共查询到20条相似文献,搜索用时 75 毫秒
1.
2.
通过研究分析证明,黑龙江省碳储量约为9.994×109t,其中,森林植物和林地土壤碳储量占52.31%;黑龙江省有机碳净增长约为每年9.381×107t,其中,森林碳汇净增长占88.89%;黑龙江省有机碳净增长价值合人民币为每年2.523×1010元,其中,森林碳汇价值净增长为每年2.242×1010元。 相似文献
3.
依据大兴安岭森林资源统计数据,对2000年和2013年大兴安岭森林的碳储量与碳汇量进行了估算。结果表明:2000年森林碳储量为22 875.88万t,2013年森林碳储量为24 928.66万t,2000—2013年大兴安岭森林碳汇量为2 052.78万t,年均增加碳汇157.91万t,年均增长率为0.69%,吸收CO2量为7 526.86万t;预测到2020年,大兴安岭森林碳储量将达到26 865.34万t,森林碳汇量1 936.68万t,年增长率1.11%,可吸收CO2量达7 101.16万t。 相似文献
4.
通过对龙山林场人工林及天然林的碳储量及碳密度进行计量研究,结果表明10种林分类型固定二氧化碳总量为113.08万t,其中红松林为57 085.86t,落叶松林为94 395.86t、樟子松林为77 493.36t、云杉林为540.8t、柞树林为838 309.87t、白桦林为3 306.04t、山杨林为1 890.56t、椴树林为2 102.03t、软阔混交林为3 655.93t、硬阔混交林为52 011.58t;天然林碳密度平均为179.26t CO_2-e·hm~(-2),人工林碳密度平均为88.03tCO_2-e·hm~(-2),天然林碳密度比人工林高,是人工林的103.64%。 相似文献
5.
6.
选择大兴安岭杜香-兴安落叶松林、杜鹃-兴安落叶松林、柴桦-兴安落叶松林、草类-兴安落叶松林和藓类-兴安落叶松林5种原始林的林木、下木植被、枯落物、木质残体4种碳库层、林木各器官采用野外实地取样与室内实验分析相结合的方法分别进行碳密度和碳储量的研究。结果表明:1)林木器官碳密度大小序列为树干>树根>树皮>树枝>树叶,分别占林木总碳密度的54.89%,21.98%,10.76%,9.65%和2.72%。2)5种林分类型碳密度大小依次为草类-兴安落叶松林型(83.992 4 t/hm2)>杜鹃-兴安落叶松林型(54.788 8t/hm2)>藓类-兴安落叶松林型(50.612 1 t/hm2)>杜香-兴安落叶松林型(49.396 4 t/hm2)>柴桦-兴安落叶松林型(48.587 8 t/hm2),得出兴安落叶松原始林生态系统平均碳密度为57.475 5 t/hm2。3)研究区内兴安落叶松原始林生态系统总碳储量为2.840 3TgC,各碳库层的空间分布序列为林木层(2.054 3 TgC)>枯落物层(0.349 5 TgC)>下木植被层(0.231 6 TgC)>木质残体层(0.204 9 TgC),分别占生态系统总碳储量的72.33%,12.31%,8.15%和7.21%。 相似文献
7.
8.
根据2017年湖南省森林资源清查资料和野外实地调查实测数据,对湖南省阔叶林生态系统碳储量、碳密度的动态特征进行了研究。结果表明:湖南省阔叶林森林生态系统总碳贮量为505.17 TgC,其中乔木层、灌草层、枯落物和土壤层层分别为113.75 TgC、9.92 TgC、9.64 TgC和377.86 TgC,分别占阔叶林生态系统碳贮量的22.52%、1.96%、1.91%和73.61%;湖南省阔叶林森林生态系统碳密度为154.51 t·hm^2,各层碳密度的大小顺序为土壤层(113.74 t·hm-2)>乔木层(34.79 t·hm-2)>灌草层(3.03 t·hm-2)>枯落物层(2.95 t·hm-2)。在3种类型阔叶林中,乡土阔叶林生态系统碳贮量为485.56 TgC,所占全省阔叶林生态系统碳贮量的96.12%;乡土阔叶林生态系统碳密度最大,为154.72 t·hm-2,杨树林生态系统碳密度最小,为149.59 t·hm-2。在阔叶林各龄组中,中、幼龄林约占湖南省阔叶林生态系统碳贮量的67.13%,是阔叶林的主要碳库且固碳潜力巨大;湖南省阔叶林碳密度幼龄林、中龄林、近熟林和成过熟林的碳密度分别介于24.60~55.51 t·hm-2之间,具体表现为成过熟林(55.51 t·hm-2)>近熟林(47.51 t·hm-2)>中龄林(44.68 t·hm-2)>幼龄林(24.60 t·hm-2)。全省阔叶林生态系统空间分布表现为碳贮量呈现明显的湘西、湘南,湘中较低特征,而碳密度整体表现出洞庭湖流域地区大于其他地区的趋势。 相似文献
9.
相对准确地计量地带性森林碳库大小是估算区域森林碳汇潜力的前提。根据全市不同森林类型设置样地900个,运用样地清查法估算广州市森林生态系统碳储量和碳密度。结果表明:广州市森林生态系统碳储量为52.16 Tg C。其中,植被层和土壤层碳储量分别为21.97 Tg C和27.16 Tg C。碳储量空间分布主要集中在从化区和增城区;总碳储量的组成中,土壤层碳库比例最大(58%),其次为乔木层碳库比例(40%),而灌木层、草本层、凋落物层和细根(≤ 2.0 mm)的生物量比例大多在1%~2%;天然林碳储量与人工林接近,但是碳密度显著大于人工林(p < 0.05);不同林龄从小到大排序为:幼龄林、中龄林、近熟林、过熟林、成熟林;天然林以阔叶混和它软阔的碳储量最高,阔叶混和黎蒴的碳密度最高。人工林不同林型从大到小排序为:南洋楹 > 黎蒴 > 木荷 > 木麻黄 > 它软阔 > 阔叶混 > 湿地松。森林生态系统碳密度为178.03 t C hm-2,其中,植被层和土壤层碳密度分别为79.61 t C hm-2和98.42 t C hm-2。本研究全面计量了广州市森林生态系统碳库现状,这对评估该地区森林固碳潜力和指导碳汇林经营管理具有重要参考价值。 相似文献
10.
森林生态系统碳储量估测方法及其研究进展 总被引:13,自引:0,他引:13
森林生态系统作为陆地生态系统最大的碳库, 其碳交换对全球碳平衡有着重要影响, 研究其碳储量具有重要的科研和社会意义。文中阐述了森林生态系统碳储量研究进展及估测方法, 并展望了未来森林生态系统碳研究的主要方面。 相似文献
11.
12.
川西退耕还林地苦竹林碳密度、碳贮量及其空间分布 总被引:1,自引:0,他引:1
利用标准样方法研究了退耕还林地苦竹林碳素密度和碳贮量及其空间分布。结果表明:苦竹不同器官碳素密度波动在0.348 498~0.518 63gC0/g,按碳素密度高低排列依次为竹秆>竹蔸>竹鞭>竹枝>竹根>竹叶;枯落物碳素含量为0.341 655 gC0/g,土壤碳素密度由上至下呈下降趋势。碳贮量在苦竹不同器官中的分配以竹秆所占比例最大,为53.06%,其次为竹叶,占13.83%,占比例最小的是竹根,仅占3.14%;苦竹林生态系统中碳总贮量为135.808 110 t/hm2,其中乔木层为46.032 420 t/hm2,占33.9%,林下及其枯落物层为2.60 068 t/hm2,占1.91%。土壤层0~60 cm总计为87.175 0 t/hm2,占64.19%;退耕还林地苦竹林乔木层年固碳量约为8.142 t/(hm2.a)。 相似文献
13.
14.
人工林碳储量影响因素 总被引:7,自引:0,他引:7
人工林在固定大气CO2及减缓全球气候变化中扮演着十分重要的角色, 是实施碳减排计划最主要的媒介之一。人工林的碳汇作用被认为是减缓全球变化的一种可能机制和最有希望的选择而成为全球变化减缓研究的核心内容之一。人工林碳储量受自然条件、人类活动、林分状况等因素的影响。因此, 人工林碳储量动态及过程、人工林碳汇功能与人工林经营与管理、人工林碳汇与碳贸易等是未来全球变化和林业生态工程研究的重点内容。 相似文献
15.
采用多元线性回归和—元曲线方式拟合苦竹形态因子、苦竹器官生物量与单株生物量模型,进而对洪雅县华西雨屏区退耕还林地苦竹生物量、碳储量进行了研究.结果表明:(2)研究区苦竹平均高为7.50 m,平均胸径为3.48 cm,平均生物量为2.09 kg·株-1,总生物量为90.02 t·hm-2;(2)在相关性分析基础上,以复相关系数和判定系数为标准,筛选出器官生物量-形态因子最佳模型为Y=-1.245 +0.135D +0.147H +0.236 d;总生物量-形态因子最佳模型为Y=e(2.200-5.085/0);总生物量-器官生物量最佳模型为Y =0.109+1.069x1+2.526x2+1.059x3;(3)苦竹各器官碳含量在0.421 7g·g-1~0.551 1 g-g-1范围内,碳含量从高到低依次为:鞭>杆>蔸>根>枝>叶.(4)以实测碳含量计算得苦竹碳储量为44.55 t·hm-2,以0.45 g·g-1或0.5g·g-1计算所得碳储量与实测碳储量均存在一定误差,误差最大可达16.63%. 相似文献
16.
四川省退耕还林碳汇潜力预测研究 总被引:3,自引:0,他引:3
通过调研四川省退耕还林工程实施现状,建立模型,预测未来60 a 四川省退耕还林工程的碳汇潜力。采用经由森林清查人工林历史生长数据拟合的里查德方程(Richards equation)进行分树种生长量预测,依据文献调研所得有关参数计算相应的生物碳储量,结合碳排放、碳基线和碳泄漏的分析与估算,得出四川省退耕还林工程未来60 a碳汇量。 相似文献
17.
马尾松苦竹混交林根系分布格局 总被引:2,自引:2,他引:2
对马尾松苦竹混交林根系分布格局进行研究.结果表明:混交林根系垂直分布比较合理.水平上有重叠,但根系多相互交错,穿插延伸.低密度混交经营的马尾松细根在40~60 cm土层占细根总量的83.8%,而苦竹竹鞭及其构成的竹林地下吸收、输导、贮存系统主要分布在0~40 cm土层占96.0%,较合理地利用了不同土层的营养物质.混交林分中马尾松水平根幅8.9 m,但在0~40 cm土层主要为水平骨骼根,呈疏散框架扩展延伸,给苦竹鞭根的运行、穿插腾出了空间.而苦竹的竹根水平占据空间较小,一般在30 cm左右,鞭根稀少.马尾松利用疏林结构模式兼营苦竹的混交林分不仅形成合理的地上结构,而且地下结构也较合理. 相似文献
18.
19.
对粗放经营的苦竹林林分结构与竹笋产出的关系进行了调查,利用SPSS软件构建了竹笋产量与立竹年龄结构的关系模型:Y=9192.375+0.02027N+0.12607D-0.11412X1+0.24912X2+0.33746X3-0.09919X4(R=0.94),提出了在粗放经营初期的优化年龄结构,立竹度7200~8100株/hm^2时竹笋产出高,1—4年生立竹比例为3:3:3:1。 相似文献
20.
慈竹林生态系统碳储量及其空间分配特征 总被引:4,自引:1,他引:4
利用标准样方法研究了慈竹林生态系统的碳含量、碳储量以及空间分配特征,结果表明:慈竹各器官碳含量介于0.4600~0.5105 g.g-1之间,碳含量从高到低排序为竹秆>竹根>竹蔸>竹枝>竹叶;灌草与枯落物层碳含量为0.3724 g.g-1;土壤层有机碳含量以表层土(0~20 cm)最大,为15.29 g.kg-1,并随土层深度的增加而减少;慈竹林生态系统碳储量为135.95 t.hm-2,其中乔木层碳储量为56.27 t.hm-2,占41.39%,土壤层(0~100 cm)为74.07 t.hm-2,占54.48%,灌草与枯落物层最低,为5.61 t.hm-2,占4.13%;慈竹具有较强的固碳能力,其年固碳量为11.25 t.hm-2.a-1。 相似文献