenotype.
Results— ASC isolates exhibited an average cell-doubling time of 2.1±0.9 days during the first 10 cell doublings. Approximately 1 in 2.3±0.4 of the total stromal vascular fraction nucleated cells were ASCs, based on the CFU-F assays, and 1 in 3.6±1.3 expressed alkaline phosphatase, an osteogenic marker. Primary ASCs differentiated in response to adipogenic (1 in 4.9±5.4, CFU-Ad) and osteogenic (1 in <2.44, CFU-Ob) inductive conditions and maintained their differentiation potential during subsequent passages (P2 and P4).
Conclusion— The frequency, in vitro growth rate, and adipogenic and osteogenic differentiation potential of equine ASCs show some differences to those documented for ASCs in other mammalian species.
Clinical Relevance— Adipose tissue is a potential source of adult stem cells for tissue engineering applications in equine veterinary medicine.  相似文献   

3.
Reasons for performing study: Mesenchymal stromal cells (MSCs) represent an attractive source for regenerative medicine. However, prior to their application, fundamental questions regarding molecular characterisation, growth and differentiation of MSCs must be resolved. Objectives: To compare and better understand the behaviour of equine MSCs obtained from bone marrow (BM) and adipose tissue (AT) in culture. Methods: Five horses were included in this study. Proliferation rate was measured using MTT assay and cell viability; apoptosis, necrosis and late apoptosis and necrosis were evaluated by flow cytometry. The mRNA expression levels of 7 surface marker genes were quantified using RT‐qPCR and CD90 was also analysed by flow cytometry. Differentiation was evaluated using specific staining, measurement of alkaline phosphatase activity and analysis of the mRNA expression. Results: High interindividual differences were observed in proliferation in both cell types, particularly during the final days. Statistically significant differences in viability and early apoptosis of cultured AT‐ and BM‐MSCs were found. The highest values of early apoptosis were observed during the first days of culture, while the highest percentage of necrosis and late apoptosis and lowest viability was observed in the last days. Surface marker expression pattern observed is in accordance to other studies in horse and other species. Osteogenic differentiation was evident after 7 days, with an increasing of ALP activity and mRNA expression of osteogenic markers. Adipogenic differentiation was achieved in BM‐MSCs from 2 donors with one of the 16 media tested. Chondrogenic differentiation was also observed. Conclusions: Proliferation ability is different in AT‐MSCs and BM‐MSCs. Differences in viability and early apoptosis were observed between both sources and CD34 was only found in AT‐MSCs. Differences in their osteogenic and adipogenic potential were detected by staining and quantification of specific tissue markers. Potential relevance: To provide data to better understand AT‐MSCs and BM‐MSCs behaviour in vitro.  相似文献   

4.
Background: There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells(MSCs) have been isolated and characterized from various species, but are poorly characterized in goats.Results: Goat MSCs isolated from bone marrow(BM-MSCs) and adipose tissue(ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency(CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection.BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture,exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection.Conclusions: Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.  相似文献   

5.
Reason for performing the study: There is a need to assess and standardise equine bone marrow (BM) mesenchymal stem cell (MSC) isolation protocols in order to permit valid comparisons between therapeutic trials at different sites. Objective: To compare 3 protocols of equine BM MSC isolation: adherence to a plastic culture dish (Classic) and 2 gradient density separation protocols (Percoll and Ficoll). Materials and methods: BM aspirates were harvested from the sternum of 6 mares and MSCs isolated by all 3 protocols. The cell viability after isolation, MSC yield, number of MSCs attained after 14 days of culture and the functional characteristics (self‐renewal (CFU) and multilineage differentiation capacity) were determined for all 3 protocols. Results: The mean ± s.d. MSC yield from the Percoll protocol was significantly higher (6.8 ± 3.8%) than the Classic protocol (1.3 ± 0.7%). The numbers of MSCs recovered after 14 days culture per 10 ml BM sample were 24.0 ± 12.1, 14.6 ± 9.5 and 4.1 ± 2.5 × 10 6 for the Percoll, Ficoll and Classic protocols, respectively, significantly higher for the Percoll compared with the Classic protocol. Importantly, no significant difference in cell viability or in osteogenic or chondrogenic differentiation was identified between the protocols. At Passage 0, cells retrieved with the Ficoll protocol had lower self‐renewal capacity when compared with the Classic protocol but there was no significant difference between protocols at Passage 1. There were no significant differences between the 3 protocols for the global frequencies of CFUs at Passage 0 or 1. Conclusions and clinical relevance: These data suggest that the Percoll gradient density separation protocol was the best in terms of MSC yield and self‐renewal potential of the MSCs retrieved and that MSCs retrieved with the Ficoll protocol had the lowest self‐renewal but only at passage 0. Then, the 3 protocols were equivalent. However, the Percoll protocol should be considered for equine MSC isolation to minimise culture time.  相似文献   

6.
Objective— To compare the chondrogenic potential of adult equine mesenchymal stem cells derived from bone marrow (MSCs) or adipose tissue (ASCs). Study Design— In vitro experimental study. Animals— Adult Thoroughbred horses (n=11). Methods— BM (5 horses; mean [±SD] age, 4±1.4 years) or adipose tissue (6 horses; mean age, 3.5±1.1 years) samples were obtained. Cryopreserved MSCs and ASCs were used for pellet cultures in stromal medium (C) or induced into chondrogenesis±transforming growth factor‐3 (TGFβ3) and bone morphogenic factor‐6 (BMP‐6). Pellets harvested after 3, 7, 14, and 21 days were examined for cross‐sectional size and tissue composition (hematoxylin and eosin), glycosaminoglycan (GAG) staining (Alcian blue), collagen type II immunohistochemistry, and by transmission electron microscopy. Pellet GAG and total DNA content were measured using dimethylmethylene blue and Hoechst DNA assays. Results— Collagen type II synthesis was predominantly observed in MSC pellets from Day 7 onward. Unlike ASC cultures, MSC pellets had hyaline‐like matrix by Day 14. GAG deposition occurred earlier in MSC cultures compared with ASC cultures and growth factors enhanced both MSC GAG concentrations (P<.0001) and MSC pellet size (P<.004) after 2 weeks in culture. Conclusion— Equine MSCs have superior chondrogenic potential compared with ASCs and the equine ASC growth factor response suggests possible differences compared with other species. Clinical Relevance— Elucidation of equine ASC and MSC receptor profiles will enhance the use of these cells in regenerative cartilage repair.  相似文献   

7.

Background

There is considerable interest in using goats as models for genetically engineering dairy animals and also for using stem cells as therapeutics for bone and cartilage repair. Mesenchymal stem cells (MSCs) have been isolated and characterized from various species, but are poorly characterized in goats.

Results

Goat MSCs isolated from bone marrow (BM-MSCs) and adipose tissue (ASCs) have the ability to undergo osteogenic, adipogenic and chondrogenic differentiation. Cytochemical staining and gene expression analysis show that ASCs have a greater capacity for adipogenic differentiation compared to BM-MSCs and fibroblasts. Different methods of inducing adipogenesis also affect the extent and profile of adipogenic differentiation in MSCs. Goat fibroblasts were not capable of osteogenesis, hence distinguishing them from the MSCs. Goat MSCs and fibroblasts express CD90, CD105, CD73 but not CD45, and exhibit cytoplasmic localization of OCT4 protein. Goat MSCs can be stably transfected by Nucleofection, but, as evidenced by colony-forming efficiency (CFE), yield significantly different levels of progenitor cells that are robust enough to proliferate into colonies of integrants following G418 selection. BM-MSCs expanded over increasing passages in vitro maintained karyotypic stability up to 20 passages in culture, exhibited an increase in adipogenic differentiation and CFE, but showed altered morphology and amenability to genetic modification by selection.

Conclusions

Our findings provide characterization information on goat MSCs, and show that there can be significant differences between MSCs isolated from different tissues and from within the same tissue. Fibroblasts do not exhibit trilineage differentiation potential at the same capacity as MSCs, making it a more reliable method for distinguishing MSCs from fibroblasts, compared to cell surface marker expression.

Electronic supplementary material

The online version of this article (doi:10.1186/2049-1891-6-1) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
The objective of this study was to compare nucleated cell fractions and mesenchymal stromal cells (MSCs) from adipose tissue to bone marrow processed by a point-of-care device that are available for immediate implantation. A paired comparison using adipose and bone marrow from five horses was done. The number of nucleated cells, viability, total adherent cells on day 6 of culture and colony-forming unit fibroblasts (CFU-Fs) were determined. Gene expression for markers of stemness, adipogenic, chondrogenic, osteogenic lineage, and collagen formation was measured in total RNA isolated from adherent adipose and bone marrow cells. Day 6 adherent adipose-derived MSC was frozen briefly, whereas day 6 adherent bone marrow–derived MSC was passaged two additional times to obtain adequate cell numbers for chondrogenic, osteogenic, and adipogenic cell differentiation assays. The total cell count per gram was significantly greater for bone marrow, whereas total adherent cells per gram and the CFU-F per million nucleated cells on day 6 were significantly greater for the adipose. In undifferentiated adherent cells, relative gene expression for CD34, adipogenic, and chondrogenic markers and collagen II was significantly lower in the adipose-derived cells. Conversely, expression of collagen I was significantly higher in the undifferentiated adipose-derived cells. Cell density and total RNA were higher in differentiated adipogenic and osteogenic cultures of adipose cells and in chondrogenic cultures of bone marrow cells. This cell preparation method provides a stromal vascular fraction with a large proportion of multipotent MSCs. There are differences in the cells obtained from the two sources. This method can provide an adequate number of multipotent cells from adipose tissue for immediate implantation.  相似文献   

10.
11.
Although the use of mesenchymal stromal cells (MSCs) for the treatment of orthopaedic injuries in horses has been reported, no official guidelines exist that classify a particular cell as an equine MSC. Given the limited characterisation of peripheral blood (PB)-derived equine MSCs in particular, this study aimed to provide more detailed information in relation to this cell type. Mesenchymal stromal cells were isolated from equine PB samples and colony forming unit (CFU) assays as well as population doubling times (PDTs) (from P0 to P10) were performed.Two types of colonies, ‘fingerprint’ and dispersed, could be observed based on macroscopic and microscopic features. Moreover, after an initial lag phase (as indicated by a negative PDT at P0 to P1) the MSCs divided rapidly as indicated by a positive PDT at all further passages. Immunophenotyping was carried out with trypsin- as well as with accutase-detached MSC to evaluate potential trypsin-sensitive epitope destruction on particular antigens. Isolated MSC were positive for CD29, CD44, CD90 and CD105, and negative for CD45, CD79α, MHC II and a monocyte/macrophage marker, irrespective of the cell detaching agent used. Trilineage differentiation of the MSCs towards osteoblasts, chondroblasts and adipocytes was confirmed using a range of histochemical stains.  相似文献   

12.
Perlecan, a basement membrane component, shows diverse functions in different organs and tissues. However, the role of perlecan in differentiation of mesenchymal stem cells (MSCs) has been barely investigated. In this study, we examined the effect of perlecan on adipogenic and osteogenic differentiation of MSCs in vitro by adding extrinsic perlecan to culture media or blocking the function of intrinsic perlecan expressed into culture media by differentiating MSCs. Extrinsic perlecan suppressed adipogenic differentiation; however, it promoted osteogenic differentiation. These functions were further confirmed by a study of blocking intrinsic perlecan. Perlecan treated with heparitinase‐I also showed the suppressive effect on adipogenic differentiation. In contrast, the promotive effect on osteogenic differentiation was found to be heparan sulfate‐dependent. Intrinsic perlecan was suggested to be effective at the late stage of adipogenic differentiation by a study of perlecan‐blocking performed at distinct periods, but was suggested to be effective at the early stage of osteogenic differentiation. Our results showed perlecan has contrasting effect on adipogenic and osteogenic differentiation of MSCs due to its diverse actions. Based on these outcomes, we recognized that employing extrinsic perlecan or blocking intrinsic perlecan is effective for regulating adipogenic and osteogenic differentiation of MSCs by restricting its direction.  相似文献   

13.
Background: Adult mesenchymal stem cells(MSCs) can be conveniently sampled from bone marrow, peripheral blood, muscle, adipose and connective tissue, harvested from various species, including, rodents, dogs, cats, horses,sheep, goats and human beings. The MSCs isolated from adult tissues vary in their morphological and functional properties. These variations are further complicated when cells are expanded by passaging in culture. These differences and changes in MSCs must be considered prior to their application in the clinic or in a basic research study. Goats are commonly used as animal models for bone tissue engineering to test the potential of stem cells for bone regeneration. As a result, goat MSCs isolated from bone marrow or adipose tissue should be evaluated using in vitro assays, prior to their application in a tissue engineering project.Results: In this study, we compared the stem cell properties of MSCs isolated from goat bone marrow and adipose tissue. We used quantitative and qualitative assays with a focus on osteogenesis, including, colony forming unit, rate of cell proliferation, tri-lineage differentiation and expression profiling of key signal transduction proteins to compare MSCs from low and high passages. Primary cultures generated from each source displayed the stem cell characteristics,with variations in their osteogenic potentials. Most importantly, low passaged bone marrow MSCs displayed a significantly higher and superior osteogenic potential, and hence, will be the preferred choice for bone tissue engineering in future in vivo experiments. In the bone marrow MSCs, this process is potentially mediated by the p38 MAPK pathway. On the other hand, osteogenic differentiation in the adipose tissue MSCs may involve the p44/42 MAPK pathway.Conclusions: Based on these data, we can conclude that bone marrow and fat-derived MSCs undergo osteogenesis via two distinct signaling pathways. Even though the bone marrow MSCs are the preferred source for bone tissue engineering, the adipose tissue MSCs are an attractive alternative source and undergo osteo-differentiation differently from the bone marrow MSCs and hence, might require a cell-based enhancer/inducer to improve their osteogenic regenerative capacity.  相似文献   

14.
15.
The objective of this study was to compare bone marrow (BM) aspirates from the sternum and the tuber coxae of middle-aged horses. Bone marrow was obtained from the sternum and both tubera coxae of 12 healthy, 13-year-old geldings. Two different puncture techniques were used for the tuber coxae. The 2 syringes used for sternal sampling were evaluated separately. The mononuclear cell (MNC) fraction of the BM was isolated and the mesenchymal stem cells (MSCs) were culture-expanded. At the sternum, BM aspiration was always possible. Bone marrow aspiration at the tuber coxae required straight and deep needle penetration combined with high negative pressure. With this technique a median sample amount of 11.0 mL with large individual variation was obtained. A median of 3.06 × 10(6) MNC/mL BM (1st syringe) and 2.46 × 10(6) MNC/mL BM (2nd syringe) was isolated from sternal samples. In contrast, the tuber coxae yielded a median of 0.27 × 10(6) MNC/mL BM. The first passage yielded a median of 2.19 × 10(6) MSC (1st syringe) and 1.13 × 10(6) MSC (2nd syringe) from sternal samples, compared to a significantly lower median number of MSC from tuber coxae BM (0.06 × 10(6) MSC). The number of MNC and MSC obtainable from the BM aspirates taken from the tuber coxae is significantly lower than that obtained from the sternal BM aspirates. Autologous BM for the equine athlete is particularly clinically relevant at an advanced age. Based on our findings, the tuber coxae cannot be recommended for BM aspiration in middle-aged horses.  相似文献   

16.
Equine immune‐mediated keratitis (IMMK) leads to increased corneal opacity and inflammation secondary to an alteration of the local immune system. Bone marrow‐derived mesenchymal stem cells (BM‐MSC) have been shown to modulate the immune system by downregulating inflammation. Four horses with unilateral IMMK poorly responsive to traditional medical treatments underwent novel, autologous subconjunctival BM‐MSC therapy. Bone marrow was harvested and processed as previously described for equine orthopedic disease. Horses received autologous subconjunctival BM‐MSC injections approximately every 3‐4 weeks for 1‐5 treatments total. Horses were maintained on their current medical treatment regimen throughout the BM‐MSC treatment period. Three horses had a positive response to therapy as demonstrated by an increase in corneal clarity, a decrease in neovascularization and a reduction in surface irregularity. One horse was nonresponsive to therapy. These experimental results demonstrate the safety and potential efficacy of an innovative solution for IMMK.  相似文献   

17.
Repair of injured soft and hard tissues in horses can benefit greatly from the use of regenerative therapies with mesenchymal stem cells (MSC). Vitamin-C and platelet-rich-plasma had been used for in vitro differentiation of MSC. This study was aimed to evaluate the effect of vitamin-C, platelet-rich-plasma and their combination on the in vitro differentiation of adipose horse MSC. We isolated MSC from horse fat and differentiated them in vitro into osteogenic and chondrogenic lineages, as demonstrated by specific staining and RT-qPCR of selected genes. Combining vitamin-C and plasma-rich-platelet positively affected the ability of MSC to differentiate in vitro into mesodermal lineages during 14 days of culture; this effect was not as marked when differentiation was attempted for 21 days. This provides valuable information on the effect of combined use of these molecules in regenerative therapies and their potential application along stem cells for lesions of musculoskeletal tissue in sport horses.  相似文献   

18.
OBJECTIVE: To determine whether expansion of equine mesenchymal stem cells (MSCs) by use of fibroblast growth factor-2 (FGF-2) prior to supplementation with dexamethasone during the chondrogenic pellet culture phase would increase chondrocytic matrix markers without stimulating a hypertrophic chondrocytic phenotype. SAMPLE POPULATION: MSCs obtained from 5 young horses. PROCEDURES: First-passage equine monolayer MSCs were supplemented with medium containing FGF-2 (0 or 100 ng/mL). Confluent MSCs were transferred to pellet cultures and maintained in chondrogenic medium containing 0 or 10(7)M dexamethasone. Pellets were collected after 1, 7, and 14 days and analyzed for collagen type II protein content; total glycosaminoglycan content; total DNA content; alkaline phosphatase (ALP) activity; and mRNA of aggrecan, collagen type II, ALP, and elongation factor-1alpha. RESULTS: Treatment with FGF-2, dexamethasone, or both increased pellet collagen type II content, total glycosaminoglycan content, and mRNA expression of aggrecan. The DNA content of the MSC control pellets decreased over time. Treatment with FGF-2, dexamethasone, or both prevented the loss in pellet DNA content over time. Pellet ALP activity and mRNA were increased in MSCs treated with dexamethasone and FGF-2-dexamethasone. After pellet protein data were standardized on the basis of DNA content, only ALP activity of MSCs treated with FGF-2-dexamethasone remained significantly increased. CONCLUSIONS AND CLINICAL RELEVANCE: Dexamethasone and FGF-2 enhanced chondrogenic differentiation of MSCs, primarily through an increase in MSC numbers. Treatment with dexamethasone stimulated ALP activity and ALP mRNA, consistent with the progression of cartilage toward bone. This may be important for MSC-based repair of articular cartilage.  相似文献   

19.
Equine mesenchymal stem cells (MSC) are of particular interest both for basic research and for the therapeutic approach to musculoskeletal diseases in the horse. Their multilineage differentiation potential gives them the capability to contribute to the repair of tendon, ligament and bone damage. MSCs are also considered a promising therapeutic aid in allogeneic cell transplantation, since they show low immunogenicity and immunomodulating functions.Adipose tissue-derived adult equine stem cells (AdMSC) can be isolated, expanded in vitro and then inoculated into the damaged tissue, eventually in the presence of a biological scaffold. Here we report our preliminary experience with adipose-derived mesenchymal stem cells in allogeneic cell-therapy of tendonitis in the horse. MSCs, derived from visceral adipose tissue, were grown in the presence of autologous platelet lysate and characterized for their differentiation and growth potential. Expanded AdMSC were inoculated into the damaged tendon after their dispersion in activated platelet-rich plasma (PRP), a biological scaffold that plays an important role in maintaining cells in defect sites and contributes to tissue healing. Fourteen out of sixteen treated horses showed a functional recovery and were able to return to their normal activity.  相似文献   

20.
Immune privileged mesenchymal stem cells (MSCs) can differentiate into multiple cell types and possess great potential for human and veterinary regenerative therapies. This study was designed with an objective to isolate, expand and characterize buffalo bone marrow‐derived MSCs (BM‐MSCs) at molecular and cellular level. Buffalo BM‐MSCs were isolated by Ficoll density gradient method and cultured in Dulbecco’s modified Eagle’s medium supplemented with fetal bovine serum (FBS). These cells were characterized through alkaline phosphatase (AP) staining, colony‐forming unit (CFU) assay, mRNA expression analysis (CD 73, CD 90, CD 105, Oct4 and Nanog), immunolocalization along with flow cytometry (Stro 1, CD 73, CD 105, Oct4, Sox2 and Nanog) and in situ hybridization (Oct4 and Sox2). Multilineage differentiation (osteogenic, adipogenic and chondrogenic) was induced in vitro, which was further assessed by specific staining. Buffalo BM‐MSCs have the capacity to form plastic adherent clusters of fibroblast‐like cells and were successfully maintained up to 16th passage. These cells were AP positive, and further CFU assay confirmed their clonogenic property. RT‐PCR analysis and protein localization study showed that buffalo BM‐MSCs are positive for various cell surface markers and pluripotency markers. Cytoplasmic distribution of mRNA for pluripotency markers in buffalo BM‐MSCs and multilineage differentiation were induced in vitro, which was further assessed by specific staining. To the best of our knowledge, this is the first report of buffalo BM‐MSCs, which suggests that MSCs can be derived and expanded from buffalo bone marrow and can be used after characterization as a novel agent for regenerative therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号