首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to evaluate the effects of the fungicide flusilazole on somatic cells of Allium cepa. For evaluation of cytogenetic effects, root meristem cells of A. cepa were treated with 10, 20, 30 and 45 ppm (EC50 concentration) for 24, 48 and 72 h. The mitotic index and different types of chromosomal abnormalities such as bridges, stickiness and laggards were determined in both control and test groups. Acridine orange/Ethidium bromide double staining and fluorescence microscope was used to determine the stability of chromosome structure. Data obtained from staining process indicated that ratio of necrotic cells significantly increased by the flusilazole presoaking. The RAPD-PCR method was used and the higher doses treated-group (45 ppm) was more distant to the control group compare with others.  相似文献   

2.
Genotoxic effects of Chlorfenvinphos and fenbuconazole were examined by using mitotic index, mitotic phase, chromosomal abnormalities, 2C DNA content and Comet assay on the root meristem cells of Allium cepa. The roots were treated with 10, 20, 40, 60, 80, and 100 ppm concentrations for 24 and 48 h. The results indicated that Chlorfenvinphos and fenbuconazole significantly decreased the mitotic index in all treatments when compared with their controls. The percentages of mitotic phases have changed. Chlorfenvinphos and fenbuconazole significantly increased the abnormal cell frequency at all concentrations and treatment periods when compared with their controls. Different abnormal mitotic figures were observed in all mitotic phases. Among these abnormalities were stickiness, anaphase bridges, c-mitosis, laggards, and micronucleus. These pesticides remarkably depressed the 2C DNA content in the root meristems of A. cepa. The genotoxicity of chlorfenvinphos and fenbuconazole in A. cepa root cells was analyzed using comet assay, which allows the detection of single strand breaks. In all concentrations, chlorfenvinphos and fenbuconazole induced a significant increase in DNA damage. Additionally, it was also researched to determine if there is a relation between the amount of DNA and the DNA damage and a regression analyses was conducted. When the data that was accumulated via comet analysis from A. cepa root tip cells that are treated with type chlorfenvinphos and fenbuconazole, was compared to the data that was acquired as the result of the measurement of 2C DNA amount, a relation with negative correlation was found, (respectively, r = −0.80 and r = −0.82). This relation factor is statistically important and strong (p < 0.05).  相似文献   

3.
In the present study cytogenetic effects of atrazine herbicide, were examined on the root meristem cells of Allium cepa and Vicia faba. Test concentrations were chosen by calculating EC50 values of formulated atrazine against both the test systems which determined to be 30 mg l−1 for A. cepa and 35 mg l−1 for V. faba, respectively. For cytogenetic effects root meristem cells of A. cepa were exposed to 15, 30 or 60 mg l−1 whereas V. faba to 17.5, 35 or 70 mg l−1 for 4 or 24 h. Roots exposed for 4 or 24 h, after sampling, were left in water for 24 h recovery and sampled at 24 h post-exposure. A set of onion bulbs or seedlings of V. faba exposed to DMSO (0.3%) was run parallel for negative control. Treatment of atrazine significantly and dose-dependently inhibited the mitotic index (MI) and induced micronucleus formation (MN) chromosome aberrations (CA) and mitotic aberrations (MA) in both the test systems at 4 or 24 h. Root meristem cells examined at 24 h post-exposure also revealed significant (p < 0.001) frequencies of MN, CA or MA despite considerable decline. Chromosome breaks and fragments were found to be major CA whereas C-metaphase, chromosome bridges and laggards were prevalent MA. Results of our study, indicate that atrazine may produce genotoxic effects in plants. Further, both the plant bioassays found to be sensitive indicators for the genotoxicity assessment as the outcome of majority of in vivo/in vitro mammalian tests are comparable.  相似文献   

4.
Combined cytogenetic and ultrastructural effects of substituted urea herbicides-isoproturon (ISO) or diuron (DIU) and a synthetic pyrethroid insecticide-deltamethrin (DEL) were examined in the root meristem cells of Allium cepa. For cytogenetic analysis root meristem cells were exposed to the mixtures of ISO (25 or 50 ppm) or DIU (20 or 40 ppm) and DEL (0.25 or 0.5 ppm) for 6 h and analyzed at 24 or 48 h post-exposure whereas for ultrastructural studies roots were exposed for 6 or 24 h to similar concentrations of combinations and examined. Both the combinations, ISO + DEL or DIU + DEL, were found to induce chromosomal breaks and variety of mitotic aberrations at 24 and 48 h post-exposure. The combinations containing higher concentration of DEL (0.5 ppm) induced statistically significant (p < 0.001) frequencies of aberrations than that of the combinations containing low concentration of DEL (0.25 ppm). Chromosome aberrations in all the treatment groups were less frequent than that of mitotic aberrations. Electron microscopic study revealed drastic alterations in the membranous organelles like concentric arrangement of endoplasmic reticulum, crescented or circular structure of Golgi complex dictyosomes and swollen mitochondria. Further, the combination of DIU + DEL appeared to be more toxic than that of ISO + DEL. Present findings suggest that the coexistence of ISO or DIU and DEL in plants synergies the toxicity inducing drastic ultrastructural alterations which are different from its independent effects reported earlier.  相似文献   

5.
The acute toxicities of two organophosphorodithioate (dimethoate and disulfoton) and two organophosphorothioate (omethoate and demeton-S-methyl) insecticides were evaluated individually and in binary combination with the herbicide atrazine using fourth-instar larvae of the aquatic midge, Chironomus tentans. Atrazine alone up to 1000 μg/L did not show significant toxicity to the midges in a 48-h bioassay. However, atrazine concentrations as low as 1 μg/L in combination with dimethoate at EC25 (concentration to affect 25% of tested midges), 100 μg/L in combination with disulfoton (EC25), and 10 μg/L in combination with demeton-S-methyl (EC25) significantly enhanced the toxicity of each organophosphate insecticide. In contrast, atrazine concentrations of 10 μg/L and above in combination with omethoate (EC25) significantly decreased the toxicity of the insecticide. Biochemical analysis indicated that increased toxicity of dimethoate, disulfoton, and demeton-S-methyl in binary combination with atrazine correlated to the increased inhibition of acetylcholinesterase. Furthermore, cytochrome P450-dependent O-deethylation activity in the midges exposed to atrazine at 1000 μg/L was 1.5-fold higher than that in the control midges. Thus, atrazine appeared to induce cytochrome P450 monooxygenases in the midges. Elevated cytochrome P450 monooxygenase activity may increase the toxicities of dimethoate, disulfoton, and demeton-S-methyl by enhancing the oxidative activation of dimethoate into omethoate, and disulfoton and demeton-S-methyl into their sulfoxide analogs with increased anticholinesterase activity. In contrast, atrazine reduced the toxicity of omethoate possibly by enhancing the oxidative metabolic detoxification since omethoate does not require oxidative activation.  相似文献   

6.
A series of nicotinamide derivatives based on Boscalid were prepared and tested for their activities against seven plant pathogenic fungi and two insects. The preliminary bioassays indicated that almost all of the synthesized target compounds displayed the antifungal activities and some of them also had certain insecticidal activities. And, compound 12 showed the strongest activity of all against Rhizoctonia solani (EC50 = 0.010 mg L−1) and Sphaceloma ampelimum (EC50 = 0.040 mg L−1), even stronger than Boscalid, a new nicotinamide fungicide. Additionally, both compounds 1 and 2 showed strong activities against Plutella xylostella (90% and 80%, respectively, at 1000 mg L−1).  相似文献   

7.
Ecdysteroid signal transduction is a key process in insect development and therefore an important target for insecticide development. We employed an in vitro cell-based reporter bioassay for the screening of potential ecdysone receptor (EcR) agonistic and antagonistic compounds. Natural ecdysteroids were assayed with ecdysteroid-responsive cell line cultures that were transiently transfected with the reporter plasmid ERE-b.act.luc. We used the dipteran Schneider S2 cells of Drosophila melanogaster and the lepidopteran Bm5 cells of Bombyx mori, representing important pest insects in medicine and agriculture. Measurements showed an EcR agonistic activity only for cyasterone both in S2 (EC50 = 3.3 μM) and Bm5 cells (EC50 = 5.3 μM), which was low compared to that of the commercial dibenzoylhydrazine-based insecticide tebufenozide (EC50 = 0.71 μM and 0.00089 μM, respectively). Interestingly, a strong antagonistic activity was found for castasterone in S2 cells with an IC50 of 0.039 μM; in Bm5 cells this effect only became visible at much higher concentrations (IC50 = 18 μM). To gain more insight in the EcR interaction, three-dimensional modeling of dipteran and lepidopteran EcR-LBD was performed. In conclusion, we showed that the EcR cell-based reporter bioassay tested here is a useful and practical tool for the screening of candidate EcR agonists and antagonists. The docking experiments as well as the normal mode analysis provided evidence that the antagonist activity of castasterone may be through direct binding with the receptor with specific changes in protein flexibility. The search for new ecdysteroid-like compounds may be particularly relevant for dipterans because the activity of dibenzoylhydrazines appears to be correlated with an extension of the EcR-LBD binding pocket that is prominent in lepidopteran receptors but less so in the modeled dipteran structure.  相似文献   

8.
The toxicity and physiological (enzyme and nutritional indices) effect of Dysoxylum triterpenes 3β,24,25-trihydroxycycloartane and beddomei lactone were evaluated on the rice leaffolder Cnaphalocrocis medinalis (Guenée). The LC50 [6.66 ppm (SD = 0.31), 5.79 ppm (SD = 0.33) for 3β,24,25-DHCL and BL, respectively] and LC 90 [14.63 ppm (SD = 0.36), 13.49 ppm (SD = 0.27) for 3β,24,25-DHCL and BL, respectively] were identified by probit analysis. Fourth instars were exposed to various concentrations (1.5, 3, 6, and 12 ppm) of Dysoxylum triterpenes. Results showed that treated larvae exhibited reduced food consumption and enzyme activity. Food consumption, digestion, relative consumption rate, efficiency of conversion of ingested food, efficiency of conversion of digested food, and relative growth rate values declined significantly but the approximate digestibility of treated larvae was significantly higher as a result of treatment (in particular 6 and 12 ppm). Likewise, the gut enzymes acid phosphatases, alkaline phosphatases, and adenosine triphosphatases were significantly inhibited by the Dysoxylum triterpenes. The high biological activity of these triterpenes from Dysoxylum sp. could be used as an active principle during the preparation of botanical insecticides for insect pest like rice leaffolder.  相似文献   

9.
Sugar beet is a major crop in Morocco and Cercospora leaf spot is one of its most important fungal diseases. In Morocco, thiophanate methyl (benzimidazole) and difenoconazole (demethylation inhibitor, DMI) have been used extensively in the management of Cercospora leaf spot. In this study, samples of Cercospora beticola Sacc were collected from four major production areas. The identification of all isolates was confirmed using a PCR test with specific primers. Radial mycelia growth of each isolate in unmodified potato dextrose agar medium was compared to mycelia growth in the same medium modified with thiophanate methyl (1, 5, 10 and 50 ppm) or the DMIs difenoconazole, epoxiconazole and tetraconazole (0.1, 0.5, 1, 5, 10 and 50 ppm) or the quinone outside inhibitors (QOIs) azoxystrobin and trifloxystrobin (1, 5, 10 and 50 ppm). The percentage of inhibition obtained was used for the half maximal effective concentration (EC50) calculation. All the isolates showed resistance to the thiophanate methyl molecule to different degrees. Three groups were identified: low resistance with EC50 less than 100 ppm, moderate resistance with EC50 between 100 and 1000 ppm, and very resistant with EC50 more than 1000 ppm. For difenoconazole, 41% of isolates were sensitive (EC50 < 0.05 ppm) and 59% were resistant, while for tetraconazole and epoxiconazole 6% were sensitive (EC50 < 0.01 ppm), 66.7 % had medium resistance (0.01 < EC50 < 1 ppm) and 27.3% were resistant (EC50 > 1 ppm). For QOIs, azoxystrobin was less effective for mycelial inhibition than trifloxystrobin, with 54.5% of isolates with resistance to azoxystrobin (EC50 > 100 ppm).  相似文献   

10.
In this study, the comparison of cytogenetic effects of insecticide and fungicide in different phases of cell cycle was investigated in the root tip cells of barley (Hordeum vulgare L.). The seeds of H. vulgare L. Var. Karan 16 were treated with different concentrations (0.05%, 0.1% and 0.5%) of insecticide Profenophos (PF) and fungicide Mancozeb (MZ) for 6 h after presoaking durations of 7, 17 and 27 h.The different presoaking durations were used to bring the cells in various phases of cell cycle. Negative control was run parallel in distilled water. Cytogenetic examinations of root meristems exposed to the PF and MZ showed significant inhibition of mitotic index (MI) as well as significant increase in chromosomal aberrations (CAs). These parameters were dependent on the concentrations of insecticide and fungicide. The present study shows that PF and MZ both caused more damage in S phase of cell cycle which indicates that S phase is more sensitive in comparison to other phases.  相似文献   

11.
Diethyl phthalate (DEP) enter into aquatic environment from industries manufacturing cosmetics, plastic and many commercial products and can pose potential fish and human health hazard. This experiment evaluated effects of DEP in adult male (89 g) common carp (Cyprinus carpio) by exposing them to fractions of LC50 (1/500-1/2.5) doses with every change of water for 28 days. Vitellogenin induction metabolic enzymes, somatic indices and bioaccumulation were studied on 7th, 14th, 21st and 28th day. The 96th hour LC50 of DEP in fingerlings was found to be 48 mg/L. Compared to control, except increase (P < 0.01) in alkaline phosphatase activity (EC 3.1.3.1) and liver size, there was decrease (P < 0.01) in activity of acid phosphatase (EC 3.1.3.2), aspartate aminotransferase (EC 2.6.1.1), alanine aminotransferase (EC 2.6.1.2) and testiculosomatic index following exposure to 1, 5 and 20 ppm DEP. Significant (P < 0.01) dose dependant vitellogenin induction was observed with exposure of fish to 0.1, 1 and 5 ppm DEP. The bioaccumulation of DEP in testis, liver, brain, gills and more importantly in muscle tissues of fish increased significantly (P < 0.01) with increase of dose from 1 to 5 ppm. Significant interaction (P < 0.01) of dose and duration of exposure indicated that exposure period of a week to two was sufficient to bring about changes in quantifiable parameters studied. Fish exposed to 20 ppm DEP became lethargic and discolored during onset of the 4th week. This is the first report describing metabolic changes and vitellogenin induction following exposure of C. carpio to DEP dose that is as low as 1/500th fraction of LC50.  相似文献   

12.
In this study, the genotoxic effects of insecticides in different phases of cell cycle were investigated in the mitotic cells of barley (Hordeum vulgare L.). The seeds of H. vulgare L. Var. Karan 4 were treated with different concentrations (0.05%, 0.1% and 0.5%) of insecticides alphamethrin (AM) and monocrotophos (MP) for 6 h after synchronization of cells in G1, S and G2 phase of cell cycle with the help of various presoaking durations (7 h, 17 h and 27 h.). Positive and negative control was run parallel in the form of ethyl methane sulphonate (EMS) and distilled water, respectively. The data indicate that higher dose of alphamethrin and monocrotophos produce toxicity, chromosomal aberrations and mitotic aberrations in Hordeum vulgare L. The present study indicates the genotoxic potential of the insecticides AM and MP and it also showed that S-phase of cell cycle was more sensitive compared to the G1 and G2 phases.  相似文献   

13.
The necrotrophic fungal phytopathogen Sclerotinia sclerotiorum (Lib.) de Bary has a broad host range and frequently causes destructive diseases. The extensive use of common fungicides to control these diseases has selected for resistance in populations of S. sclerotiorum. In this study, 105 isolates of S. sclerotiorum from different geographical regions in Jiangsu Province of China were characterized for baseline sensitivity to azoxystrobin, and the average EC50 value was 0.2932 μg/mL for mycelial growth. Of the mixtures of the fungicides thiram and azoxystrobin that were tested using an in vitro mycelial growth assay, the 1:4 ratio provided the greatest inhibition of S. sclerotiorum. When tested against nine isolates, the 1:4 mixture resulted in a mean synergy ratio of 2.31, indicating synergistic inhibition. Mycelial respiration was inhibited for about 2 h by azoxystrobin alone but for 48 h by the mixture of thiram and azoxystrobin. Salicylhydroxamic acid (SHAM, a known inhibitor of alternative respiration) also increased the inhibition of mycelial growth and respiration caused by azoxystrobin. These results suggest the need for further study of effects of combinations of azoxystrobin with thiram or SHAM in planta to evaluate their potential for management of diseases caused by S. sclerotiorum.  相似文献   

14.
In order to create novel potent antifungal agents, the antifungal effects of 6-bromo-4-ethoxyethylthio quinazoline on plant pathogenic fungi were evaluated by mycelial growth rate method. The bioassay results showed that title compound possesses high antifungal activities on fungi with EC50 values ranging from 17.47 to 70.79 μg/mL. The mechanism of action of 6-bromo-4-ethoxyethylthio quinazoline against fungi was studied in Gibberella zeae model. After treated with title compound at 100 μg/mL for 12 h, the mycelial reducing sugar, chitosan, soluble protein and pyruvate content, chitinase activity showed declining tendency.  相似文献   

15.
Effects of deltamethrin on voltage-sensitive calcium channels (VSCC) from rat brain (Cav2.2) expressed in Xenopus oocytes were assessed electrophysiologically. Deltamethrin reduced peak current of wild-type Cav2.2 in a stereospecific and concentration-dependent manner with an EC50 of 1 × 10−9 M. Phosphorylation of threonine 422 enhances voltage-sensitive calcium current, increases the probability that Cav2.2 will open under depolarizing conditions and antagonizes the inhibition of the channel by the betagamma subunit of heterotrimeric G-protein (Gβγ). Site-directed mutagenesis of threonine 422 to glutamic acid (T422E) results in a channel that acts as if it were permanently phosphorylated. Deltamethrin (10−7 M) significantly enhanced peak current via the T422E channel (1.5-fold) compared to the nontreated control and the increase was significantly greater than for either the wild-type (T422) or T422A (permanently unphosphorylated mutant) channels. The effect of deltamethrin on T422E Cav2.2 was stereospecific and concentration-dependent with an EC50 of 9.8 × 10−11 M. Thus, Cav2.2 is modified by deltamethrin but the resulting perturbation is dependent upon the phosphorylation state of threonine 422.  相似文献   

16.
The current study involved evaluation of the toxicity of acetone soluble fraction of the ethanol extract of Annona squamosa Linn. seeds on Aedes albopictus (Skuse). Toxicity of fresh sample has been compared with that of solar radiated and heat treated aliquots of the same. Acute toxicity of fresh acetone fraction on adults was evident with LC50 and LC90 values of 15.21 and 60.38 μg/ml, respectively. Larvicidal bioassays recorded LC50 and LC90 values ranging from 0.44 to 5.97 and 1.64-43.36 μg/ml, respectively for different instars. Ovicidal bioassays yielded EC50 and EC90 values of 18.82 and 69.61 μg/ml. The study further revealed ovipositional deterrent and chemosterilant activities of the extract on the target mosquito. Bioassays using solar radiation and heat treated samples of the active fraction have showed toxicity levels similar to those of fresh sample. Chemical analysis of acetone soluble fraction of seed extract of A. squamosa has reveled ethyl oleate and iso-octyl phthalate as major components. Adulticidal, larvicidal, ovicidal, ovipositional deterrent and chemosterilant activities of the fraction on A. albopictus were proved. The investigation further confirmed stability of the active fraction on exposure to solar radiation and high temperature.  相似文献   

17.
N-[4-Chloro-2-fluoro-5-{3-(2-fluorophenyl)-5-methyl-4,5-dihydroisoxazol-5-yl-methoxy}-phenyl]-3,4,5,6-tetrahydrophthalimide (EK-5385) is an experimental substituted bicyclic herbicide. Soil-applied EK-5385 showed good rice selectivity and potent herbicidal activity on barnyardgrass (Echinochloa crus-galli var. oryzicola) at rates of 3.9-250 g a.i./ha. Barnyardgrass was exhibited normal growth under dark condition, however, the growth of shoot and root was severely inhibited under light condition (14/10 h of light/dark, 50 μmol/m2/s of photosynthetically active radiation) when treated with EK-5385, oxadiazon, and oxadiargyl. IC50 of EK-5385 and oxadiargyl to chlorophyll loss in cucumber cotyledons was approximately 0.3 and 0.7 μM, respectively. IC50 of EK-5385 and oxadiargyl to carotenoids loss in cucumber cotyledons was about 0.26 and 0.1 μM, respectively. IC50 concentration of EK-5385 and oxadiargyl on Protox activity was approximately 5.5 and 8 nM, respectively. Cellular leakage occurred without lag period from cucumber leaf squares treated with 1 μM of EK-5385 and oxadiargyl under light exposure.  相似文献   

18.
Sensitivity to tricyclazole of 129 single-conidial isolates of rice blast fungus, Magnaporthe grisea, was determined. EC50 values ranged from 0.06 to 1.12 mg/L with an average value of 0.46 ± 0.09 mg/L according to the detached leaf segment tests. No significant difference of sensitivity was observed between isolates from Guangdong and Jiangsu where decreased efficacy was reported, and from two other provinces where tricyclazole provided excellent disease control. In seedling tests, tricyclazole could control the most tolerant isolate GY-6 successfully with a efficacy of 81.5% at the concentration of 40 mg/L. Sensitivities of GY-6 and DY-2, the most sensitive isolate, to tricyclazole were both unstable in sub-cultured single-conidial offspring isolates, with respective mean EC50 values of 5.40 ± 0.97 and 4.50 ± 0.88 mg/L calculated from seedling tests. There was no amino acid difference between them in the coding sequences of 1,3,6,8-tetrahydroxynaphthalene reductase and 1,3,8-trihydroxynaphthalene reductase. These results suggested that the decreased control reported in Guangdong and Jiangsu could not be attributed to the occurrence of resistance. When continuously “inoculated-reisolated-reinoculated” under the selection of tricyclazole in vivo, sensitivity of DY-2 decreased 10-fold after 20 generations, although the sensitivity of GY-6 did not shift significantly.  相似文献   

19.
The silphinenes are tricyclic sesquiterpenes that have antifeedant and toxic effects in insects and structural similarity to the known GABA antagonist, picrotoxinin. In murine synaptoneurosomes, silphinenes block GABA-stimulated influx of 36Cl with EC50s in the range of 10-30 μM. In insects, silphinenes were tested in neurophysiological recordings of central neurons from third instar Drosophila melanogaster larvae. Silphinenes reversed the blockage of neuronal firing induced by GABA, but had little effect below 100 μM. The structure-activity profile observed in the murine chloride flux assay was also observed in the larval neurophysiological assay, indicating little selectivity for the silphinenes. A reference silphinene was equally active on nerve preparations from the rdl strain of D. melanogaster, which is resistant to channel-blocking antagonists via an altered GABA receptor. This latter finding suggests that silphinenes interact with the insect GABA receptor in a manner somewhat different from PTX, and that rdl resistance in the field may have little effect on silphinene efficacy.  相似文献   

20.
The results showed that survival rates of Biomphalaria alexandrina snails, reproductive potential and hatchability of eggs were evaluated post exposure to Basudin, Selecron and Colchicine. As well, DNA and RNA changes in the cells of ovotestis-digestive gland complex of treated snails were estimated. The current molluscicide Bayluscide was used as a reference compound.The pesticide Selecron proved to be more toxic to B. alexandrina snails than Basudin and Colchicine. Juvenile snails were dead post 3 weeks of exposure to the sublethal concentration LC0 of either Selecron or Basudin, while 26.75% of snails still alive at Bayluscide treatment. In addition, exposure of adult snails to LC0 of Selecron for 24 h/week for 4 weeks markedly reduced their reproductive rate (R0) by 89.9%. Moreover, snails’ eggs failed to hatch post 24 h of exposure to LC90 of either Selecron, Basudin or Bayluscide. Electrophoretic analysis indicated a decrease in the molecular weight of intact DNA in the ovotestis-digestive gland complex of snails treated with 250 ppm of Colchicine and LC25 of Selecron, as it scored 1.2 and 76 bp, respectively, compared to 166.46 bp for control group, while the vice versa was recorded for RNA intensity. It was concluded that the tested pesticides have deleterious effects on snails’ reproductive rate, their eggs and the intensities of DNA and RNA in their ovotestis-digestive gland complex. Therefore, it is expected that reaching of such pesticides to snails’ habitats in water courses during plant pests control could minimize the population density of the snails intermediate hosts of schistosomiasis, hence probably interrupt and reduce the transmission of this parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号