首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Water pressure is one of the most important factors which influence the final quality of espresso coffee (EC). However, few studies dealing with this issue have been found. The aim of this work was to study the effect of water pressure on the final quality of Arabica ECs as well as to classify ECs prepared at different pressures (7, 9, and 11 atm) according to their physicochemical and sensory characteristics, key odorants, by means of multivariate analysis. Statistically, principal component 1 (PC1) separated ECs prepared at 7 and 9 atm from ECs prepared at 11 atm and included the main foam and taste characteristics as well as some key odorants and flavor compounds. ECs prepared at 7 and 9 atm were separated by principal component 2 (PC2). Coffees prepared at 9 atm showed consistency of foam and a high percentage of key odorants related to freshness and fruity, malty, and buttery flavors. A simple discriminate function was obtained by discriminate analysis, allowing the classification of ECs prepared at three pressures into their respective groups with a success rate of 100%.  相似文献   

3.
The role of 2-methylisoborneol (MIB) in coffee aroma is controversially discussed in the literature. MIB is known as an off-flavor compound in drinking water and food, but it has also been suggested as a key flavor component of Robusta coffee, discriminating Robusta from Arabica coffee. To check this hypothesis the role of MIB in coffee brews was studied. Two reference samples containing pure Arabica and Robusta coffee brews were compared with five samples of Arabica coffee brews containing increasing amounts of MIB. The sensory panel consisting of 12 assessors perceived a distinct difference in the Arabica coffee odor and flavor in the presence of 10-25 ng/kg MIB, which is close to its threshold value in water. The sensory impression was described as musty, mold-like, and earthy. The intensity increased with increasing concentration of MIB. The panelists agreed that there was no similarity with the Robusta reference sample. The Arabica coffee brew spiked with MIB was no longer palatable due to the odor and flavor defect formed.  相似文献   

4.
Headspace-solid-phase microextraction technique (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O) were used to characterize the aroma compounds of coffee brews from commercial conventional and torrefacto roasted coffee prepared by filter coffeemaker and espresso machine. A total of 47 volatile compounds were identified and quantified. Principal component analysis (PCA) was applied to differentiate coffee brew samples by volatile compounds. Conventional and torrefacto roasted coffee brews were separated successfully by principal component 1 (68.5% of variance), and filter and espresso ones were separated by principal component 2 (19.5% of variance). By GC olfactometry, a total of 34 aroma compounds have been perceived at least in half of the coffee extracts and among them 28 were identified, among which octanal was identified for the first time as a contributor to coffee brew aroma.  相似文献   

5.
Among the 100 different known Coffea species, Coffea arabica L. (Arabica) and Coffea canephora Pierre (Robusta) are the only two of commercial interest. They differ in a range of agronomic, genetic, and chemical properties. Due to the significant price difference between Arabica and Robusta, there is an economic incentive to illicitly replace Arabica with Robusta. Therefore, it is crucial to have accurate methods to determine the Robusta-to-Arabica-ratio in blends. This paper presents the proof of principle of a new and fast approach to determine the Robusta fraction in a blend based on Raman spectroscopy. The oils of two references (a pure Robusta and pure Arabica coffee) and six blends thereof consisting of different Robusta and Arabica fractions were extracted using a Soxhlet system. The solutes were analyzed by means of Raman spectroscopy without further workup. Using the intensity ratio between two Raman peaks, one characteristic for kahweol and one characteristic for fatty acids, allowed determinination of the Robusta content in a given mixture. The intensity ratio is linearly dependent on the Robusta content of the compound. Above a Robusta content of 75 wt %, kahweol was not detectable. The Raman data are in agreement with results obtained from the very time-consuming multistep DIN 10777 procedures based on HPLC.  相似文献   

6.
The potent odorants were quantified in a sample of roasted Arabica coffee. On the basis of the results, 27 odorants were dissolved in an oil/water mixture. The flavor profile of the model obtained was very close to that of the real sample. In duo and triangle tests, the model was compared with models missing one or more odorants. These experiments indicated that 2-furfurylthiol, 4-vinylguaiacol, several alkyl pyrazines, furanones, acetaldehyde, propanal, methylpropanal, and 2- and 3-methylbutanal had the greatest impact on the coffee flavor.  相似文献   

7.
Coffee is one of the most important world food commodities, commercial trade consisting almost entirely of Arabica and Robusta varieties. The former is considered to be of superior quality and thus attracts a premium price. Methods to differentiate these coffee species could prove to be beneficial for the detection of either deliberate or accidental adulteration. This study describes a molecular genetics approach to differentiate Arabica and Robusta coffee beans. This employs a Polymerase Chain Reaction-Restriction Fragment Length Polymorphism to monitor a single nucleotide polymorphism within the chloroplastic genome. Samples were analyzed with a lab-on-a-chip capillary electrophoresis system. Coffee powder mixtures were analyzed with this technique, displaying a 5% limit of detection. The plastid copy number was found to be relatively constant across a wide range of bean samples, suggesting that this methodology can also be employed for the quantification of any adulteration of Arabica with Robusta beans.  相似文献   

8.
Grinding is a critical step in the preparation of espresso coffee (EC). The addition of sugar during the torrefacto roasting process could influence the degree of brittleness and grinding. The aim of this work was to study the influence of the grinding grades (coarse, fine, and very fine) in Arabica/Robusta 20:80, natural roasted (A20:R80), and Arabica/Robusta 20:80 with 50% Robusta torrefacto roasted (A20:R80 50% torrefacto) on the chemical and sensorial characteristics of EC in order to select the optimal espresso grinding grade. A higher percentage of coarse particles was found in A20:R80 ground coffee. In both ECs, the extraction of solids and soluble and aroma compounds increased inversely with particle size. Higher foam indices and extraction yields were found in A20:R80 50% torrefacto ECs probably due to the solubilization of caramelized sugar and melanoidins. It has been suggested that the range of an acceptable extraction yield could be extended to 25% in A20:R80 50% torrefacto ECs. In conclusion, the optimal grinding grade for the obtainment of an EC with A20:R80 was fine and that for A20:R80 50% torrefacto was coarse.  相似文献   

9.
In this study different Arabica and Robusta coffee beans from different regions of the world were analyzed for acrylamide after roasting in a laboratory roaster. Due to the complex matrix and the comparably low selectivity of the LC-MS at m/ z 72, acrylamide was analyzed after derivatization with 2-mercaptobenzoic acid at m/ z 226. Additionally, the potential precursors of acrylamide (3-aminopropionamide, carbohydrates, and amino acids) were studied. The highest amounts of acrylamide formed in coffee were found during the first minutes of the roasting process [3800 ng/g in Robusta ( Coffea canephora robusta) and 500 ng/g in Arabica ( Coffea arabica)]. When the roasting time was increased, the concentration of acrylamide decreased. It was shown that especially the roasting time and temperature, species of coffee, and amount of precursors in raw material had an influence on acrylamide formation. Robusta coffee contained significantly larger amounts of acrylamide (mean = 708 ng/g) than Arabica coffee (mean = 374 ng/g). Asparagine is the limiting factor for acrylamide formation in coffee. 3-Aminopropionamide formation was observed in a dry model system with mixtures of asparagine with sugars (sucrose, glucose). Thermal decarboxylation and elimination of the alpha-amino group of asparagine at high temperatures (>220 degrees C) led to a measurable but low formation of acrylamide.  相似文献   

10.
In this study, Brazilian coffee beans processed to different stages of roast at 210, 220, 230, and 240 °C were analyzed for pH value, titratable acidity, moisture content, and color lightness. Fourier transform infrared (FTIR) spectroscopy, in conjunction with principal component analysis, was conducted to study the effects of process time and temperature on the IR-active components of the acetyl acetate extract of the roasted coffee. The results showed that high-temperature-short-time resulted in higher moisture content, higher pH value, and higher titratable acidity when the beans were roasted beyond the start-of-second-crack stage, as compare to low-temperature-long-time process (LTLT). The LTLT process also resulted in greater IR absorbance for aldehydes, ketones, aliphatic acids, aromatic acids, and caffeine carbonyl bands on the FTIR spectra. Clusters for principal component score plots were well separated, indicating that the changes IR-active components in the coffee extracts, due to the different roasting treatments, can be discriminated by the FTIR technique. On the basis of the loading plots of principal components, changes of IR-active compounds in the coffee extract at various stages of roasting were discussed.  相似文献   

11.
Aroma extract dilution analysis of raw Arabica coffee revealed 3-isobutyl-2-methoxypyrazine (I), 2-methoxy-3,5-dimethylpyrazine (II), ethyl 2-methylbutyrate (III), ethyl 3-methylbutyrate (IV), and 3-isopropyl-2-methoxypyrazine (V) as potent odorants. The highest odor activity value was found for I followed by II, IV, and V. It was concluded that I was responsible for the characteristic, peasy odor note of raw coffee. Twelve odorants occurring in raw coffee and (E)-beta-damascenone were also quantified after roasting. The concentration of I did not change, whereas methional, 3-hydroxy-4, 5-dimethyl-2(5H)-furanone, vanillin, (E)-beta-damascenone, and 4-vinyl- and 4-ethylguaiacol increased strongly during the roasting process.  相似文献   

12.
In this feasibility study, Fourier transform infrared (FTIR) spectroscopy and chemometric analysis were adopted to discriminate coffees from different geographical origins and of different roasting degrees. Roasted coffee grounds were extracted using two methods: (1) solvent alone (dichloromethane, ethyl acetate, hexane, acetone, ethanol, or acetic acid) and (2) coextraction using a mixture of equal volume of the solvent and water. Experiment results showed that the coextraction method resulted in cleaner extract and provided a greater amount of spectral information, which was important for sample discrimination. Principal component analysis of infrared spectra of ethyl acetate extracts for dark and medium roast coffees showed separated clusters according to their geographical origins and roast degrees. Classification models based on soft independent modeling of class analogy analysis were used to classify different coffee samples. Coffees from four different countries, which were roasted to dark, were 100% correctly classified when ethyl acetate was used as a solvent. The FTIR-chemometric technique developed here may serve as a rapid tool for discriminating geographical origin of roasted coffees. Future studies involving green coffee beans and the use of larger sample size are needed to further validate the robustness of this technique.  相似文献   

13.
In a roasted Arabica coffee brew, the potent roasty odor quality compound was identified as 3-mercapto-3-methylbutyl acetate by comparison of its Kovats gas chromatography retention index, mass spectrum, and odor quality to those of the synthetic authentic compound. 3-Mercapto-3-methylbutyl acetate has been identified for the first time in the coffee, and according to the results of the aroma extract dilution analysis, the contribution of this compound to the flavor of the roasted coffee brew varied depending on the degree of the coffee bean roasting. The concentration of this compound in the coffee brews as with 3-mercapto-3-methylbutyl formate increased with an increase in the degree of roasting. However, the slope of the amount of both esters was different, and 3-mercapto-3-methylbutyl acetate hardly increased with a low degree of roasting at more than a 21 luminosity (L)-value, but it rapidly increased when the roasting degree of the coffee beans reached the L-value of 18. These results suggested that the contribution of 3-mercapto-3-methylbutyl acetate to the overall flavor is peculiar to the flavor of the highly roasted coffee.  相似文献   

14.
The objective of this work was to compare the effectiveness of three chemical families, namely, chlorogenic acids, fatty acids, and elements, for the discrimination of Arabica varieties (traditional versus modern introgressed lines) and potential terroirs within a given coffee-growing area. The experimental design included three Colombian locations in full combination with five (one traditional and four introgressed) Arabica varieties and two field replications. Chlorogenic acids, fatty acids, and elements were analyzed in coffee bean samples by HPLC, GC, and ICP-AES, respectively. Principal component analysis and discriminant analysis were carried out to compare the three methods. Although elements provided an excellent classification of the three locations studied, this chemical class was useless for Arabica variety discrimination. Chlorogenic acids gave satisfactory results, but fatty acids clearly offered the best results for the determination of both varieties and environments, with very high percentages of correct classification (79 and 90%, respectively).  相似文献   

15.
Espresso coffee (EC) brews were analyzed for beta-carboline [norharman (NH) and harman (H)] contents, by RP-HPLC with fluorescence detection. The influence of the coffee species (arabica or robusta), the roast degree, and the brew length was studied. The results show that the content of NH and H in EC is dependent primarily on the coffee species, followed by brew length. The roast degree has only a minor influence on the final content of NH and H in EC. When compared with other coffee brews, EC has an amount of these beta-carbolines (in micrograms per liter) similar to that of mocha coffee, both being more concentrated than filter and press-pot coffees. Therefore, the consumer's preferences will determine the amount of NH and H ingested daily. For the caffeinated 30 mL of EC, the arabica coffees contain about 4.08 microg of NH and 1.54 microg of H. Commercial blends (usually with a maximum of 30% robusta) range from the cited arabica values to 10.37 microg of NH and 4.35 microg of H.  相似文献   

16.
Arabica and robusta roasted coffees from several geographical origins, in a total of 29 samples, were characterized for their contents in caffeine, trigonelline, and nicotinic acid by a recently developed HPLC/diode-array detector method. All samples were subjected to the same roasting procedure in order to eliminate the variations due to this process. Characterization was achieved by applying multivariate and nonparametric analysis to the chromatographic results. The two coffee varieties were clearly separated by their trigonelline and caffeine contents. Nicotinic acid could not be used as a variety discriminate factor. There was no association with the geographical origin of the samples.  相似文献   

17.
Previous investigations of coffee flavor have been confined to the analysis of the aroma substances. These investigations showed that about 30 volatile compounds were substantially responsible for the coffee flavor. The aim of this study was to investigate the influence of different milk additives and one coffee whitener on the release of flavor impact compounds from coffee beverages. For the investigation of these effects an external static headspace technique was developed. With this technique the most potent odorants of the coffee beverage were determined. Analyses were performed by gas chromatography/olfactometry, flame ionization detection, and mass spectrometric detection. In addition, sensory studies of the odor profiles were performed. Milk and vegetable products as additives for coffee beverages affected the release of aroma substances in the brew through their lipid, protein, and carbohydrate components. All beverages with an additive showed reduced, but typical, odor profiles for each additive.  相似文献   

18.
为了探讨不同品种和不同花期栀子花挥发性物质之间的差异,本试验以山栀子、水栀子、狭叶栀子和重瓣栀子4个栀子花品种的花蕾期Ⅰ、盛开期Ⅱ和衰败期Ⅲ 3个花期的栀子花作为研究对象,采用顶空固相微萃取-气相色谱-质谱联用法(HS-SPME-GC-MS)对12个栀子花样品的挥发性物质进行分析,并通过主成分分析(PCA)和聚类分析(CA)对栀子花的香型进行判定和分类。结果表明,栀子花含有52种挥发性物质,利用PCA法可将52种物质简化至7个主成分,累计方差贡献率高达90.453%,可以反映大部分香气信息;通过PCA和CA将12个栀子花样品划分为2个集群:花蕾期Ⅰ的山栀子、花蕾期Ⅰ的重瓣栀子以及3个花期的水栀子归于1个集群;盛开期Ⅱ和衰败期Ⅲ的山栀子、盛开期Ⅱ和衰败期Ⅲ的重瓣栀子以及3个花期的狭叶栀子归于1个集群,归于1个集群则代表其栀子花香型相似。本研究结果为栀子花混合采摘以及后期开发利用提供了有力参考。  相似文献   

19.
In this study, the in vitro low-density lipoprotein oxidation model was used to assess the relative antioxidant activity of the polyphenolic beverages tea, coffee, and cocoa on a cup-serving basis. The beverages were prepared as 0.7-2.5% soluble coffee and 1.5-3.5% cocoa; teas (green, black, or herbal) were prepared as one tea bag infused over 5 min in 220 mL of hot water. Under these standard cup serving conditions, the antioxidant activity as determined by the lag time was in the range of 292-948 min for coffee, 217-444 min for cocoa, 186-338 min for green tea, 67-277 min for black tea, and 6-78 min for herbal tea. Addition of milk did not alter the antioxidant activity. The influence of coffee bean source and degree of roasting was further investigated. Green coffee beans of Robusta coffee exhibited a 2-fold higher antioxidant activity than Arabica coffee, but after roasting this difference was no longer significant. In conclusion, these commonly consumed beverages have a significant antioxidant activity, the highest being soluble coffee on a cup-serving basis.  相似文献   

20.
Eucalyptus growth was evaluated in five compost-based substrates formulated with different proportions of sewage sludge, coffee husk, peat, chicken manure, cattle manure, pine bark, sawdust, and coconut fiber, compared to two commercial substrates (CS). Organic wastes compost-based substrates (OWS) and CS were characterized regarding the available contents of macro and micronutrients, sodium (Na+), pH, electrical conductivity (EC), and bulk density (BD). Substrate attributes and eucalyptus biomass production were submitted to principal component analysis (PCA) to detect patterns of clustering. The different proportions of organic wastes influenced the physico-chemical characteristics of OWS and, consequently, the eucalyptus biomass production. The highest biomass was observed in one of the CS that is rich in available boron (B) and calcium (Ca), less concentrated in most of the nutrients and with low EC and Na+ contents. The PCA allowed the verification that B availability was the attribute that explained most of the variation in eucalyptus biomass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号