首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Invisibility to electromagnetic fields has become an exciting theoretical possibility. However, the experimental realization of electromagnetic cloaks has only been achieved starting from simplified approaches (for instance, based on ray approximation, canceling only some terms of the scattering fields, or hiding a bulge in a plane instead of an object in free space). Here, we demonstrate, directly from Maxwell equations, that a specially designed cylindrical superconductor-ferromagnetic bilayer can exactly cloak uniform static magnetic fields, and we experimentally confirmed this effect in an actual setup.  相似文献   

2.
We have determined the upper critical field Hc2 as a function of hole concentration in bismuth-based cuprates by measuring the voltage induced by vortex flow in a driving temperature gradient (the Nernst effect), in magnetic fields up to 45 tesla. We found that Hc2 decreased steeply as doping increased, in both single and bilayer cuprates. This relationship implies that the Cooper pairing potential displays a trend opposite to that of the superfluid density versus doping. The coherence length of the pairs xi(0) closely tracks the gap measured by photoemission. We discuss implications for understanding the doping dependence of the critical temperature Tc0.  相似文献   

3.
Electronic Raman scattering from high- and low-energy excitations was studied as a function of temperature, extent of hole doping, and energy of the incident photons in Bi2Sr2CaCu2O8+/-delta superconductors. For underdoped superconductors, short-range antiferromagnetic (AF) correlations were found to persist with hole doping, and doped single holes were found to be incoherent in the AF environment. Above the superconducting (SC) transition temperature Tc, the system exhibited a sharp Raman resonance of B1g symmetry and energy of 75 millielectron-volts and a pseudogap for electron-hole excitations below 75 millielectron-volts, a manifestation of a partially coherent state forming from doped incoherent quasi particles. The occupancy of the coherent state increases with cooling until phase ordering at Tc produces a global SC state.  相似文献   

4.
Magnetic resonance imaging and spectroscopy systems use coils, either singly or as arrays, to intercept radio-frequency (RF) magnetic flux from regions of interest, often deep within the body. Here, we show that a new magnetic material offers novel possibilities for guiding RF flux to the receiver coil, permitting a clear image to be obtained where none might otherwise be detectable. The new material contains microstructure designed according to concepts taken from the field of photonic band gap materials. In the RF range, it has a magnetic permeability that can be produced to specification while exhibiting negligible direct-current magnetism. The latter property is vital to avoid perturbing the static and audio-frequency magnetic fields needed to obtain image and spectral data. The concept offers a new paradigm for the manipulation of RF flux in all nuclear magnetic resonance systems.  相似文献   

5.
We obtained nuclear magnetic resonance (NMR) spectra of liquids in fields of a few microtesla, using prepolarization in fields of a few millitesla and detection with a dc superconducting quantum interference device (SQUID). Because the sensitivity of the SQUID is frequency independent, we enhanced both signal-to-noise ratio and spectral resolution by detecting the NMR signal in extremely low magnetic fields, where the NMR lines become very narrow even for grossly inhomogeneous measurement fields. In the absence of chemical shifts, proton-phosphorous scalar (J) couplings have been detected, indicating the presence of specific covalent bonds. This observation opens the possibility for "pure J spectroscopy" as a diagnostic tool for the detection of molecules in low magnetic fields.  相似文献   

6.
The polymorphism of sulfur has been investigated by static and dynamic methods up to 500 degrees C at 35 kilobars and up to 350 degrees C at 100 kilobars. The melting curve of sulfur to 31 kilobars and phase boundaries of the so-called "4.04-angstrom phase" have been determined. Evidence has been obtained for phase fields of nine new high-pressure forms of sulfur.  相似文献   

7.
We report atomic-scale characterization of the pseudogap state in a high-Tc superconductor, Bi2Sr2CaCu2O(8+delta). The electronic states at low energies within the pseudogap exhibit spatial modulations having an energy-independent incommensurate periodicity. These patterns, which are oriented along the copper-oxygen bond directions, appear to be a consequence of an electronic ordering phenomenon, the observation of which correlates with the pseudogap in the density of electronic states. Our results provide a stringent test for various ordering scenarios in the cuprates, which have been central in the debate on the nature of the pseudogap and the complex electronic phase diagram of these compounds.  相似文献   

8.
A variety of recent experiments on both the static and the dynamic properties of vortices and flux-line lattices in the mixed state of the copper oxide superconductors are discussed. The experiments are of two basic types: (i) experiments that image the magnetic flux patterns either with magnetic decoration or neutrons and give information about static structures, and (ii) experiments that explore the dynamics of vortices either through the resistivity or other electrodynamic responses of the material. Results of these experiments argue in favor of the existence of a true phase transition in the high-field vortex state from a low-temperature superconducting vortex glass phase into a disordered high-temperature vortex fluid phase. The vortex glass phase transition model does a good job of explaining high-precision measurements of the dynamics at the transition. At low fields and temperatures, very long range hexatic order in the flux-line lattice is observed.  相似文献   

9.
Electronic phases with symmetry properties matching those of conventional liquid crystals have recently been discovered in transport experiments on semiconductor heterostructures and metal oxides at millikelvin temperatures. We report the spontaneous onset of a one-dimensional, incommensurate modulation of the spin system in the high-transition-temperature superconductor YBa2Cu3O6.45 upon cooling below approximately 150 kelvin, whereas static magnetic order is absent above 2 kelvin. The evolution of this modulation with temperature and doping parallels that of the in-plane anisotropy of the resistivity, indicating an electronic nematic phase that is stable over a wide temperature range. The results suggest that soft spin fluctuations are a microscopic route toward electronic liquid crystals and that nematic order can coexist with high-temperature superconductivity in underdoped cuprates.  相似文献   

10.
After 3 years and 31 close flybys of Titan by the Cassini Orbiter, Titan was finally observed in the shocked solar wind, outside of Saturn's magnetosphere. These observations revealed that Titan's flow-induced magnetosphere was populated by "fossil" fields originating from Saturn, to which the satellite was exposed before its excursion through the magnetopause. In addition, strong magnetic shear observed at the edge of Titan's induced magnetosphere suggests that reconnection may have been involved in the replacement of the fossil fields by the interplanetary magnetic field.  相似文献   

11.
The ocean is an electrically conducting fluid that generates secondary magnetic fields as it flows through Earth's main magnetic field. Extracting ocean flow signals from remote observations has become possible with the current generation of satellites measuring Earth's magnetic field. Here, we consider the magnetic fields generated by the ocean lunar semidiurnal (M2) tide and demonstrate that magnetic fields of oceanic origin can be clearly identified in satellite observations.  相似文献   

12.
Plant stress caused by exposure to magnetic fields (MF) induces modifications at molecular level, particularly in DNA synthesis, structure, and function. The objective of this study was to determine the effect of various doses of non-ionizing radiation of magnetic field on date palm (Phoenix dactylifera L.) based on DNA content. Date palm seedlings (cv. Khalas) established for 2 weeks on filter paper were subjected to static magnetic field and alternating magnetic field. Static magnetic fields (SMF) were applied at 10, 50 and 100 mT for 30, 60, 120, 180, 240 and 360 min; while alternating magnetic field applied by magnetic resonance imaging (MRI) at 1500 mT for 1, 5, 10 and 15 min. The seedlings were grown in potting soil following exposure for 4 weeks after which DNA was extracted from leaves and its content was determined. Generally, the exposure to magnetic field caused reduction in the content of DNA. The lowest exposure time tested, 30 rain, was sufficient to induce reduction in DNA content. This was true even at the lowest intensity, 10 mT. This dosage caused the DNA content to decrease from 49 ~tg/g to 45 pg/g. Further, increase of the exposure duration to 60 min caused significant reduction in the DNA content, 36 μg/g. At intensities higher than 10 mT, DNA content decreased significantly even at the shortest exposure of 30 min. At 50 and 100 mT, significant decrease in DNA content was also noticed in response to 30 min exposure; whereas the level of DNA increased after 1 min of MRI exposure to 52 ~g/g, then decreased after 5 min to 46 ~g/g. However, longer durations caused no further decrease in the DNA content. These observations indicate that magnetic fields interact with DNA processes, probably by inhibiting synthesis or stimulating degradation of DNA. This response merits further exploration as a mutational agent for date palm genetic manipulation.  相似文献   

13.
The nature of the pseudogap phase of cuprate high-temperature superconductors is a major unsolved problem in condensed matter physics. We studied the commencement of the pseudogap state at temperature T* using three different techniques (angle-resolved photoemission spectroscopy, polar Kerr effect, and time-resolved reflectivity) on the same optimally doped Bi2201 crystals. We observed the coincident, abrupt onset at T* of a particle-hole asymmetric antinodal gap in the electronic spectrum, a Kerr rotation in the reflected light polarization, and a change in the ultrafast relaxational dynamics, consistent with a phase transition. Upon further cooling, spectroscopic signatures of superconductivity begin to grow close to the superconducting transition temperature (T(c)), entangled in an energy-momentum-dependent manner with the preexisting pseudogap features, ushering in a ground state with coexisting orders.  相似文献   

14.
We present studies of the electronic structure of La(2-x)BaxCuO4, a system where the superconductivity is strongly suppressed as static spin and charge orders or "stripes" develop near the doping level of x = (1/8). Using angle-resolved photoemission and scanning tunneling microscopy, we detect an energy gap at the Fermi surface with magnitude consistent with d-wave symmetry and with linear density of states, vanishing only at four nodal points, even when superconductivity disappears at x = (1/8). Thus, the nonsuperconducting, striped state at x = (1/8) is consistent with a phase-incoherent d-wave superconductor whose Cooper pairs form spin-charge-ordered structures instead of becoming superconducting.  相似文献   

15.
There is increasing interest in the possible existence of large eddies or "Rossby waves" in Sun's convection zone and photosphere. It is shown that many flows of this type, driven by an equator-pole temperature diffrence, act as hydromagnetic dynamos to produce magnetic fields that periodically reverse. The periods and field amplitudes agree with solar phenomena within an order of magnitude.  相似文献   

16.
The magnetometer and electron reflectometer experiment on the Lunar Prospector spacecraft has obtained maps of lunar crustal magnetic fields and observed the interaction between the solar wind and regions of strong crustal magnetic fields at high selenographic latitude (30 degreesS to 80 degreesS) and low ( approximately 100 kilometers) altitude. Electron reflection maps of the regions antipodal to the Imbrium and Serenitatis impact basins, extending to 80 degreesS latitude, show that crustal magnetic fields fill most of the antipodal zones of those basins. This finding provides further evidence for the hypothesis that basin-forming impacts result in magnetization of the lunar crust at their antipodes. The crustal magnetic fields of the Imbrium antipode region are strong enough to deflect the solar wind and form a miniature (100 to several hundred kilometers across) magnetosphere, magnetosheath, and bow shock system.  相似文献   

17.
High-temperature cuprate superconductors display unexpected nanoscale inhomogeneity in essential properties such as pseudogap energy, Fermi surface, and even superconducting critical temperature. Theoretical explanations for this inhomogeneity have ranged from chemical disorder to spontaneous electronic phase separation. We extend the energy range of scanning tunneling spectroscopy on Bi(2+y)Sr(2-y)CaCu(2)O(8+x), allowing a complete mapping of two types of interstitial oxygen dopants and vacancies at the apical oxygen site. We show that the nanoscale spatial variations in the pseudogap states are correlated with disorder in these dopant concentrations, particularly that of apical oxygen vacancies.  相似文献   

18.
Neutron scattering has played a key role in the microscopic understanding of the static and dynamic properties of magnetic materials. Modulated magnetic structures first discovered in the late fifties can no longer be referred to as exotic; more than a hundred such phases have already been found in a variety of magnetic systems. Neutron and x-ray magnetic scattering have played a complementary role in the recent discovery and understanding of the modulated magnetic phases in rare earth metallic systems.  相似文献   

19.
The origin of the substantial magnetic fields that are found in galaxies and on even larger scales, such as in clusters of galaxies, is yet unclear. If the second-order couplings between photons and electrons are considered, then cosmological density fluctuations, which explain the large-scale structure of the universe, can also produce magnetic fields on cosmological scales before the epoch of recombination. By evaluating the power spectrum of these cosmological magnetic fields on a range of scales, we show here that magnetic fields of 10(-18.1) gauss are generated at a 1-megaparsec scale and can be even stronger at smaller scales (10(-14.1) gauss at 10 kiloparsecs). These fields are large enough to seed magnetic fields in galaxies and may therefore have affected primordial star formation in the early universe.  相似文献   

20.
Before direct exploration by spacecraft, Jupiter was the only planet other than Earth that was known to have a magnetic field, as revealed by its nonthermal radio emissions. The term "magnetosphere" did not exist because there was no clear concept of such an entity. The space age provided the opportunity to explore Earth's neighborhood in space and to send instruments to seven of the other eight planets. It was found that interplanetary space is pervaded by a supersonic "solar wind" plasma and that six planets, including Earth, have magnetic fields of sufficient strength to deflect this solar wind and form a comet-shaped cavity called a magnetosphere. Comparative study of these magnetospheres aims to elucidate both the general principles and characteristics that they share in common, and the specific environmental factors that cause the important, and sometimes dramatic, differences in behavior between any two of them. A general understanding of planetary magnetospheres holds the promise of wide applicability in astrophysics, which, for the indefinite future, must rely solely on remote sensing for experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号