首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用人工饲料添加法,研究了不同浓度的槲皮素、2-十三烷酮和葫芦素B 3种植物次生物质对B型烟粉虱Bemisia tabaci羧酸酯酶(CarE)活性的影响,同时比较研究了用3种植物次生物质处理后敌敌畏、脱叶磷、灭多威、乐果和氧乐果5种药剂对CarE 的抑制中浓度(I50)的变化。结果表明: 0.01~1.0 mg/mL的槲皮素对B型烟粉虱成虫CarE活性均具有明显的诱导增加作用,最高为对照的4.32倍; 0.1和0.5 mg/mL的2-十三烷酮处理使CarE活性比对照分别下降了22%和58%; 0.75~30.0 mg/L的葫芦素B对烟粉虱CarE活性均表现为抑制作用;用1.0 mg/mL的槲皮素处理24 h后,敌敌畏和脱叶磷对烟粉虱CarE的I50值分别增加为对照的20.05和3.16倍; 3.75 mg/L 的葫芦素B处理后,敌敌畏和灭多威对CarE 的I50值分别增加为对照的25.94、2.45倍; 1.0 mg/mL的2-十三烷酮处理后敌敌畏、脱叶磷和乐果对CarE 的I50值分别降低了89%、83%和90%。  相似文献   

2.
Acacia farnesiana lectin-like protein (AFAL) showed bacterioestatic effects against Xanthomonas axonopodis pv. passiflorae (Gram-negative) and Clavibacter michiganensis michiganensis (Gram-positive), with the latter being more sensitive. This effect is probably due to the ability of AFAL to interact with the bacterial cell wall where we observed that AFAL induced macroscopic change. The maximum bacterial growth inhibition was approximately 78% when incubated with Gram-negative strains, and as high as 92% percent for the Gram-positive one. The antibacterial effect of flavonoids (rutin, quercetin and morin) was also observed using low concentrations against both bacterial strains. Prior incubation of both with AFAL at high concentrations increases the inhibitory effect of flavonoids on bacterial growth. The potential use of AFAL as a control agent against the root-knot nematode Meloidogyne incognita was investigated as well, showing anti-nematode properties involving both egg hatching and motility. In the juvenile second-stage, AFAL showed reduction in larval mobility when measured against a control group. The results suggest that AFAL is effective against M. incognita and could be used as a component of integrated pest management programs. These data also suggest that lectins probably play a role in plant defense not only against invertebrate phytopathogens, herbivores and fungi but also against bacteria.  相似文献   

3.
Bacillus thuringiensis cotton is a variety of cotton genetically modified to contain a gene derived from B. thuringiensis bacteria; which results in expression of toxin protein that confers resistance to bollworm complex (the most destructive pest of cotton). Introduction of Bt cotton lowered the need of insecticides, but still a number of insecticides are used for other insects like jassids, whitefly, aphids and tobacco caterpillar to which Bt gene does not provide effective control. Imidacloprid (tradename Imidacel 17.8 SL) is an insecticide designed for control of these major sucking/piercing insects that affect cotton. So in the present work we studied the post effect of imidacloprid insecticide on plant health of three Bt cotton hybrids (RCH-134, JKCH-1947, NCEH-6R) as there are reports of this insecticide causing growth and yield enhancements in absence of insect pests. Imidacloprid was first sprayed at recommended concentration (40 ml/acre) on 3 months old plants sown in randomly designed plots with three replications of each hybrid. The spray was repeated three times at 10 days interval. The level of B. thuringiensis gene expression, peroxidase activity and total phenols was measured on third day after every spray in leaves along with growth and yield of plants. The insecticide has shown to increase the level of B. thuringiensis protein, peroxidase enzyme activity, total phenols, height, number of bolls retained on plants and yield. These observations suggested that the imidacloprid treated plants showed better growth and development, thereby imidacloprid has growth enhancing effect on Bt cotton plants in addition to its insecticidal properties.  相似文献   

4.
The effect of catechol, phloroglucinol, gallic acid, phloretin and catechin on the growth ofFusarium oxysporum f.vasinfectum, on the ability of the fungus to produce polygalacturonase (PG) and on the activity of this enzyme has been investigated.Catechol and particularly phloretin inhibited fungal growth and PG formation at a concentration of 0.006 M. Phloroglucinol, although not especially inhibitory to growth, effectively inhibited PG formation. Polygalacturonase activity was slightly inhibited by catechol, phloroglucinol, and gallic acid in all concentrations tested.In all other cases no or only slight inhibitory effects were found.  相似文献   

5.
Although insecticide resistance is a widespread problem for most insect pests, frequently the assessment of resistance occurs over a limited geographic range. Herein, we report the first widespread survey of insecticide resistance in the USA ever undertaken for the house fly, Musca domestica, a major pest in animal production facilities. The levels of resistance to six different insecticides were determined (using discriminating concentration bioassays) in 10 collections of house flies from dairies in nine different states. In addition, the frequencies of Vssc and CYP6D1 alleles that confer resistance to pyrethroid insecticides were determined for each fly population. Levels of resistance to the six insecticides varied among states and insecticides. Resistance to permethrin was highest overall and most consistent across the states. Resistance to methomyl was relatively consistent, with 65–91% survival in nine of the ten collections. In contrast, resistance to cyfluthrin and pyrethrins + piperonyl butoxide varied considerably (2.9–76% survival). Resistance to imidacloprid was overall modest and showed no signs of increasing relative to collections made in 2004, despite increasing use of this insecticide. The frequency of Vssc alleles that confer pyrethroid resistance was variable between locations. The highest frequencies of kdr, kdr-his and super-kdr were found in Minnesota, North Carolina and Kansas, respectively. In contrast, the New Mexico population had the highest frequency (0.67) of the susceptible allele. The implications of these results to resistance management and to the understanding of the evolution of insecticide resistance are discussed.  相似文献   

6.
The cotton bollworm, Helicoverpa armigera is a polyphagous pest of several crops in Asia, Africa, and the Mediterranean Europe. Organophosphate and carbamate insecticides are used on a large-scale to control Helicoverpa. Therefore, we studied the effect of methylparathion and carbofuran, an organophosphate and carbamate insecticide, respectively, on oxidative phosphorylation and oxidative stress in H. armigera larvae to gain an understanding of the different target sites of these insecticides. It was observed that state III and state IV respiration, respiratory control index (RCI), and P/O ratios were inhibited in a dose-dependent manner by methylparathion and carbofuran under in vitro and in vivo conditions. Methylparathion and carbofuran inhibited complex II by ∼45% and 30%, respectively. Lipid peroxidation, H2O2 content, and lactate dehydrogenase (LDH) activity increased and glutathione reductase (GR) activity decreased in a time- and dose-dependent manner in insecticide-fed larvae. However, catalase activity was not affected in insecticide-fed larvae. Larval growth decreased by ∼64% and 67% in larvae fed on diets with 100 μM of methylparathion and carbofuran. The results suggested that both the insecticides impede the mitochondrial respiratory functions and induced lipid peroxidation, H2O2, and LDH leak, leading to oxidative stress in cells, which contribute to deleterious effects of these insecticides on the growth of H. armigera larvae, along with their neurotoxic effects.  相似文献   

7.
八种杀虫剂对黑粪蚊的防治效果及残留分析   总被引:2,自引:1,他引:1  
选择8种杀虫剂,分别在实验室和菇房条件下研究其对黑粪蚊的防治效果和对平菇菌丝生长的影响,并分析施药后不同时间平菇中的农药残留.结果表明,40%辛硫磷EC、40%氧乐果EC、48%毒死蜱EC对黑粪蚊具有很好的防治效果,但对平菇菌丝的抑制率明显高于其它药剂;10%吡虫啉WP、4.5%高效氯氰菊酯EC不仅对黑粪蚊成、幼虫具有良好的防治效果,而且使用后对平菇菌丝生长的影响较小;2.5%高效氯氟氰菊酯EW、4.5%高效氯氰菊酯EC、1.8%阿维菌素EC等使用5天后均未检测到农药残留,5%氟虫腈SC和10%吡虫啉WP药后15天仍能检测到残留.  相似文献   

8.
Widespread use of Bt crops for control of lepidopterous pests has reduced insecticide use and provided the tarnished plant bug the opportunity to become a serious pest on mid-South cotton. Organophosphate insecticides have predominantly been used against plant bugs in recent years due to the reduced efficacy of other insecticides. In this study, a biochemical approach was developed to survey enzymatic levels associated with organophosphate resistance levels in field populations of the tarnished plant bug. Forty-three populations were collected from the delta areas of Arkansas, Louisiana, and Mississippi. Three esterase substrates and one substrate each of glutathione S-transferase (GST) and acetylcholinesterase (AChE) were used to determine corresponding detoxification enzyme activities in different populations. Compared to a laboratory susceptible colony, increases up to 5.29-fold for esterase, 1.96-fold for GST, and 1.97-fold for AChE activities were detected in the field populations. In addition to the survey of enzyme activities among the populations, we also examined the susceptibility of major detoxification enzymes to several inhibitors which could be used in formulations to synergize insecticide toxicity against the target pests. As much as 52-76% of esterase, 72-98% of GST, and 93% of AChE activities were inhibited in vitro. Revealing variable esterase and GST activities among field populations may lead to a better understanding of resistance mechanisms in the tarnished plant bug. This study also reports effective suppression of detoxification enzymes which may be useful in future insecticide resistance management program for the tarnished plant bug and other Heteropteran pests on Bt crops.  相似文献   

9.
DDT inhibits the ATPase activity of the intact eel electroplaque. At a concentration of 10?5M, DDT inhibited 46% of the total ATPase activity, and 10?4M DDT inhibited 62% of the total ATPase activity and 62% of the ouabain-sensitive ATPase activity. The latter concentration of DDT reduced the rate of Na efflux from intact electroplaques and slowed the rate of recovery of the membrane potential following a large depolarization produced by carbamylcholine application. Repetitive direct stimulation of the innervated membrane at 10 Hz during the application of 10?4M DDT produced a significant irreversible depolarization. Ouabain, 10?4M, produced similar effects. The possible role of the inhibition of active NaK transport in producing the symptoms of DDT poisoning is discussed.  相似文献   

10.
Tuta absoluta (Meyrick) resistance to insecticides has become a significant problem in many tomato production areas in South America. New insecticides are now available for the management of this pest (i.e. spinosad), however there is scarce information about their efficacy on field populations.With the aim of determining the susceptibility of T. absoluta to spinosad we evaluated the response of second instar larvae, from five field populations (Azapa 1, Azapa 2, Lluta, Colín and Valdivia) and a laboratory reference strain (S), to a diagnostic concentration of the insecticide. We also determined the activity of the detoxifying enzymes mixed-function oxidases (MFO), glutathione-S-transferases (GST) and esterases (EST) in the same larval stage. Larval mortality in field populations was significantly lower in Azapa 1 (50.0%), Azapa 2 (44.9%), Lluta (39.9%) and Colín (53.5%) when compared to the laboratory strain (91.7%). MFO activities in field populations were between 1.8 and 4.6 times higher than those observed in the S strain, while for EST, the ratio varied from 1.7 to 14.7. The lowest ratios were observed for the GST (0.5-2.7), however, significant differences were detected for the three enzyme systems. We conclude that the evaluated mechanisms would be involved in spinosad resistance of populations of T. absoluta, presenting an increased MFO activity in all populations.  相似文献   

11.
邢静  梁沛  高希武 《农药学学报》2011,13(5):464-470
采用叶片药膜法,使用亚致死浓度(LC10、LC25)的氯虫苯甲酰胺对小菜蛾Plutella xylostella(L.)3龄幼虫连续处理5代后,试虫对氯虫苯甲酰胺的敏感度分别比敏感品系下降了57.3% 和67.7%,同时对多杀菌素的敏感度也分别下降了60.2% 和51.5%,但对毒死蜱和高效氯氰菊酯的敏感度变化不明显。采用该浓度的氯虫苯甲酰胺分别处理小菜蛾3龄幼虫24、48和72 h,可诱导其羧酸酯酶(CarE)比活力上升,但对细胞色素P450 O-脱乙基酶(ECOD)、谷胱甘肽S-转移酶(GSTs)和芳基酰胺酶(AA)有明显的抑制作用;连续处理5代后,小菜蛾CarE和ECOD的比活力显著高于对照组,分别为对照组的1.16、1.40倍和1.65、1.56倍,但GSTs和AA的比活力则分别比对照下降了11.0%、27.5%和43.6%、52.5%。结果表明,小菜蛾对氯虫苯甲酰胺产生抗性的风险较高;羧酸酯酶和多功能氧化酶可能与小菜蛾对氯虫苯甲酰胺的敏感度下降有关。  相似文献   

12.
The heteropteran bug, Helopeltis theivora is a polyphagous pest attacking the foliage crop tea and several other crops grown in the old world tropics. Application of synthetic insecticides, especially organophosphate was so far an effective and economic means of conventional management of the pest. Severe selection (bottlenecking) of H. theivora population by exposure to LC80 dose of an organophosphate insecticide, monocrotophos resulted in 105 fold increase in tolerance level in the third generation. The total activity of general esterases (GE) and cytochrome P450 mono-oxygenases (CYP450) analogously increased in insecticide-selected F2 generation by 16.4 and 9.5 fold, respectively. Such enhanced enzyme activity could be related to the higher tolerance levels of the selected bug. Electropherogram of GE and CYP450 of the insecticide-selected generations indicated a change in isozyme profile with their elevated expressions. Induced isozymes in insecticide selected generations were only partially inhibited, when blocked by the insecticide. These findings imply that different groups (zones) of isozymes of the detoxifying enzymes are involved in imparting higher tolerance in insecticide-selected generations. Isozyme profiles of defence enzymes can be used as indices for identifying tolerance level in the field population of H. theivora, enabling tea planters to carry out rapid monitoring of the tolerance status of the pest populations, thereby providing a ready clue to choose an effective insecticide for pest management.  相似文献   

13.
The tarnished plant bug (TPB) has increasingly become an economically important pest of cotton. Heavy dependence on insecticides, particularly organophosphates and pyrethroids, for TPB control facilitated resistance development to multiple classes of insecticides. To better understand resistance and explore ways to monitor resistance in field populations, this study examined acephate susceptibility and the activities of two major detoxification enzymes in nine field populations collected in the Delta region of Mississippi and Arkansas in 2010. Two Arkansas populations from Reed and Backgate had 3.5- and 4.3-fold resistance to acephate, as compared to a susceptible laboratory strain. Extensive planting of cotton and heavy chemical sprays is a major driving force for resistance development to acephate in Mid-south cotton growing areas. Reduced susceptibility to acephate was highly correlated with elevated esterase activities. The acephate-resistant populations from Backgate, Lula, and Reed consistently had higher (up to 5.3-fold) esterase activities than susceptible populations. Regression analysis of LC50s with kinetic esterase activities revealed a significant polynomial quadratic relationship with R2 up to 0.89. Glutathione S-transferase (GST) also had elevated activity in most populations, but the variations of GST activities were not significantly correlated with changes of acephate susceptibility. Finally, examination of esterase and GST inhibitors indicated that suppression rates (up to 70%) by two esterase inhibitors in 2010 were slightly lower than those detected in 2006, and ethacrynic acid (EA) inhibited GST effectively in both years. Two other GST inhibitors (sulfobromophthalein and diethyl maleate) displayed significantly lower suppression rates in 2010 than those detected in 2006, suggesting a potential genetic shift in pest populations and a necessity of continued monitoring for insecticide resistance with both bioassay and biochemical approaches. Results indicated that using major detoxification enzyme activities for resistance monitoring may provide insight into acephate resistance in field populations of TPB.  相似文献   

14.
Effects of the two insect growth regulators (IGRs) methoxyfenozide, 20-hydroxyecdysone (20E) agonist, and pyriproxifen, Juvenile hormone (JH) agonist, were examined on the cellular immune responses of the Sunn pest, Eurygaster integriceps versus the entomopathogenic fungus Beauveria bassiana. The simultaneous treatment with the IGRs and the fungal spores altered haemocyte count (total and differentiate), nodulation response and phenoloxidase (PO) activity in a dose- and time-dependent manner. It was observed that different concentrations of methoxyfenozide increased total and differentiate haemocyte numbers as well as B. bassiana-induced nodulation response. In contrast with the JH agonist, pyriproxifen significantly decreased total and differentiate haemocyte numbers and inhibited nodule formation in E. integriceps adults. The 20E agonist displayed major effects when injected at the doses 2.79 and 5.59 μg/mg adult. In contrast, injecting adults by pyriproxifen significantly impaired their ability to raise an efficacious response against the fungal spores. The ability of the two IGR analogues to interfere with activity of the PO system in haemolymph of E. integriceps adults was also investigated 6 h after injection by fungal spores. Methoxyfenozide had an excitatory effect on PO activity when the 5.59 μg/mg concentration was used against adults. Conversely, pyriproxifen had an inhibitory effect on PO activity when used at 1.49 μg/mg adult concentration. These findings demonstrate that pyriproxifen may interfere with cell-mediated immunity of E. integriceps. So, pyriproxifen could be a good candidate for the integrated control of the Sunn pest.  相似文献   

15.
An enzyme hydrolyzing methylparaoxon in vitro in an organophosphorus-resistant strain of the peach potato aphid (Myzus persicae Sulz.) is present in the same electrophoretic fraction as a carboxylesterase (esterase 2) which has previously been shown to have characteristically increased activity in organophosphorus resistant strains of this aphid.No in vitro organophosphate hydrolysis was found in a susceptible strain with low carboxyl-esterase-2 activity. Carboxylesterase-2 and the methylparaoxon-hydrolyzing enzyme are both inhibited by n-propylparaoxon but not by methyl- and ethylparaoxon. This indicates that the two enzymes are identical.  相似文献   

16.
17.
Spanish Cydia pomonella (L.) field populations have developed resistance to several insecticide groups. Diagnostic concentrations were established as the LC90 calculated on a susceptible strain (S_Spain) for five and seven insecticides and tested on eggs and neonate larvae field populations, respectively. The three most relevant enzymatic detoxification systems (mixed-function oxidases (MFO), glutathione S-tranferases (GST) and esterases (EST)) were studied for neonate larvae.In eggs, 96% of the field populations showed a significantly lower efficacy when compared with the susceptible strain (S_Spain) and the most effective insecticides were fenoxycarb and thiacloprid. In neonate larvae, a significant loss of susceptibility to the insecticides was detected. Flufenoxuron, azinphos-methyl and phosmet showed the lowest efficacy, while lambda-cyhalothrin, alpha-cypermethrin and chlorpyrifos-ethyl showed the highest. Biochemical assays showed that the most important enzymatic system involved in insecticide detoxification was MFO, with highest enzymatic activity ratios (5.1-16.6 for neonates from nine field populations). An enhanced GST and EST activities was detected in one field population, with enzymatic activity ratios of threefold and fivefold for GST and EST, respectively, when compared with the susceptible strain. The insecticide bioassays showed that the LC90 used were effective as diagnostic concentrations. Measures of MFO activity alongside bioassays with insecticide diagnostic concentrations could be used as tools for monitoring insecticide resistance in neonate larvae of C. pomonella.  相似文献   

18.
Resistance in Spodoptera litura (Fabricius) has been attributed to enhanced detoxification of insecticides by increased levels of esterases, oxidases and/or glutathione S-transferases. Enzyme inhibiting insecticide synergists can be employed to counter increased levels of such enzymes in S. litura. Dihydrodillapiole induced synergism of pyrethroid toxicity was examined in the laboratory-reared third instar larval population of S. litura collected in Delhi (susceptible), and Guntur (resistant) region of Andhra Pradesh, India. The Guntur population was found to be 7.04 and 10.19 times resistant to cypermethrin and lambdacyhalothrin, respectively. The activity of cypermethrin, lambdacyhalothrin and profenophos against susceptible and resistance populations of S. litura, was gradually increased when used along with a plant-derived insecticide synergist dihydrodillapiole. The α-naphthyl acetate hydrolysable esterase activity in Delhi population was less as compared to the Guntur population. Resistance associated esterases in Delhi population were inhibited by pre-treatment with dihydrodillapiole. The esterase level in insect was instantly reduced initially, sustained for about 3 h and equilibrated at 4 h post treatment. The esterase activity of Guntur population was increased to 1.28 μmoles/mg/min at 2 h post treatment and subsequently reduced to lower than 0.70 μmoles at 4-12 h post treatment. The variation in esterase activity is suggestive of its homeostatic regulation in test populations. Dihydrodillapiole thus caused significant reduction of resistance in S. litura to cypermethrin, lambda cyhalothrin and profenophos.  相似文献   

19.
20.
The brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), is an insect pest in which offspring are produced by the mating of adult males with adult females. This species is a classic case in which pest resurgence is induced by insecticides. In the past, studies of resurgence mechanisms have focused on insecticide-induced stimulation of reproduction in adult females. To date, however, the role that males play in the resurgence mechanisms of N. lugens has not been investigated. The aim of the present study is to examine changes in protein levels in male accessory glands (MAGs) induced by the insecticides triazophos and deltamethrin and to determine their relationship with vitellin content in the fat bodies and ovaries of adult females in the context of mating pairs. Our results show that protein content in MAGs is significantly affected by male mating status, insecticide type, and insecticide concentration. Insecticide application induced increased protein levels in MAGs. A greater quantity of MAG products was transferred to females via mating. Thus, protein levels in MAGs significantly decreased after mating. Experimental matings indicate that vitellin content in both fat bodies and ovaries of adult females in mating pairs consisting of a treated male and an untreated female (♂t × ♀ck) is significantly greater than that of females in pairs consisting of an untreated male and an untreated female (♂ck × ♀ck). Under various concentrations of the two insecticides, vitellin levels are highest in mating pairs consisting of a treated male and a treated female (♂t × ♀t), followed by mating pairs consisting of an untreated male with a treated female (♂ck × ♀t). These findings demonstrate that (1) insecticides have an effect on males; (2) insecticide effect can be transferred to females; and (3) the reproductive effect of insecticides is strongest in mating pairs in which both the males and females are treated compared to pairs in which only one individual is treated. These findings provide valuable information about the role of males in pesticide-induced resurgence of N. lugens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号