首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extent to which heavy metal ions (Cu, Pb, Zn, Cd) are removed from aqueous solution by humic acid suspensions has been found to vary with solution pH, concentration of competing cations, nature of the organic material, and the complexing power of any ligands present. The amount adsorbed in acid media increased with pH until the threshold value required for partial dissolution of the solid, and formation of soluble metal humates, was exceeded The adsorption maximum pH, and the apparent capacity at lower values, varied with the substrate used and cation being sorbed. The affinity order sequence, as derived from adsorption isotherm studies, was Pb > Cu > Cd > Zn ? Ca > Mg. The retention of metal ion by the solid was reduced in the presence of ligands, with zero uptake occurring when the soluble complexes formed had a greater effective stability than those resulting from humic acid-metal ion interactions. With environmental systems having a high organic content, the humic acid component can play a dominant role in determining the final distribution of metal ions, and for predictive purposes, investigation of the effect of pH on uptake is more informative than measurement of adsorption isotherm parameters, since the observed trends reflect differences in functional group properties, relative affinities and solubility effects. The curves have minima which fall within the pH spreads encountered in natural systems, and small pH changes can cause significant variations in solution levels.  相似文献   

2.
The extent to which heavy metal ions (Cu, Pb, Zn, Cd) are removed from aqueous solution by clay suspensions (kaolinite, illite or montmorillonite) has been shown to vary with the nature of the clay, solution pH, concentration of competing cations, and the nature (and concentration) of any ligands present. The amount sorbed increases gradually with pH until the threshold value for formation of sparingly soluble hydroxy complexes is reached. The affinity order for divalent cations, and the nature of the sorption process also appear to vary with clay type.  相似文献   

3.
The addition of fulvic acid to clay suspensions (kaolinite, illite or montmorrillonite) resulted in increased uptake of Cu, Pb, Cd, and Zn ions over the pH range 3 to 6, due to the limited solubility of one of the metal-fulvate species formed. At higher pH values, residual metal ion was retained in solution, instead of precipitating as hydroxy species. The amount of total metal ion found in solution at equilibrium was determined by the quantity and type of clay added; the amount of organic acid present; and to a lesser extent, pH. The behavior of the clay-fulvic acid systems differed from that observed using other organic materials such as gelatine, tannic acid or a humic acid.  相似文献   

4.
The amount of sorbed metal ion released from CaC03 by 16 different extractants was found to vary with the chemical nature of the solution and the metal ion involved. In general, acid solutions dissolved a high proportion of both substrate and Cu, Ph, Cd coatings; complexing agents dissolved the same coatings but left most of the calcite; and competing cations (e.g. NH4 +, Ca2+) displaced primarily chemisorbed Cd and Cu. In Zn studies, little metal ion was retrieved by any extractant due to the limited solubility of the coatings formed at pH < 7.7. The diverse behavior observed in the sorption studies has been interpreted in terms of solubility and absorption equilibria. The pH of the CaC03 suspensions was high enough to precipitate all added Pb as hydroxy species, and excess Cu tended to precipitate at pH > 6.4 if one increased the soluble carbonate level (e.g. by adding acid). Unlike Cd and Cu, Zn was not chemisorbed; it formed sparingly soluble compounds such as ZnC03.2Zn(OH)2, with excess coming out as Zn(OH)2 at pH > 7.7. The significance of the results in respect to the mobility of metal ions in calcareous soils, and the evaluation of available levels, has been considered.  相似文献   

5.
We studied the properties of the soluble and dispersed compounds of Cu, Mn, Co, Ni, Pb, Zn, and Cd formed by the action of aerobically decomposing plant matter on the respective metal oxides. The metals were mobilized partly in association with colloidal humified organic matter, and partly in true solution as complexes that seemed to be anionic. In the presence of a clay soil there was no net mobilization of colloidally bound Cu, but the dialysable Cu complex was not appreciably sorbed by the mineral colloids and was leached from the reaction mixture. The metals were not precipitated under alkaline conditions from the dialysable complex forms. Material with similar complexing properties was found in the dialysable fractions of a soil organic matter extract, of water squeezed from a raw peat, and of laboratory lysimeter solutions from a podzol under Calluna. Below about pH 6 the exchange of Cu on a soil clay was not affected by the presence of colloidal decomposition products of lucerne. With Co, Ni, and Zn the corresponding pH value was about 4, and the critical value for Cu in the presence of colloidal soil organic matter was also about 4. Below these values the metal and organic matter sorption curves were diametrically opposed so that under these conditions Cu is apparently not strongly bonded to colloidal organic matter.  相似文献   

6.
A batch experiment was conducted to study the effect of pH on the sorption of copper (Cu), cadmium (Cd), zinc (Zn), and nickel (Ni) by cement kiln dust (CKD). The experiment was carried out by adding 25 mL of solutions containing concentrations of 200, 400, 600, 800, and 1000 mg/L of each of these heavy metal cations to 1.00 g of CKD. The pH of these suspensions was adjusted to 2, 5, and 7 as well as non-adjusted. The sorbed amount (Cs) and the sorption percentage of Cu, Cd, Zn, and Ni by CKD increased with increasing the suspension pH. The adsorption data of Cu, Cd, Zn, and Ni were generally well correlated with Langmuir model when the suspension pH was adjusted to 5, 7, non-adjusted and 7, respectively. However, they could be well described by Freundlich model when the suspension pH was adjusted to 5, 2, non-adjusted and 5, respectively.  相似文献   

7.
The ability of seventeen different chemical solutions to displace heavy metal ions (Pb, Zn, Cu, Cd), pre-adsorbed on clay (kaolinite, illite and montmorillonite) at either pH 5 or 7, has been examined and the relative efficiency of each extractant ascertained. Of the reagents used, only EDTA (0.001 M, pH 7) quantitatively released all four ions from the three clays; oxalic acid (0.1 M, pH 3.3), totally displaced at least three ions from each clay. Other reagents, for example ammonium oxalate (0.1 M), ammonium nitrate (0.01 M), nitric acid (0.1 M) and sodium citrate (0.01 M) effectively displaced one or more heavy metal ions from individual clays. Near quantitative displacement by an excess of Na (0.1 M) or Ca (0.05 M) ions was observed only on montmorillonite. Pre-adsorption at pH 7 was accompanied by precipitation of excess metal ion, and the extraction efficiency in these systems was determined by the ability of the reagent to both dissolve hydrous oxide species and displace sorbed metal ions. The implications of the results with respect to the nature of the adsorption process and relevance to environmental systems have been considered.  相似文献   

8.
Thin film A.S.V. was used to study the specific sorption of Cd, Pb and Cu by hydrous oxides (Mn, Fe, and Al) or clay mineral suspensions from acetate buffer solutions containing 10 to 100 μg L?1 of each metal ion. The amount sorbed varied with system pH (range 3 to 9), substrate crystal form, the ratio of adsorbent to absorbate present, and the metal ion involved. Uptake by hydrous Mn(IV) oxide was near total over the whole pH range. With other particulates the pH required for onset of sorption varied with solid phase composition, with uptake subsequently increasing steadily with increasing pH. In general, affinity and relative uptake values followed the sequences Pb > Cu > Cd and Mn(IV) oxides > Fe(III) oxides > A1(OH)3 > clays > iron ores. The solid phases loaded with sorbed metal were equilibrated with a range of extractant solutions used in soil/sediment studies, and the results confirmed that chemi-sorption was the main retention process. Significant release was achieved using extractants that attacked the substrate or formed stable complexes with the metal ion.  相似文献   

9.
This study investigated the effect of different farming practices over long time periods on the sorption‐desorption behavior of Cu, Cd, and Zn in soils. Various amendments in a long‐term field experiment over 44 y altered the chemical and physical properties of the soil. Adsorption isotherms obtained from batch sorption experiments with Cu, Cd, and Zn were well described by Freundlich equations for adsorption and desorption. The data showed that Cu was adsorbed in high amounts, followed by Zn and Cd. In most treatments, Cd ions were more weakly sorbed than Cu or Zn. Generally, adsorption coefficients KF increased among the investigated farming practices in the following order: sewage sludge ≤ fallow < inorganic fertilizer without N ≈ green manure < peat < Ca(NO3)2 < animal manure ≤ grassland/extensive pasture. The impact of different soil management on the sorption properties of agricultural soils for trace metals was quantified. Results demonstrated that the soil pH was the main factor controlling the behavior of heavy metals in soil altered through management. Furthermore, the constants KF and n of isotherms obtained from the experiments significantly correlated with the amount of solid and water‐soluble organic carbon (WSOC) in the soils. Higher soil pH and higher contents of soil organic carbon led to higher adsorption. Carboxyl and carbonyl groups as well as WSOC significantly influenced the sorption behavior of heavy metals in soils with similar mineral soil constituents.  相似文献   

10.
Solubility control of Cu, Zn, Cd and Pb in contaminated soils   总被引:21,自引:0,他引:21  
We developed a semiempirical equation from metal complextion theory which relates the metal activity of soil solutions to the soil's pH, organic matter content (OM) and total metal content (MT). The equation has the general form: where pM is the negative logarithm (to base 10) of the metal activity, and a, b and c are constants. The equation successfully predicted free Cu2+ activity in soils with a wide range of properties, including soils previously treated with sewage sludge. The significant correlation of pCu to these measured soil properties in long-contaminated soils suggests that copper activity is controlled by adsorption on organic matter under steady state conditions. An attempt was made from separate published data to correlate total soluble Cu, Zn, Cd and Pb in soils to soil pH, organic matter content and total metal content. For Cu, the total Cu content of the soil was most highly correlated with total soluble Cu. Similarly, total soluble Zn and Cd were correlated with total metal content, but were more strongly related to soil pH than was soluble Cu. Smaller metal solubility in response to higher soil pH was most marked for Zn and Cd, metals that tend not to complex strongly with soluble organics. The organic matter content was often, but not always, a statistically significant variable in predicting metal solubility from soil properties. The solubility of Pb was less satisfactorily predicted from measured soil properties than solubility of the other metals. It seems that for Cu at least, solid organic matter limits free metal activity, whilst dissolved organic matter promotes metal solubility, in soils well-aged with respect to the metal pollutant. Although total metal content alone is not generally a good predictor of metal solubility or activity, it assumes great importance when comparing metal solubility in soils having similar pH and organic matter content.  相似文献   

11.
Abstract

Laboratory experiments were carried out to evaluate lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd) sorption‐desorption by three soils of contrasting characteristics. Talamanca (silt loam, montmorillonite, Calcic Haploxeralfs), Mazowe (clay, kaolinite, Rhodic Kandiustalf), and Realejos (sandy silt loam, allophane, Typic Hapludands). A second objective was to study the effect of nitriloacetic acid (NTA) on the sorption process. The Talamanca soil, which had a native pH of 6.4 and presented the highest effective cation exchange capacity (ECEC), sorbed more of each of the metal tested than did the other two soils. When the other two soils were compared metal sorption was also related to pH and ECEC. The very low sorption capacity showed by Realejos may be attributed to the low net surface negative charge density of this soil, arising from its allophanic nature. A common feature of the three soils was the relative strong sorption of both Pb and Cu relative to Cd and Zn with Pb showing the highest sorption levels. The selectivity sequences of metals retention were Pb>Cu>Zn>Cd for Talamanca soil, Pb>Cu>Zn≈Cd for Mazowe, and Pb>Cu>Cd>Zn for Realejos. Metal desorption values were low. The order of metal desorption (Cd≈Zn>Cu>Pb) was the same for the three soils studied. Quantitative differences observed in the extractability of the sorbed metals between the soils (Realejos>Mazowe>Talamanca) indicated that soil properties which enhanced metal sorption contributed at the same time to slow down the backward reaction. The addition of NTA to the soil suspension significantly depressed metal sorption by the three soils investigated. Compared with the free ligand system Pb, Cu, Zn, and Cd sorption in the presence of NTA decreased roughly 50%.  相似文献   

12.
有机酸对高岭石, 针铁矿和水铝英石吸附镉的影响   总被引:12,自引:0,他引:12  
LIAO Min 《土壤圈》2006,16(2):185-191
Effects of organic acids (oxalic, acetic, and citric) on adsorption characteristics of Cadmium (Cd) on soil clay minerals (kaolinite, goethite, and bayerite) were studied under different concentrations and different pH values. Although the types of organic acids and minerals were different, the effects of the organic acids on the adsorption of Cd on the minerals were similar, i.e., the amount of adsorbed Cd with an initial solution pH of 5.0 and initial Cd concentration of 35 mg L^-1 increased with increasing concentration of the organic acid in solution at lower concentrations, and decreased at higher concentrations. The percentage of Cd adsorbed on the minerals in the presence of the organic acids increased considerably with increasing pH of the solution. Meanwhile, different Cd adsorption in the presence of the organic acids, due to different properties on both organic acids and clay minerals, on kaolinite, goethite, or bayerite for different pHs or organic acid concentrations was found.  相似文献   

13.
Influence of carbonate on the reaction of heavy metals in soils   总被引:3,自引:0,他引:3  
The reaction of Cu, Zn and Cd with soils with carbonate contents ranging from 0 to 75 mg g−1 was studied before and after removal of soil carbonates with acetate buffer at pH 5. Treatment with acetate buffer caused a strong decrease in metal retention by those soils containing carbonates, although if no carbonate was originally present, the treatment caused little effect or even an increase in the amounts sorbed. Before the treatment, adsorption of increasing amounts of Cu and Zn was accompanied by a continuous increase in Ca + Mg released, and those soils containing carbonate released Ca + Mg in excess of their exchangeable amounts, due to dissolution of carbonates and/or penetration of the heavy metal into the carbonate structure. It is suggested that Cu was preferentially retained by the treated soils through precipitation of Cu oxide, and by adsorption on the soil carbonates in the case of the original samples. Zn was removed from the solution by the original carbonate soils through formation of ZnCO3. Treated soils were likely to retain Zn by cation exchange and/or adsorption. Adsorption was probably the main process involved in retention of Cd. In all cases pH was the master variable in controlling the extent and probably the nature of the reaction.  相似文献   

14.
The present study investigated the impact of long‐term soil management on the metal retention capacity of soil. We examined the sorption behaviour of Cu, Cd and Zn in soils and in the various particle‐size fractions of these soils, which had been amended with farmyard manure, mineral fertilizers or were fallow for 38 years in a long‐term field experiment. The soils investigated contained different amounts and origins of organic matter and differed in soil pH, but the mineral phase showed less response to the different soil managements. Batch adsorption and desorption experiments as well as a sequential fractionation schema, which defines seven geochemical fractions, were used to investigate the retention properties of soil. Sequential extraction was conducted with original as well as with metal‐spiked soils. Results showed that amounts of Cu, Cd and Zn retained differed by a factor of more than 3 among the treatments in the long‐term field experiment, when a massive concentration of metal was added to soil. An increased sorption on smaller particle size fractions occurred (clay ≫ silt > fine sand ≥ coarse sand) due to the larger surface area as well as the greater carbon content in the smaller fractions. Soil sorption behaviour in another long‐term field experiment was estimated based on the present particle‐sorption data. Differences in the sorption behaviour were related to differences in soil mineralogy and amounts of Fe‐ and Mn‐oxides. Fractionation of the original and the metal‐spiked soil underlined the contribution of organic matter to sorption capacity (sequence: Cu ≫ Cd > Zn). Different organic matter contents and a different soil pH considerably changed the amounts of metals in the defined geochemical fractions. Freshly added Cu, Cd and Zn ions were found mainly in more mobile fractions. In contrast, metals in non‐spiked soils appeared in less‐mobile fractions reflecting their long‐term sorption behaviour.  相似文献   

15.
This study evaluated the effect of competing copper, zinc, cadmium and nickel ions in 0.01 M Ca(NO3)2 on heavy metal sorption and desorption by soil clay fractions. Initial Cu addition levels varied from 99 mg kg-1 to 900 mg kg-1 and Zn, Cd and Ni levels were 94, 131 and 99 mg kg-1, respectively. Sorption of Cu conformed to a Freundlich equation. The amounts of metals not displaced by successive 48 h desorption cycles with 0.01 M Ca(NO3)2 were considered ‘specifically adsorbed’. Total sorption of Zn and Cd generally decreased in the order: Vertisol > Gleyic Acrisol > Planosol clay. More than 70% of the copper was specifically sorbed. Specific sorption of Zn was depressed by competition with Cu in the three clays investigated. At surface coverages higher than 200 mg Cu per kg of soil clay, zinc sorption in the Planosol and Gleyic Acrisol clays took place at low affinity sites. The exchangeable component of sorbed cadmium accounted for >:60% of the sorption in the Vertisol clay, >70% in the Gleyic Acrisol clay and was almost 100% in the Planosol clay. Nickel was not retained by the Planosol and Gleyic Acrisol clays and was ionexchangeably adsorbed by the Vertisol clay. At the conditions studied, Ni and Cd remain a ready source of pollution hazard.  相似文献   

16.
The sorption of metal ions (Pb2+, Zn2+ and Cu2+) and soil humic acids (HA) from aqueous solutions onto mineral particles (sand, calcite and clay) was investigated using a batch equilibrium system. The sorption reactions in two- component systems (heavy metals-mineral particles and humic acids- mineral particles), as well as interactions in three-component system (heavy metals-humic acids-mineral particles) were examined. Results showed that the presence of humic acids, dissolved or bound onto mineral surfaces, considerably influenced the fixation of heavy metals. The various effects, depending on mineral type, humic concentration and specific metal-ion, were observed in three- component system. Sorption of Cu2+-ions on all minerals studied rapidly increased as the concentration of dissolved HA increased. The amount of Pb2+-ions sorbed on sand slightly decreased, while on kaolin increased between 15 and 20%. Sorption of Zn2+-ions on all minerals studied decreased at pH 4. At pH 5.5 the sorption of Zn2+-ions onto calcite decreased, while on kaolin and sand increased as a function of the humic acid concentration giving the curve with maximum at c(HA) = 2.5 mmol C L-1. At pH 6.5 sorption onto kaolin and sand increased. This effect occurs as a result of the conditional stability constant of Zn-HA complexes increasing at higher pH which in turn promotes the chelation of Zn2+-ions to mineral- bound humic substances. The enhanced sorption of metal ions from the aqueous phase in three-component systems is not only the result of mineral sorption of free metals but also the result of chelation with HA sorbed on the mineral surface.  相似文献   

17.
The adsorption characteristics of heavy metals: cadmium(II), chromium(III), copper(II), nickel(II), lead(II), and zinc(II) ions by kaolin (kaolinite) and ballclay (illite) from Thailand were studied. This research was focussed on the pH, adsorption isotherms of single-metal solutions at 30–60 °C by batch experiments, and on ion selectivityin mixed and binary combination solutions. It was found that, except Ni, metal adsorption increased with increased pH of the solutions and their adsorption followed both Langmuir and Freundlich isotherms. Adsorption of metals in the mixture solutions by kaolin was: Cr > Zn > Cu ≈ Cd ≈ Ni > Pb, and for ballclay was: Cr > Zn > Cu > Cd ≈ Pb > Ni. The adsorption of metals was endothermic, with the exception of Cd, Pb and Zn for kaolin, Cu and Zn for ballclay. Kaolin and ballclay exhibited relatively hard Lewis base adsorption site. The presence of other metals may reduce or promote the adsorption of heavy metals. The presence of Cr3+ induced the greatest reduction of metal adsorptiononto kaolin, as did the presence of Cu2+ for ballclay.  相似文献   

18.
膨润土对重金属离子的竞争性吸附研究   总被引:6,自引:0,他引:6  
通过间歇震荡平衡法研究了膨润土对4种重金属离子Cd2+、Zn2+、Cu2+、Pb2+的竞争性吸附特性及其机制。研究结果表明:与单一离子体系比较,膨润土在竞争体系中对Cd2+、Zn2+、Cu2+、Pb2+4种重金属离子的吸附量均呈下降趋势。竞争体系下,其它重金属离子的存在显著抑制了膨润土对Cd2+的吸附,降幅为19.20%~37.50%,而对Pb2+的吸附能力几乎没有影响,降幅仅为0.41%~2.83%。膨润土对4种重金属离子的富集系数,其大小顺序依次为Pb2+>Cu2+>Zn2+>Cd2+。该选择性吸附顺序与重金属离子的一级水解常数密切相关。  相似文献   

19.
The effect of pH on the adsorption of copper (Cu), lead (Pb) and cadmium (Cd) by a peat soil was studied, and the results compared with those corresponding to cation binding by a dissolved peat humic acid (HA), and interpreted with a NICA–Donnan model. A potentiometric titration technique was used to determine the adsorption isotherms for H+, at different ionic strengths, and for Cu2+, Pb2+ and Cd2+ at different pH values, in a peat soil. The effect of the ionic strength on proton binding was similar for the soil (solid) organic matter and for dissolved HA. The adsorption isotherms for cation–peat and the binding curves cation–dissolved HA are almost parallel, although more cation was adsorbed per kg of C in the dissolved HA. The effect of pH on cation binding is similar for dissolved organic matter and for the organic soil. At low metal concentration the amount of adsorbed metal followed the order Cu2+ > Pb2+ > Cd2+. The cation-binding parameters obtained with the NICA–Donnan model allow excellent simulation of the effect of pH on the adsorption of Cu, Pb and Cd ions in the studied peat soil. The binding constants for the peat suspension were greater than the corresponding generic parameters for dissolved HA. Speciation calculations showed that for Cu and Pb, the most abundant fraction was the metal adsorbed on peat, whereas for Cd the most abundant fraction was dissolved metal.  相似文献   

20.
THE SPECIFIC ADSORPTION OF DIVALENT Cd, Co, Cu, Pb, AND Zn ON GOETHITE   总被引:17,自引:0,他引:17  
The specific adsorption of divalent Cd, Co, Cu, Pb, and Zn on goethite is measured as a function of pH. For each mole of heavy metal adsorbed approximately two moles of H+ ions are displaced from the interface. Using these results the heavy metal adsorption data are expressed as functions of the solution concentrations of both H+ and metal ions, and the interfacial reaction is described by the equation, 2SH+M2+= S2M+2H+. The adsorption data are consistent with an electrochemical model of the simultaneous adsorption of H+ ions and divalent metal ions on to the oxide. The intrinsic affinities of the metal ions for the oxide surface increase in the order, Cd < Co < Zn < Pb < Cu. However, besides the affinity of the metal ion for the surface, the adsorption curves are considered to be influenced by surface charge, the adsorption density of the metal ions and their size. The analysis of the data in terms of H+ and M2+ ion adsorption is considered to be complementary to the hydrolysis model for heavy metal adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号