首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorpyrifos (CPF), a chlorinated organophosphate insecticide that is widely used in agriculture and public health, has been implicated in male reproductive toxicity. Apart from acetylcholinesterase inhibition, CPF has been shown to induce changes characteristic of oxidative stress. Therefore, the aim of the present study was to evaluate the effects of vitamin C on oxidative changes in the testes and pituitary gland of rats chronically exposed to CPF. Twenty adult male Wistar rats were divided into four groups of five animals each: Group I (S/oil) received soya oil (2 ml/kg); Group II (VC) was administered with vitamin C (100 mg/kg); Group III (CPF) was given CPF (10.6 mg/kg; ∼1/8th LD50); Group IV (VC + CPF) was pretreated with vitamin C (100 mg/kg) and then given CPF (10.6 mg/kg), 30 min later. The regimens were administered orally by gavage once daily for 15 weeks. Thereafter, the rats were sacrificed and the testes and pituitary glands were evaluated for the concentration of malonaldehyde (MDA) and activities of superoxide dismutase (SOD) and catalase (CAT). The result shows that CPF increased MDA concentration and reduced activities of SOD and CAT, which were ameliorated by pretreatment with vitamin C.  相似文献   

2.
Propoxur (PPr) is a widely used broad spectrum carbamate insecticide mainly used to control household pests. Because of the widespread use of pesticides for domestic and industrial applications, evaluation of their neurotoxic effects is of major concern to public health. The aim of the present study was to evaluate the possible protective effects of Nigella sativa oil (NSO), an antioxidant agent, against PPr-induced toxicity and oxidative stress in different brain regions of rats including cerebellum, cortex and hippocampus. In the present study, 32 male Sprague-Dawley rats were used and divided into four equal groups. Group 1 was allocated as the control group. Groups 2-4 were orally administered 1 ml/kg/bw/day NSO, 8.51 mg/kg/bw/day PPr or NSO plus PPr, respectively, for 30 days. Lipid peroxidation (LPO), protein carbonyl content (PCC) and acetylcholine esterase activity (AChE) were determined. Enzymatic antioxidant activities [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST)] and non-enzymatic antioxidants [reduced glutathione (GSH)] were determined. PPr treatment significantly increased the levels of LPO, PCC and oxidized glutathione (GSSG) in brain regions. On the contrary, levels of GSH and the activities of SOD, CAT, GSH-Px, GST and AChE were significantly decreased. NSO treatment to PPr intoxicated rats restored such biochemical parameters to within control levels except GST activity, emphasizing its antioxidant role. We conclude that NSO significantly reduces PPr-induced toxicity and oxidative stress in rat brain regions via a free radicals scavenging mechanism.  相似文献   

3.
Male and female rats were orally administered chlorpyrifos at a dose of 6.75 mg kg−1 body weight for 28 consecutive days. An additional chlorpyrifos group received zinc (227 mg l−1) in drinking water throughout the experimental duration. Two groups more served as controls; one received water only and the other received zinc in drinking water. Administration of chlorpyrifos resulted in a significant increase in lipid peroxidation (LPO) level and significant decrease in the activities of superoxide dismutase (SOD), glutathione-s-transferase (GST), catalase (CAT) and acetylcholinesterase (AChE) in erythrocytes of male and female rats. In contrast, zinc-chlorpyrifos treatment showed insignificant differences (p ? 0.05-0.01), compared to control results, regarding LPO, SOD, GST and CAT. In case of AChE, supplementation of zinc showed little alteration in the activity of this enzyme in the rats treated with chlorpyrifos. It can deduce that chlorpyrifos induced oxidative stress and lipid peroxidation in erythrocytes of male and female rats. The overall results reveal the pronounced ameliorating effect of zinc in chlorpyrifos-intoxicated rats and variation in the response of male and female animals regarding alteration in the level of some biochemical parameters and LPO.  相似文献   

4.
Organophosphate (OP) pesticides are among the most widely used synthetic chemicals for controlling a wide variety of pests. Chlorpyrifos (o,o′-diethyl-o-3,5,6-trichloro-2-pyridyl phosphorothionate, CPF) is among the leading OP pesticides used extensively throughout the world including India while methyl parathion (o,o-di methyl-o-p-nitrophenyl phosphorothioate, MPT) another OP compound, widely used as insecticide and acaricide to control many biting or sucking pests of agricultural crops. Present study was carried out to compare the chronic toxicity of CPF and MPT, their potential to generate oxidative stress and ameliorating effects of antioxidant vitamins in brain of rats. Results of the present study clearly demonstrated that the oral exposure of CPF or MPT, generated oxidative stress in different parts of rat brain consequently accumulating malondialdehyde (MDA) and 4-hydroxynonanal (4HNE), the two major end products of lipid peroxidation, in all the three brain regions i.e. fore-, mid- and hind-brain. The levels of hydrogen peroxide (H2O2) were also increased in all the three brain regions when compared with control. CPF and MPT exposure caused decrease in the levels of reduced glutathione (GSH) and increase in the levels of oxidized glutathione (GSSG) in all the three brain regions. The increase in the levels of MDA, 4HNE, H2O2 and GSSG was less pronounced when CPF or MPT was given to the rats fed with a mixture of vitamin A, E and C. The present findings clearly show that oral intake of a mixture of vitamin A, E and C protects the rats from MPT or CPF induced oxidative stress and suggest that this treatment alleviates the toxicity of these pesticides to a greater extent.  相似文献   

5.
6.
The toxicity of fenvalerate to the prawn Penaeus monodon was evaluated using biomarkers of stress. In a preliminary bioassay test, P. monodon was exposed to a series of fenvalerate concentrations, which showed 4, 6.5 and 8.5 μg L−1 to be sublethal, median lethal and lethal, respectively. Sublethal effect of fenvalerate was further evaluated in hepatopancreas, muscle and gills of prawns with reference to oxidative stress biomarkers. Significant induction of lipid peroxidation and glutathione-S-transferase activity was found in hepatopancreas, muscle and gills of prawns exposed to fenvalerate when compared to control (P < 0.001, P < 0.05 and P < 0.05). On the contrary, the activities of Superoxide dismutase, catalase, glutathione peroxidase, vitamin C, vitamin E and glutathione were found to be reduced in the experimental group of prawns when compared to control. The results suggest that the animals were under oxidative stress when exposed to sublethal concentration of fenvalerate.  相似文献   

7.
Pesticides may induce oxidative stress leading to generate free radicals and alternate antioxidant or oxygen free radical scavenging enzyme system. This study was conducted to investigate the acute toxicity of chlorpyrifos toward male mice and the oxidative stress of the sub-lethal dose (1/10 LD50) on the lipid peroxidation level (LPO), reduced glutathione content (GSH) and antioxidant enzymes; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PD), and glutathione-S-transferase (GST) activities. Also, the protective effects of vitamin C (200 mg/kg body weight, bw) 30 min before or after administration of chlorpyrifos were investigated. The results demonstrated that the LD50 value of chlorpyrifos was 134.95 mg/kg bw. The oral administration of 13.495 mg/kg chlorpyrifos significantly caused elevation in LPO level and the activities of antioxidant enzymes including CAT, SOD and GST. However, GPx activity remained unchanged, while the level of GSH and G6PD activity were decreased. Vitamin C treatment to chlorpyrifos intoxicated mice decreased LPO level and GST activity, normalized CAT, SOD and G6PD activities, while GSH content was increased. We conclude that vitamin C significantly reduces chlorpyrifos-induced oxidative stress in mice liver and the protective effect of the pre-treatment with vitamin C is better than the post-treatment.  相似文献   

8.
The cotton bollworm, Helicoverpa armigera is a polyphagous pest of several crops in Asia, Africa, and the Mediterranean Europe. Organophosphate and carbamate insecticides are used on a large-scale to control Helicoverpa. Therefore, we studied the effect of methylparathion and carbofuran, an organophosphate and carbamate insecticide, respectively, on oxidative phosphorylation and oxidative stress in H. armigera larvae to gain an understanding of the different target sites of these insecticides. It was observed that state III and state IV respiration, respiratory control index (RCI), and P/O ratios were inhibited in a dose-dependent manner by methylparathion and carbofuran under in vitro and in vivo conditions. Methylparathion and carbofuran inhibited complex II by ∼45% and 30%, respectively. Lipid peroxidation, H2O2 content, and lactate dehydrogenase (LDH) activity increased and glutathione reductase (GR) activity decreased in a time- and dose-dependent manner in insecticide-fed larvae. However, catalase activity was not affected in insecticide-fed larvae. Larval growth decreased by ∼64% and 67% in larvae fed on diets with 100 μM of methylparathion and carbofuran. The results suggested that both the insecticides impede the mitochondrial respiratory functions and induced lipid peroxidation, H2O2, and LDH leak, leading to oxidative stress in cells, which contribute to deleterious effects of these insecticides on the growth of H. armigera larvae, along with their neurotoxic effects.  相似文献   

9.
This study was undertaken to evaluate the antioxidant effect of vitamins C and E against oxidative stress, apoptosis and histological changes of kidney and retina in CPF-treated rats. Forty male Sprague-Dawley rats were divided into four groups including the control group, the group treated orally with a single dose of CPF (63 mg/kg b.w.), the group injected intramuscularly (i.m.) with vitamin C (250 mg/kg b.w.), and intraperitonealy (i.p.) with vitamin E (150 mg/kg b.w.) daily for 7 days and the group treated with CPF (single dose) and injected with vitamins (for 7 days). The results showed that CPF induced apoptosis and severe oxidative stress as indicated by the significant increase in MDA and sFasL concentration and the significant decrease in GSH concentration in serum. Co-administration of vitamins C and E ameliorate these toxic effects and improved the histological pictures of kidneys and retinas. It could be concluded that combined administration of vitamins C and E is useful in the routine therapy for the protection against tissue damage induced by CPF.  相似文献   

10.
A hundred and sixty female white mice, each weighing 35-40 g, were used in this study. The animals were assigned into eight groups as one control group and 7 experimental groups. Groups 2, 3 and 4 were administered N-acetylcysteine (NAC), proanthocyanidin and vitamin E alone, at doses of 100 mg/kg/body weight/day by intra-peritoneal, oral route and, intramuscular, respectively. Group 5 was administered a single dose of cyfluthrin (100 mg g/kg/body weight ∼1/3LD50) by oral, whereas Groups 6, 7 and 8 were given cyfluthrin+NAC, cyfluthrin+proanthocyanidin and cyfluthrin+vitamin E, at the same dose, respectively. The administration of the drugs was initiated following the administration of cyfluthrin, and continued until the end of the seventh day of the study. Blood samples were collected from each group, 24 h, and 3, 7 and 9 days after the administration of cyfluthrin for the assessment of blood malondialdehyde (MDA) levels and superoxide dismutase (SOD) and catalase (CAT) activities. According to the data obtained, compared to the control group, increase in the plasma MDA level of the group administered cyfluthrin alone, and decrease in erythrocyte SOD activities in some periods and CAT activities in all periods were determined. On the other hand, especially, MDA levels and CAT activities were observed to move closer to values of the control group, in the groups that were administered NAC, proanthocyanidin and vitamin E in addition to cyfluthrin. In other words, in most periods, decrease in plasma MDA levels, and increase in erythrocyte CAT and SOD activities were observed in comparison to the group administered cyfluthrin alone. Statistical analyses demonstrated significant differences to exist between the groups on the third, seventh and ninth days with respect to plasma MDA levels, and the third and ninth days with respect to erythrocyte SOD and CAT activities (P < 0.05). However no significant difference was demonstrated in any of the periods in the groups that were administered NAC, proanthocyanidin and vitamin E alone in comparison to the control group (P > 0.05). In view of the parameters examined, animals were concluded to be affected by cyfluthrin and the administration of the three compounds at the indicated doses and for the indicated periods were considered to alleviate the adverse effects of cyfluthrin partly throughout the study period.  相似文献   

11.
Effects of paraquat dichloride (PQ) on the laccase (LAC) activity and some biochemical parameters of Trametes versicolor and Abortiporus biennis strains belonging to white rot Basidiomycetes fungi were examined. PQ water solution was added to 10-day-old stationary cultures cultivated on a liquid medium. Having measured the activity of extracellular laccase during the first 120 h, we found that the addition of 25 μM paraquat to T. versicolor and 20 μM paraquat to A. biennis cultures significantly stimulated the LAC activity in comparison to the control value (without PQ). Native PAGE gel analysis demonstrated that no new isoforms of laccase appeared in the presence of PQ stress. The increase of LAC activity was connected with dry weight loss. Enhanced activity of extracellular superoxide dismutase was observed during the first 48 h after PQ application in both investigated strains. The PQ-treatment also caused an evident increase of catalase activity, formaldehyde level and depletion of glutathione in T. versicolor as well as in A. biennis mycelia.  相似文献   

12.
Atrazine (ATR) and chlorpyrifos (CPF) are the most common pesticides found in freshwater ecosystems throughout the world. Herein, we investigated the oxidative stress responses and histopathological changes in the liver and gill of common carp after a 40-d exposure to CPF and ATR, alone or in combination, and a 20-d recovery treatment. We found that exposure to ATR, CPF or their mixture for 40 d could induce decrease in antioxidant enzyme (SOD, CAT and GSH-Px) activities and increase in MDA content in a dose-dependent manner in the liver and gill of common carp. Especially with regard to the pathological changes, the tissue damage increased in severity in a dose-dependent manner. The liver tissue of common carp revealed different degree of hydropic degeneration, vacuolisation, pyknotic nuclei, and fatty infiltration. The gills of common carp displayed varied degrees of epithelial hypertrophy, telangiectasis, oedema with epithelial separation from basement membranes, general necrosis, and epithelial desquamation. After a 20-d recovery treatment, the antioxidant enzyme activities and MDA content were significantly lower (p < 0.05) than in the corresponding exposure groups in all of the highest doses, but not in the lower doses. To our knowledge, this is the first report of subchronic oxidative stress and histopathological effects caused by ATR, CPF and their mixture in the common carp. Thus, the information presented in this study is helpful to understand the mechanism of ATR-, CPF- and ATR/CPF-mixture-induced oxidative stress in fish.  相似文献   

13.
Several environmental pollutants enhance the intracellular formation of reactive oxygen species, and can lead to the damage of macromolecules and a decrease in oxidant defences levels in fish. The effects of the herbicide oxyfluorfen on the activities of antioxidant enzymes such as catalase, superoxide dismutase, glutathione reductase, and glutathione S-transferase were evaluated in freshwater fish Oreochromis niloticus. These were determined in tilapia liver exposed to sublethal concentrations (0.3 and 0.6 mg/L at 7, 14, and 21 days of exposure. This study also analyzed the effects of oxyfluorfen on the total fatty acid profile. The results showed that CAT activity was higher in tilapia exposed to oxyfluorfen at the sampling days, except at the highest concentration after 21 days. Similarly, the enhancing effect of the herbicide was observed on the GR activity. However, its effect was moderate at the highest dose. On the contrary, fish treated with oxyfluorfen at both doses displayed a decrease in the SOD activity. After 7 days of treatment at both concentrations tilapia showed a significant increase in GST levels, although the enzymatic activity decreased at 14 and 21 days of exposition when compared with the control. The major saturated fatty acids measured in tilapia liver were the palmitic acid (C16:0; 17.9%) and stearic acid (C18:0; 8.7%). The exposure to oxyfluorfen caused a significant increase of the oleic acid (C18:1), whereas the amount of nervonic acid (C24:1) increased at all sampling data. The results of the present study should be taken in account when using tilapia as an environmental indicator species in studies of xenobiotic biotransformation and biomarker response, as well as in monitoring programmes.  相似文献   

14.
The objective of this paper is to present a short review of the state of knowledge regarding oxidative stress and its role in toxicity of organophosphate insecticides. The information has been obtained by searching the relevant literature using chemical abstracts, PubMed, scopus, medline and other data bases. The significance of the problem has been elucidated. Organophosphate insecticides (OP), apart from inhibition of cholinesterase and presence of cholinergic effects, oxidative stress and hyperglycemia has been reported by many authors as one of the adverse effects in poisoning by OP in both humans and animals. Oxidative stress induced by organophosphate leads to disturbances in the function of different organs and tissues. In subchronic or chronic OP exposition induction of oxidative stress has been reported, by many authors, as the main mechanism of its toxicity. Data were categorized according to animal studies (in vitro and in vivo) and clinical studies. On the basis of relevant literature it is concluded, that determination of oxidative stress parameters can be useful for monitoring people exposed to OP professionally. Supplementation with natural or synthetic antioxidant may be beneficial in OP poisoning, however the rat models of OP poisoning used in those studies do not completely reflect clinical situation. For this reason the clinical trials are needed to explore effectiveness of these antioxidants in protection against toxicity of OP.  相似文献   

15.
Cypermethrin belongs to the class of synthetic pyrethroids, which are being widely used as an insecticides in agricultural practices. The toxicity of cypermethrin is well studied in Drosophila melanogaster, fish, rats, mice, and is reported to cause neurotoxicity and oxidative stress during its metabolism. In this study, we evaluated the biological consequences of 4 h exposure to cypermethrin at sublethal concentrations (1, 5 and 15 mM) in Caenorhabditis elegans on physiological parameters such as egg laying, brood size, feeding and lifespan and oxidative stress parameters such as ROS, hydrogen peroxide levels, protein carbonyl, enzymatic antioxidants and glutathione levels. There was a significant and dose-dependent decrease in brood size (18-53%), egg laying (54-67%), feeding (29-58%) and marked decrease in lifespan (20%) at 15 mM of cypermethrin. Increase in levels of oxidative markers such as ROS (21-56%), intracellular hydrogen peroxide (17-62%), protein carbonyl (8-29%) and alteration in the activity of enzymatic antioxidants as well as depletion of glutathione (13-38%) were also observed. Our study offers evidence to show that cypermethrin induces significant oxidative stress in C. elegans and alters several physiological parameters in these worms, which can lead to impaired functioning, and survival of these worms.  相似文献   

16.
Organophosphate compounds are among the most widely used synthetic chemicals for controlling a wide variety of pests. Organophosphate (OP) poisoning continues to be major cause of morbidity and mortality in the third world countries. Indiscriminate use of these pesticides tends to leave residues on the objects of the environment. Present study is aimed to compare the potential of three commonly used OP pesticides, chlorpyrifos (CPF), methyl parathion (MPT) and malathion (MLT), to generate oxidative stress in rat tissues and to evaluate whether the combined exposure of these pesticides exerts synergistic or antagonistic effects. Results of the present study showed that CPF, MPT and MLT exposure to rats caused accumulation of malondialdehyde (MDA) and 4-hydroxynonanal (4HNE), the two major end products of lipid peroxidation, in liver, kidney, brain and spleen of rats. Combined exposure of these pesticides also resulted in accumulation of MDA and 4HNE in rat tissues but the increase was almost of the same order as observed in rat tissues given these pesticides singly. Exposure with CPF, MPT and MLT singly or in mixture, caused dose-dependent decrease in the activities of antioxidant enzymes namely, catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx), in rat tissues when compared with control, and the decrease observed was of the same order in all the groups. Acetylcholinesterase (AChE) activity, an indicator of OP poisoning, was also decreased in rat tissues in dose-dependent manner in CPF, MPT, MLT and mixture treated group. Differential increase in the levels of cytochrome P450 (cyt P450) in hepatic and extra-hepatic tissues of rats given CPF, MPT or MLT singly or in mixture, indicate different rates of metabolism of these pesticides. Results of the present study clearly show that CPF, MPT and MLT exposure singly or in mixture, induced oxidative stress in rat tissues which may be the major contributor of the overall toxicity of the OP pesticides. Combined exposure of these pesticides does not seem to potentiate the toxicity of each other and their toxic effects are not additive.  相似文献   

17.
Inhibition of cholinesterases (ChEs) has been widely used as an environmental biomarker of exposure to organophosphates (OP) and carbamate (CB) pesticides. More recently, this biomarker has been suggested as a putative biomarker for exposure to detergents. The use of cholinesterase inhibition as effect criterion in Ecotoxicology requires the previous characterization of the specific enzymatic forms that may be present in different tissues or organs. Different ChEs isoforms may be present in the same tissue and may exhibit distinct sensitivities towards environmental contaminants. This work intended to characterize the soluble ChEs present in pumpkinseed sunfish (Lepomis gibbosus) total head and dorsal muscle homogenates, through the use of different substrates and selective inhibitors of cholinesterasic activity. Also, the in vitro effects of sodium dodecylsulphate (SDS - anionic detergent) and chlorfenvinphos (organophosphate pesticide) on the enzymatic activity of the mentioned species were investigated. In general terms, the predominant cholinesterasic form present in both tissues was acetylcholinesterase. Chlorfenvinphos was responsible for inhibitory effects on AChE activity, while SDS did not cause any significant effect. These results suggest that in environmental monitoring programs, L. gibbosus head and dorsal muscle AChE can be an adequate diagnostic tool for exposure to OP pesticides; this conclusion however is not applicable to detergent residues. We also discuss the usefulness of L. gibbosus as an alternative model system and valuable option for freshwater ecotoxicological monitoring programs.  相似文献   

18.
The purpose of this study, carried out on male Wistar rats, was to evaluate the beneficial effects of garlic (Allium sativum) extract injections upon lindane-induced damages in testes, brain and thyroid function. Under our experimental conditions, lindane poisoning (in drinking water for 30 days, supplying about 50 mg/kg body weight per day) resulted in a decreased weight of testes, epididymides, prostate gland and seminal vesicles (−52%, −42%, −50% and −5%, respectively), a decrease of spermatozoa count and motility (−56%, −37%, respectively), an increased level of free thyroxin (+84%) and decreased levels of TSH and FSH in serum (−74%, −77%, respectively). In addition, lindane treatment triggered an oxidative stress in testes and brain as revealed by an increased level of lipids peroxidation (TBARS) (+96%,+92%), an increase of superoxide-dismutase activity in testes (+69%) and a decrease of glutathione-peroxidase and catalase activities in testes and brain (−52%, −34% and −49%, −45%, respectively). These lindane-induced changes were almost reversed to normal in animals injected with a garlic extract (an amount corresponding to 300 mg fresh garlic/kg/day), what confirms a beneficial effect of this vegetal source of anti-oxidants.  相似文献   

19.
Pesticides have been shown to possess marked immunotropic activity. The aim of this work was to study the in vitro effects of different concentrations (1–100 μM) of Mancozeb (fungicide) and Metribuzin (herbicide), on the proliferative responses of human and rat spleen lymphocytes stimulated by concanavalin A (ConA, mitogen), the Th1- (IL-2, INFγ) and Th2- (IL-4) cytokine secretion and on the intracellular oxidative status. The results showed that Mancozeb significantly reduced ConA lymphocyte proliferation in a dose-dependent manner in both humans and rats. It also decreased IL-2, INFγ and IL-4 secretion with a a shift away to Th1 phenotype. Metribuzin at low concentrations (1–10 μM) resulted in activation of ConA stimulated lymphocyte proliferation and cytokine production in both human and rat spleen cells. However, at high concentrations (25–100 μM), Metribuzin induced a dose-dependent inhibition of lymphocyte proliferation and cytokines. Changes in intracellular levels of reduced Glutathione, hydroperoxides and carbonyl proteins and in the activities of catalase and SOD were observed after Mancozeb and Metribuzin exposure reflecting oxidative stress and DNA damage specially at high concentrations.In conclusion, Mancozeb and Metribuzin had significant immunomodulatory properties with oxidative stress induction at high concentrations.  相似文献   

20.
Many classes of environmental pollutants can enhance the intracellular formation of reactive oxygen species, which can conduce to the damage of macromolecules and changes in oxidant defences levels in fish. In the present study it was analysed the hepatic levels of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione S-transferase (GST) in males and females of Nile tilapia Oreochromis niloticus exposed to paraquat (PQ), at 17 and 27 °C. Tilapia were exposed to a sublethal concentration of PQ (0.5 mg L−1) during 45 days. Condition factor and hepatosomatic index of males and females exposed to PQ were significantly higher when compared with the control group, except in females at 17 °C. SOD and GST activities were higher in males and females exposed to PQ than in the control group at 17 and 27 °C. The levels of both enzyme activities revealed that they are sex-dependent with males exposed to PQ showing higher SOD activity (5.05 ± 0.13 and 4.84 ± 0.23 U/g protein, respectively at 17 and 27 °C) than females (4.21 ± 0.07 and 3.87 ± 0.27 U/g protein, respectively at the same temperature). Similar results were observed in GST activity. A GR activity significantly higher (9.09 ± 0.44 and 7.97 ± 1.08 U/g protein at 17 and 27 °C, respectively) was observed in PQ-exposed females, but not in exposed males. Fish exposed to PQ showed higher values of SOD and GST activities than the control group at both temperatures. These results are gender-dependent, while GR activity was higher only in PQ-exposed females. No significant differences were found for SOD, GST and GR activities between fish exposed to 17 and 27 °C, although males and females showed higher values at 17 °C. In short, this work advanced new knowledge on influence of gender in same biochemical parameters in tilapia exposed to PQ and demonstrated that their effects could be observed at different temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号