首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of simulated acid fog (SAF) and ozone (O3) stress on the growth and physiology of beech (Fagus crenata) saplings were investigated. Three-year-old beech saplings were exposed to SAFs of pH 3 and pH 5 (control) during May 2007 to July 2008. In each SAF treatment group, half of the saplings were exposed to 60 ppb of O3 during September 2007 to July 2008. In comparison to the control saplings, those from the pH 3 treatment had lower total plant biomasses, epicuticular wax amounts, Ca2+ concentrations in their leaves, and lower starch concentrations in their leaves and roots. The effect of O3 was significant only for the starch concentration in the roots, but the O3 exposure also negatively affected the growth and physiology of beech saplings. Results show that acid fog exerts various severe effects, and that both chronic acid fog and O3 exposure suppressed the physiological functions of beech saplings.  相似文献   

2.
The basal area and height growth of trees and saplings in silver fir–European beech single stem selection forest were studied with regard to their social status and crown parameters of size, coverage, shading and vitality. On 24 permanent research plots (20 m × 20 m each) all trees [diameter at breast height (dbh) ≥10 cm] and saplings (≥1.3 m tall and dbh <10 cm) were surveyed. Repeated measurements of dbh (N = 1,608) and height (N = 1,135) 10 years apart enabled the calculation of annual basal area increment (BAI) of trees and saplings, and annual height (HI) increment of saplings. To obtain the growth characteristics for individual trees and saplings, their social status and crown parameters were assessed by rank. In the multivariate general linear model for BAI, social status, crown size and crown coverage of individuals as the predictors, and dbh2 as the covariate, explained 70% of total variability. Similarly, social status, crown size, crown coverage and crown shading had a significant impact on the HI of saplings, explaining 70% of total variability. Among the observed variables, social status determined according to the individual’s position in vertical stand structure was, in addition to dbh, the most important predictor for both BAI and HI. Significant differences were observed between the BAI and HI models for the main tree species (European beech and silver fir), indicating their different growth characteristics. The applied method could be used as a supplement to the more widely used approaches for studying basal area and height growth of individual trees in selection forest stands.  相似文献   

3.
Since the year 2000 mature beech and spruce trees were treated in a field experiment with double ambient ozone concentrations. Elevated ozone had no influence on average single leaf biomass and there were also no ozone effects on leaf nutrient concentrations in climatic normal years. However, the extraordinary dry summer 2003 triggered significant differences between the fumigated and control trees. For beech in the year after the drought event the control trees surprisingly had significantly lower foliar levels of K and P than in former years, whereas the ozone exposed trees showed no significant nutritional effects. There are indications, that the trees exposed to double ambient ozone were already adapted to higher ozone values, whereas the control trees experienced extraordinary high ambient ozone concentrations in the dry and sunny summer 2003. For spruce in autumn 2003 and 2004 ozone treated trees had significantly higher foliar levels of K in current year needles than control trees, an effect which cannot be thoroughly interpreted yet on the basis of the dataset available. This article belongs to the special issue „Growth and defence of Norway spruce and European beech in pure and mixed stands“.  相似文献   

4.
Saplings of Fagus sylvatica and Picea abies were grown under conditions of intra and interspecific competition in a 2-year phytotron study under combinations of ambient and elevated ozone (+O3 which is 2 × O3, but <150 nl l−1) as well as carbon dioxide concentrations (+CO2 which is amb. CO2 + 300 μl CO2 l−1) in a full factorial design. Saplings were analysed for various mineral nutrients in different plant organs as well as biomass production and crown development. The study was based on the assumption that nutritional parameters important for growth and competitiveness are affected by stress defence under limiting nutrient supply. The hypotheses tested were (1) that nutrient uptake-related parameters (a) as well as efficiencies in nutrient use for above-ground competition (b) of beech rather than spruce are impaired by the exposure to elevated O3 concentrations, (2) that the efficiency in nutrient uptake of spruce is enhanced by elevated CO2 concentrations in mixed culture, and (3) that the ability to occupy above-ground space at low nutrient cost is co-determinant for the competitive success in mixed culture. Clear nitrogen deficiencies were indicated for both species during the 2-year phytotron study, although foliar nitrogen-biomass relationships were not so close for spruce than for beech. O3 stress did not impair nutrient uptake-related parameters of beech; thus hypothesis (1a). was not supported. A negative effect of elevated O3 (under amb. CO2) on the N and P based efficiencies in above-ground space occupation (i.e. lower crown volume per unit of N or P invested in stems, limbs and foliage) of beech supported hypothesis (1b). It appeared that ozone stress triggered a nutrient demand for stress defence and tolerance at the expense of above-ground competition (trade-off). Crown volume of beech under O3 stress was stabilized in monoculture by increased nutrient uptake. In general, the +CO2-treatment was able to counteract the impacts of 2 × O3. Elevated CO2 caused lower N and S concentrations in current-year foliage of both tree species, slightly higher macronutrient amounts in the root biomass of spruce, but did not increase the efficiencies in nutrient uptake of spruce in mixed culture. Therefore hypothesis (2) was not supported. At the end of the experiment spruce turned out to be the stronger competitor in mixed culture as displayed by its higher total shoot biomass and crown volume. The amounts of macronutrients in the above-ground biomass of spruce individuals in mixed culture distinctly exceeded those of beech, which had been strongly reduced by interspecific competition. The superior competitiveness of spruce was related to higher N and P-based efficiencies in above-ground space occupation as suggested in hypothesis (3). This article belongs to the special issue “Growth and defence of Norway spruce and European beech in pure and mixed stands”.  相似文献   

5.
Elevated concentrations of carbon dioxide ([CO2]) and ozone ([O3]) affect primary metabolism of trees in opposite ways. We studied their potential interactions on carbohydrate concentrations and contents. Two hypotheses currently under debate were tested. (1) Stimulation of primary metabolism by prolonged exposure to elevated [CO2] does not compensate for the adverse effects of O3 on carbohydrate accumulation and biomass partitioning to the root. (2) Growth in a mixed-species planting will repress plant responses to elevated [O3] and [CO2] relative to conditions in a monoculture. To this end, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.) saplings grown under conditions of intra- and interspecific competition were pre-acclimated for 1 year to ambient or elevated [CO2]. In the following 2-year phytotron study, trees were exposed to factorial combinations of ambient and elevated [O3] and [CO2]. The total carbohydrate content (sugar and starch) of spruce was greater in plants exposed to elevated [CO2] than in plants exposed to ambient [CO2]. In beech, the opposite response was observed, especially when this species was grown in combination with spruce. Overall, the data did not support Hypothesis 1, because the adverse effects of O3 were counteracted by elevated [CO2]. Support for Hypothesis 2 was species-dependent. In beech saplings, reduction of carbohydrates by elevated [O3] and stimulation by elevated [CO2] were repressed by competitive interaction with spruce. In contrast, in spruce, stimulation of carbohydrates by elevated [CO2] was similar in mono- and mixed cultures. Thus Hypothesis 2 was supported for beech but not spruce. We conclude that, in juvenile beech and spruce, a 3-year exposure to elevated [CO2] counteracts the adverse effects of O3 on carbohydrate concentrations and contents. For beech, sensitivity to elevated [CO2] and [O3] was high in monoculture but was largely repressed by interspecific competition with spruce. In contrast, the response of spruce to perturbations of atmospheric chemistry was not significantly affected by either intra- or interspecific competition.  相似文献   

6.
The reaction of young beech (Fagus sylvatica L.) and Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) saplings on competition of two types of vegetation—(1) gramineous with mainly Agrostis capillaries, Calamagrostis epigejos, Deschampsia flexuosa, and (2) small shrubs with mainly Rubus fruticosus and R. idaeus—on clear cuts on two sites was studied for 2 years. Half the sample saplings were released from competing vegetation by repeated herbicide applications. This treatment significantly raised the diameter increment in both species at the site with higher competition intensity, and more strongly after the removal of small shrubs than after the removal of grasses. Sapling length increment was not significantly affected. After being released from small shrubs, saplings of both species developed a smaller specific fine root length (cm g−1 fine root biomass) than unreleased saplings during the second year which was characterized by low rainfall. Root nitrogen concentration significantly increased after weed control in both vegetation types. Sapling foliar content of main nutritional elements was negatively related to dry mass and total chemical content of surrounding ground vegetation. Based on these results, a release from ground vegetation could be a useful tool to improve growth of planted beech and Douglas-fir saplings on sites with well-developed small shrubs competition (mainly by Rubus fruticosus and R. idaeus), or under fairly dry conditions.  相似文献   

7.
Aboveground and belowground biomass of 15-year-old under-planted European beech seedlings (Fagus sylvatica L.) in Norway spruce stand were studied along a light gradient in three plots, in the northern part of Slovenia. Differences in soil water content, aboveground and fine root biomass distribution were confirmed between studied plots. Light had significant effect on the total biomass, root-shoot ratio (0.388 ± 0.076 under canopy, 0.549 ± 0.042 in the edge, 0.656 ± 0.047 in the open), specific root length (SRL) of fine beech roots (561.9 ± 42.2 under canopy, 664.3 ± 51.2 in the edge, 618.2 ± 72.8 in the open) and specific leaf area in beech, indicating morphological adjustment to shade. However, SRL of beech fine roots indicated no change between plots. The correlation between total aboveground and root biomass and light below the mature stand canopy was higher in the case of diffuse light intensity. Most fine roots of spruce were concentrated in the top (0–20 cm) soil layer. Beech fine roots under canopy and edge conditions were also concentrated in top (0–20 cm) soil layer and exhibited shift downwards to deeper soil horizons in open plot. Root proportion between beech and spruce changed with light toward beech with increasing light intensity for both fine and coarse roots.  相似文献   

8.
We have investigated the spatial regulation of the accumulation of enzymes involved in the biosynthesis of shikimate and lignin during differentiation of primary xylem from the apical meristem via procambium in hybrid aspen (Populus sieboldii x Populus grandidentata). Immuohistochemical staining revealed that, in the top part of shoots, lignification began in a single or just a few adjacent vessel elements and subsequently spread to neighboring cells. The spatial localization of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS), which is one of the key enzymes in the shikimate pathway, was tightly correlated with the cell-specific deposition of lignin in the primary xylem. We also found that the spatial localization of enzymes in the general phenylpropanoid pathway and in the lignin-specific pathway was closely associated with the cell-specific deposition of lignin and the accumulation of DAHPS. Our data suggest that enzymes that act in the shikimate, general phenylpropanoid, and lignin-specific pathways are initially produced and function coordinately in a single or a few adjacent elements at the start of primary xylem development.  相似文献   

9.
Two-year-old beech (Fagus sylvatica L.) saplings were planted directly in the ground at high density (100 per m(2)), in an experimental design that realistically mimicked field conditions, and grown for two years in air containing CO(2) at either ambient or an elevated (ambient + 350 ppm) concentration. Plant dry mass and leaf area were increased by a two-year exposure to elevated CO(2). The saplings produced physiologically distinct types of sun leaves associated with the first and second growth flushes. Leaves of the second flush had a higher leaf mass per unit area and less chlorophyll per unit area, per unit dry mass and per unit nitrogen than leaves of the first flush. Chlorophyll content expressed per unit nitrogen decreased over time in plants grown in elevated CO(2), which suggests that, in elevated CO(2), less nitrogen was invested in machinery of the photosynthetic light reactions. In early summer, the photosynthetic capacity measured at saturating irradiance and CO(2) was slightly but not significantly higher in saplings grown in elevated CO(2) than in saplings grown in ambient CO(2). However, a decrease in photosynthetic capacity was observed after July in leaves of saplings grown in CO(2)-enriched air. The results demonstrate that photosynthetic acclimation to elevated CO(2) can occur in field-grown saplings in late summer, at the time of growth cessation.  相似文献   

10.
In this study, the supply and input–output balances of phosphorus (P) were investigated for a 10-year-period at 85 long-term monitoring sites in German forest ecosystems under the European Level II programme. These sites encompass 23 European beech (Fagus sylvatica L.) stands, 9 oak stands comprised of common oak (Quercus robur L.) and/or sessile oak (Quercus petraea Liebl.), 20 Scots pine (Pinus sylvestris L.) and 33 Norway spruce (Picea abies H.Karst.) stands. We quantified P concentrations in needles and leaves, P inputs from the atmosphere, P outputs through leaching and harvesting, and total P in the soil and humus layers. The P concentrations in European beech leaves from two sites (>1 mg P g−1 dry weight), and in Norway spruce needles from four sites (>1.2 mg P g−1 dry weight), were deficient over several years. In contrast, the oak and Scots pine sites were well supplied with P. When P removal through harvesting was disregarded, P balances were positive or stable (median 0.21 kg P ha−1 a−1). With harvesting, balances were mostly negative (median −0.35 kg P ha−1 a−1), with long-term P removal from the forest ecosystems.  相似文献   

11.
In a field study, we measured saplings of beech, ash and maple growing in a fairly even-aged mixed-species thicket established by natural regeneration beneath a patchy shelterwood canopy with 3–60% of above canopy radiation reaching the saplings. Under low light conditions, maple and ash showed a slight lead in recent annual length increment compared with beech. With increasing light, ash and maple constantly gained superiority in length increment, whereas beech approached an asymptotic value above 35% light. A suite of architectural and leaf morphological attributes indicated a more pronounced ability of beech to adapt to shade than ash and maple. Beech displayed its leaves along the entire tree height (with a concentration in the middle crown), yielding a higher live crown ratio than ash and maple. It allocated biomass preferentially to radial growth which resulted in low height to diameter ratios, and expressed marked plagiotropic growth in shade indicating a horizontal light-foraging strategy. In addition, beech exhibited the highest specific leaf area, a greater total leaf area per unit tree height, a slightly greater leaf area index, and a greater plasticity to light in total leaf area. Ash and maple presented a “gap species” growth strategy, characterized by a marked and constant response in growth rates to increasing light and an inability to strongly reduce their growth rates in deep shade. In shade, they showed some plasticity in displaying most of their leaf area at the top of the crown to minimize self-shading and to enhance light interception. Through this, particularly, maple developed an “umbrella” like crown. These species-specific responses may be used for controlling the development of mixed-species regeneration in shelterwood systems.  相似文献   

12.
Several findings indicate an impact of ozone on stem diameter growth leaving the question unanswered, if and how the intra-annual growth pattern is changed. In this study the hypotheses are tested, that (1) ozone will alter the absolute growth and (2) alter and shift the period of growth activity within a year. Our data originates from the free air ozone fumigation experiment ‘Kranzberger Forst’ in a mixed stand of Norway spruce and common beech near Freising/Germany. Annual and intra-annual growth reactions of a sample of five adult beech and five spruce trees, exposed to double ambient ozone were examined and compared to the same number of untreated reference trees. Diameter increments were measured with plastic diameter girth bands and high-resolution, automatically logging micro-dendrometers, mounted at breast height (1.3 m). We used the increment data from the growth periods 2000 to 2005. The high-resolution micro-dendrometer data were examined by fitting a Weibull function to the standardized annual growth profiles to obtain curve parameters for statistical tests. We estimated the parameters ‘T’ which represents the point of time, when 63% of the annual diameter increment is performed and the parameter ‘m’, the Weibull module, which was used as an indicator for the span of time needed to complete the annual growth. The statistical significance of these curve parameters, together with the absolute diameter increment, was tested by use of mixed regression models. The analysis of the growth curve parameters revealed a significantly altered intra-annual growth pattern of both species induced by ozone. Spruce under ozone showed reduced absolute annual diameter increment and a preponed growth activity compared to untreated trees. Beech’s absolute diameter increment was not affected under ozone, but its growth activity was delayed. For both species, ozone fumigation did not alter the individual length of the annual growing season. These results are discussed with respect to drought, tree ring anatomy and tree allometry. The study shows that ozone is able to change growth behaviour of trees even if increment losses are not obvious. This article belongs to the special issue "Growth and defence of Norway spruce and European beech in pure and mixed stands".  相似文献   

13.
We developed a functional–structural plant model for Fagus crenata saplings and calculated annual photosynthetic gains to determine the influences of foliar phenology and shoot inclination on the carbon economy of saplings. The model regenerated the three-dimensional shoot structure and spatial and temporal display of leaves; we calculated the hourly light interception of each leaf with a detailed light model that allowed us to estimate hourly leaf photosynthetic gain taking leaf age into account. To evaluate the importance of simultaneous foliar phenology and slanting shoots in beech saplings, we calculated the photosynthetic budgets for saplings with contrasting foliar phenologies and shoot inclinations. In our simulations, we distinguished between simultaneous and successive foliar phenologies, upright and slanting shoot inclinations, and environments with and without a vertical gradient in light intensity. Other model parameters (including photosynthesis vs. light curve, leaf size, and leaf shape) were obtained directly from live beech saplings. With no vertical gradient in light intensity, modeled saplings with simultaneous foliar phenology and slanting shoots (as in live beech) had larger annual photosynthetic gains than saplings with other combinations of traits. Hence, simultaneous foliar phenology and slanting shoots are efficient ways to display leaves in the shaded forest understory light regime where beech saplings thrive. In the presence of vertical light gradients, which can occur in canopy gaps, saplings with upright shoots had larger annual photosynthetic gains than counterparts with slanting shoots. Although mean daily photosynthetic gains of saplings with successive foliar phenology were elevated by exposing leaves to strong light when young and productive, the annual photosynthetic budget of these saplings was reduced (compared to saplings with simultaneous foliar phenology) by their relatively short leaf lifespan. Overall, our results suggest that slanting shoots with simultaneous foliar phenology are particularly successful in shaded environments, where beech often dominates, because they appear to maximize the annual carbon budget by avoiding self-shading and extending leaf lifespans.  相似文献   

14.
Winter nitrogen use in deciduous species is largely uncharacterized. We investigated nitrate uptake in the fine roots of a deciduous oak (Quercus serrata Thunb. ex. Murray). We conducted a 15N-labeling experiment using saplings of Q. serrata in the winter. During three weeks of labeled nitrate application, the concentration of 15N in the fine roots increased significantly. The amount of nitrogen absorbed, as nitrate, was 1.16 ± 1.02 mg N g DW−1, equivalent to 7.6 ± 5.8% of the total nitrogen content. Our results indicate that Q. serrata saplings have significant potential for nitrate uptake in the fine roots in midwinter (i.e., in the absence of leaves). Although a significant amount of nitrogen applied as nitrate was accumulated, nitrate concentration in the fine roots remained low during the labeling period. Furthermore, significant nitrate reductase activity was detected. These data suggest that Q. serrata saplings can assimilate nitrate in the fine roots in midwinter.  相似文献   

15.
Rising temperature and tropospheric ozone (O(3)) concentrations are likely to affect carbon assimilation processes and thus the carbon sink strength of trees. In this study, we investigated the joint action of elevated ozone and temperature on silver birch (Betula pendula) and European aspen (Populus tremula) saplings in field conditions by combining free-air ozone exposure (1.2?×?ambient) and infrared heaters (ambient +1.2 °C). At leaf level measurements, elevated ozone decreased leaf net photosynthesis (P(n)), while the response to elevated temperature was dependent on leaf position within the foliage. This indicates that leaf position has to be taken into account when leaf level data are collected and applied. The ozone effect on P(n) was partly compensated for at elevated temperature, showing an interactive effect of the treatments. In addition, the ratio of photosynthesis to stomatal conductance (P(n)/g(s) ratio) was decreased by ozone, which suggests decreasing water use efficiency. At the plant level, the increasing leaf area at elevated temperature resulted in a considerable increase in photosynthesis and growth in both species.  相似文献   

16.
On the basis of nine Norway spruce (Picea abies (L.) Karst.) and ten European beech (Fagus sylvatica L.) thinning experiments in Germany, for which both residual and removed stock had been registered first during 1870, I scrutinize how moderate and heavy thinning from below (B-, C-grade) affects the production of merchantable volume compared with light thinning (A-grade). In relation to A-grade, cumulative merchantable volume (CV) of B- and C-grade amounts in average to 103–107% in juvenile and to 97–102% in mature Norway spruce stands. The corresponding findings for European beech are 101–106% and 94–102%. CV of individual stands varies between 89% and 130% for Norway spruce and 73% and 155% for European beech (CV of A-grade = 100%). These findings are substantiated by the relation between stand density (SDI) and periodic annual increment (PAI). On the B- and C-grade plots of spruce and beech, respectively, SDI was reduced down to 41–91% and 31–83% of the A-grade. When SDI is reduced in young stands, PAI follows a unimodal curve. Norway spruce’s PAI culminates in 109% if SDI is reduced to 59%; European beech’s PAI culminates in 123% when density is reduced to 50%. Whereas Norway spruce’s growth reacts most positively on thinning under poor site conditions and with increment reduction on favourable sites, European beech behaves oppositely. With stand development the culmination point of the unimodal relation moves towards maximum density, so that in older stands PAI follows the increasing pattern, which is the left portion of a unimodal curve. A model is presented which apparently unifies contradictory patterns of stand density–growth reactions by integrating relative stand density, average tree size and site fertility effects, and makes the findings operable for forest management.  相似文献   

17.
The physiological reaction to attack by the lachnid Phyllaphis fagi compared with non-infested control plants was examined in whole leaves and leaf phloem of beech (Fagus sylvatica) saplings as well as in beach seedlings cultivated in different nutrient substrates. The colonisation density of the lachnids on beech seedlings increased with improved nutrient supply. However, growth was not depressed to a comparable extent. Defence reactions were found at three hierarchic levels. Infested plants exhibited a strongly decreased amino acid/monosaccharide ratio in the entire leaf and leaf phloem. In addition, secondary plant defence substances were detected in beech saplings and lamma shoot leaves of beech seedlings. A systematic reaction, dependent on the infestation density of the lachnid was observed in the leaf phloem of the beech saplings.  相似文献   

18.
Strobilurus ohshimae is an edible mushroom, and it specifically forms its fruiting bodies on buried sugi (Cryptomeria japonica) twigs. In this research, we studied lignindegrading activity of S. ohshimae. We isolated 18 strains of S. ohshimae from various regions of Japan, and determined their lignin degradation rates on sugi wood meal medium. All the strains of S. ohshimae degraded approximately 6%–12% of sugi lignin in 30 days, and these lignin degradation rates were 1.5–3 times higher than those of Trametes versicolor, which is a typical lignin-degrading fungus. Among the three main lignin-degrading enzymes, activity of lignin peroxidase and manganese peroxidase was not observed, while 4340U/g of laccase was produced in 30 days. To investigate the effect of wood species on lignin degradation by S. ohshimae, the lignin degradation rate and laccase productivity on sugi wood meal medium were compared with those on beech (Fagus crenata). In T. versicolor, both lignin degradation rate and laccase productivity were higher on beech than on sugi. Conversely, in S. ohshimae, lignin degradation rate and laccase productivity were higher on sugi than on beech. Therefore, it was suggested that coniferous lignin is not always difficult to degrade for the fungi that inhabit softwood. Part of this article presented at the 54th Annual Meeting of the Japan Wood Research Society, Sapporo, August 2004  相似文献   

19.
The oak (Quercus robur L.) regeneration intensity was assessed in the core area of the Białowieża National Park (BNP) in Poland with respect to the selected ecological factors. The emphasis was placed on the response of oak regeneration to disturbances, including the large-scale dieback of spruce stands. Defining their effect could help predicting the role of oak in naturally developing lowland forest ecosystems in the European hemiboreal zone. The results of the study challenge the opinion that the ‘lime-oak-hornbeam forest’ is a ‘climax’ community, confirming a very poor regeneration represented by only two saplings taller than 0.5 m per hectare. By contrast, in spruce-dominated communities, from 49 to 848 taller saplings per hectare were found. The occurrence of saplings was associated with discontinuous canopy of late seral stage of stands, as well as with large gaps. Most of the best quality grown-up oak saplings developed in the immediate neighbourhood of spruce logs. The results of the research indicate that ‘lime-oak-hornbeam forest’ (Tilio-Carpinetum) should be rather perceived as a transient community, evolved from relict, culturally modified, oak woodlands. Because spruce had become a dominating species only after abandoning in mid-1800s the historical regime of anthropogenic disturbances (involving frequent forest fires), the observed phenomena related to the disintegration of spruce stands had probably no precedent over the last 500 years. To confirm whether the massive decline of spruce stands will finally result in the successful establishment of the new canopy oak generation, both in Białowieża and other forests of hemiboreal zone, further research is needed.  相似文献   

20.
Oksanen E 《Tree physiology》2003,23(9):603-614
Physiological responses of 4-year-old potted saplings of an O3-tolerant clone of Betula pendula Roth to short-term ozone (O3) exposure (one growing season) were compared with those of 6-year-old open-soil-grown trees of the same clone fumigated with O3 for six growing seasons. In the 2001 growing season, both groups of plants were exposed to ambient (control) and 1.6x ambient (elevated) O3 concentration under similar microclimatic conditions in a free air O3 exposure facility. Growth, net photosynthesis, stomatal conductance, stomatal density, visible foliar injury, starch and nutrient concentrations, bud formation and differences in O3 responses between lower, middle and upper sections of the canopy were determined. The potted saplings were unaffected by elevated O3 concentration, whereas the open-soil-grown trees showed a 3-38% reduction in shoot growth, a 22% reduction in number of overwintering buds, a 26-65% decrease in autumnal net photosynthesis, 30% and 20-23% reductions in starch and nitrogen concentrations of senescing leaves, respectively, and disturbances in stomatal conductance. The greater O3 sensitivity of open-soil-grown trees compared with potted saplings was a result of senescence-related physiological factors. First, a lower net photosynthesis to stomatal conductance ratio in open-soil-grown trees at the end of the season promoted O3 uptake and decreased photosynthetic gain, leading to the onset of visible foliar injuries. Second, decreased carbohydrate reserves may have resulted in deleterious carry-over effects arising from the reduced formation of over-wintering buds. Finally, the leaf-level O3 load was higher for open-soil-grown trees than for potted saplings because of slower leaf senescence in the trees. Thus, O3 sensitivity in European white birch increases with increasing exposure time and tree size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号