首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
钢纤维活性粉末混凝土配合比试验研究   总被引:1,自引:1,他引:0  
通过钢纤维活性粉末混凝土(RPC)的配制试验,研究水胶比、高效减水剂、硅灰、钢纤维掺量及砂子种类对RPC抗折、抗压强度的影响规律。结果表明:钢纤维的掺入使得试件破坏时裂而不散,试件的延性性能及强度指标都得到了明显的提高。  相似文献   

2.
活性粉末混凝土(Reactive Powder Concrete,简称RPC)是一种具有超高性能和超高强度的水泥基复合材料。通过研究热养护温度(70、80、90℃)、热养护时间(48、729、6 h)及标准养护等养护方法对活性粉末混凝土立方体试块抗压和劈裂抗拉强度的影响,依据强度指标及考虑养护简便、经济,确定适合工程实践的养护方法。  相似文献   

3.
采用Φ74变截面Split Hopkinson Pressure Bar (SHPB)对70×500的3种钢纤维(钢棉、镀铜钢纤维、端钩钢纤维)种类及5种配比的活性粉末混凝土(RPC),进行同一种应变率下动态层裂强度的实验测试.实验数据处理,利用试样上测得的加载压缩波,直接计算绘出靠近自由端面处最大拉伸应力的位置峰值梯度曲线.综合其静态拉伸强度,发现相同体积含量的3种钢纤维中,镀铜钢纤维对结构体层裂强度的加强最为明显.另外得出镀铜钢纤维与端钩钢纤维添加体积含量最优配比均为4%.  相似文献   

4.
为研究活性粉末混凝土(RPC)材料的结构性能,设计了三根活性粉末混凝土无粘结预应力叠合梁,对其受弯性能进行了研究,得到了关于截面应变分布、钢绞线应力增量、中点挠度等有效的试验数据以及试验梁的裂缝分布和破坏特征.试验结果表明,RPC叠合梁的截面应变符合平截面假定;裂缝分布仍然具有明显的纯无粘结预应力梁的裂缝分布特征;荷载-挠度曲线为两直线段形状,且有效预应力越大,试验梁延性越差,破坏时挠度越小,荷载-预应力增量曲线形状与荷载-挠度曲线形状相似,呈两直线段.文中还建立了试验梁的开裂弯矩和刚度计算公式,理论计算结果与试验结果吻合良好.  相似文献   

5.
活性粉末混凝土(RPC)在热养护条件下几乎没有收缩,并且在长期荷载作用下的徐变也很小,本文探讨了RPC在大跨梁式桥中应用的可能性.以主梁的应力和结构的刚度为控制目标,拟定了一座主跨为200 m的RPC连续刚构桥,通过与同跨度预应力普通混凝土刚构桥的比较,讨论了不同主梁材料对大跨度连续刚构桥静力性能、稳定性及抗震性能的影响.分析结果表明:由于RPC具有较高的韧性及强度,在不降低结构正常使用性能的前提下,RPC主梁比普通混凝土主梁减轻自重达53%,其主梁截面的几何尺寸往往是由结构的刚度而不是强度控制;同时更轻的结构自重降低了惯性荷载,从而改善了整个结构特别是桥墩的抗震性能;并且桥梁上部结构自重的减轻提高了结构抵抗使用荷载的有效性,增大了桥梁结构的跨径.  相似文献   

6.
活性粉末混凝土配合比优化试验研究   总被引:1,自引:1,他引:0  
活性粉末混凝土(Reactive Powder concrete,简称RPC)是一种具有超高性能和超高强度的水泥基复合材料。通过活性粉末混凝土(RPC)的配制试验,采用单因素优化方法,系统地研究水胶比、高效减水剂和硅灰的掺量对RPC抗折、抗压强度的影响规律。在考虑强度指标、造价及施工方便的基础上,提出了活性粉末混凝土最优配合比:水胶比(W/B)为0.21,硅灰水泥比(SF/C)为0.21,减水剂(SU/B)为3%。  相似文献   

7.
针对碳纤维增强塑料CFRP(Carbon Fiber Reinforced Polymer/Plastics)作为预应力筋或拉索时的锚固问题,提出了以活性粉末混凝土RPC(Reactive Powder Concrete)作为粘结介质的粘结式锚具.静载试验详细研究了CFRP筋的表面形状、锚固长度、根数和间距以及套筒内壁倾角等参数的变化对RPC的锚固性能的影响.试验结果表明,CFRP筋的表面形状对锚固性能的影响最为显著;对于抗拉强度不大于3 000 MPa的表面压纹CFRP筋,其临界锚固长度约为20倍CFRP筋直径;双根压纹CFRP筋锚固时的合理筋间距不宜小于1倍CFRP筋直径;本文提出的平均粘结强度和临界锚固长度计算公式具有较好的适用性.  相似文献   

8.
减水剂对钢纤维混凝土技术性能的影响   总被引:1,自引:0,他引:1  
本试验用42.5普通硅酸盐水泥、钢纤维等材料,采用常规工艺配制CF40混凝土.通过对比法对试验数据进行分析,加入减水剂后,抗压强度增幅降低,即随着钢纤维掺量的增加,抗压强度增加的幅度很小,小于6%;而抗拉强度增幅有较大增高,增幅最大值达到33.3%,此时的钢纤维掺量为1.4%.  相似文献   

9.
活性粉末混凝土的组成成分复杂,用来预测传统混凝土强度的鲍罗米公式不能准确预测活性粉末混凝土的强度。提取了影响其强度的主要因子,利用遗传神经网络方法来对活性粉末混凝土的强度进行预测。结果表明:遗传神经网络可以较为准确地预测其强度。该方法是预测混凝土强度的科学理论分析方法,具有一定实践意义。  相似文献   

10.
通过配制56组70.7 mm×70.7 mm×70.7 mm的活性粉末混凝土立方体试块,研究了水胶比和石英砂、硅灰、矿渣粉、钢纤维品种与掺量及养护制度对活性粉末混凝土的强度和流动度的影响.根据试验结果优选出了6组强度和流动性都比较好的活性粉末混凝土配合比,初步提出了活性粉末混凝土配合比计算方法.  相似文献   

11.
钢纤维活性粉末混凝土在高温下会发生爆裂破坏,使其在工程中的应用受到严重制约。从爆裂起始温度及爆裂持续时间、爆裂破坏形态几方面对钢纤维活性粉末混凝土的高温爆裂性能进行了研究。对比分析了水胶比、含水率、升温速度和试件尺寸对钢纤维活性粉末混凝土的高温爆裂的影响;并从蒸汽压力机理及热应力机理两方面分析了活性粉末混凝土高温下的爆裂机理。通过这些对比分析,形成了对钢纤维活性粉末混凝土高温爆裂性能的初步认识。  相似文献   

12.
依据试验过程与结果,讨论了钢纤维混凝土的配合比设计理论,分析了钢纤维混凝土作为铺面结构材料的力学和物理性质。结果认为钢纤维可以显著提高混凝土的抗弯拉强度、韧性和耐久性。  相似文献   

13.
以微晶纤维素、N,N-二甲基乙酰胺(DMAc)、无水氯化锂(Li Cl)为原料制备纤维素凝胶。为探究不同填料对纤维素丝力学及热稳定性能的影响,通过加入氧化石墨烯(GO)、纳米纤维素(NCC)、无水氯化钙(Ca Cl2)等对其进行补强,并将其制备成纤维素丝。用万能试验机、热重分析(TGA)分别对纤维素丝力学性能及热稳定性能进行研究;用红外光谱、原子力显微镜等分析方法对其结构进行表征。结果表明,GO、Ca Cl2和NCC等填料可以增强纤维素丝的力学强度,但GO和NCC会使纤维素丝的热稳定性能稍有降低。其中采用无水Ca Cl2补强纤维素丝的性能最为优越。此时的纤维素丝表面光滑,存在的缺陷少,其拉伸强度和断裂伸长率分别为125.2 MPa、6.3%。  相似文献   

14.
采用变截面分离式Hopkinson压杆(Split Hopkinson Pressure Bar, SHPB),对普通沥青混凝土、玻璃纤维沥青混凝土、木质素纤维沥青混凝土和3个掺量的聚酯纤维沥青混凝土进行了3种应变率的冲击压缩试验研究.试验结果与分析表明,沥青混凝土具有应变率增强效应,其动力抗压强度及韧性指标随着应变率的增大而增大;但是,纤维沥青混凝土动力抗压强度及韧性指标增长率随应变率提高有递减趋势;纤维含量对沥青混凝土在动力条件下的动力行为有显著影响,聚酯纤维掺量为0.25%的沥青混凝土动力抗压强度及韧性指标最优;3种纤维都可以增加材料的动力抗压强度及韧性指标,聚酯纤维增强沥青混凝土抗压强度最佳,木质素纤维次之,玻璃纤维最差;聚酯纤维提高沥青混凝土韧性指标最佳,玻璃纤维次之,木质素纤维最差.  相似文献   

15.
本文通过试验,对发生冲切破坏的钢纤维砼方板的变形性能进行了探讨.由于纤维的增强阻裂作用,板的裂缝推迟产生,裂后特性改善,破坏呈现良好延性  相似文献   

16.
在配筋钢纤维高强混凝土薄壁箱形截面纯扭构件试验研究的基础上,应用空间软化桁架理论,结合钢纤维高强混凝土本构关系及其软化系数方程,编制了软化桁架模型分析程序,并对试验构件进行了全过程分析.在考虑钢纤维高强混凝土抗拉强度作用时,能较好地模拟试验构件的荷载-变形全过程,不仅能较准确地得到极限扭矩,而且可以获得开裂扭矩,其结论也得到相关钢纤维高强混凝土纯扭构件试验结果的证实.  相似文献   

17.
低掺量油菜秸秆纤维混凝土力学性能试验研究   总被引:1,自引:1,他引:0  
为了探索秸秆纤维对混凝土力学性能的影响机理,研究了在水灰比为0.50、强度等级为C35条件下,不同油菜秸秆纤维长度和油菜秸秆体积掺量的混凝土力学性能。通过测试混凝土的抗压、劈裂抗拉、抗折强度,分析油菜秸秆纤维对混凝土力学性能的影响规律,并使用扫描电镜验证分析结果。结果表明:混凝土的抗压、劈裂抗拉、抗折强度随着油菜秸秆纤维长度的增加和掺量的提高均呈现先增大后减小的趋势;当纤维长度30~40 mm,体积掺量0.1%时,抗压强度为47.43 MPa,比对照组提高16.45%,当纤维长度20~30 mm,体积掺量0.2%时,混凝土的劈裂抗拉和抗折强度为3.71 MPa、9.1 MPa,比对照组提高9.12%、6.64%,扫描电镜对比观察0.2%和0.4%纤维体积掺量的混凝土内部结构,证实0.2%掺量混凝土的纤维-混凝土交界面无大面积孔隙,纤维上水泥浆体均匀分布,与混凝土间形成良好的吸附黏结力与机械啮合力,混凝土内部纤维填充了有害孔隙,无纤维结团现象,减少了应力集中,增强了混凝土的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号