首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose acetate (CA) films containing anatase type titanium dioxide (TiO2) nanoparticles were prepared by solution casting. The film surface was modified by UV irradiation using a grid type UV irradiator. The UV irradiation caused slight increase in photodegradation of the CA films with TiO2 compared to the CA film alone. However, CA films irrespective of TiO2 content did not show a significant enzymatic degradation by a cellulase fromAspergillus niger without UV irradiation. Upon UV irradiation, the biodegradability remarkably improved even in the CA film without TiO2. The irradiation of CA films decreased both the water contact angle and the degree of substitution (DS) implying the decrease in acetyl groups of the CA film surface due to the photo-scission of the acetyl group and photooxidation, resulting in more facile biodegradation of the surface film layer. The substantial enhancement in biodegradation of the UV irradiated CA film containing TiO2 was attributed to the increased hydrophilicity, lowered DS and zeta potential due to the photoscission and the photooxidation effect of UV light. Also the increased surface area of the CA film due to the photocatalysis of TiO2 particles may encourage the facile biodegradation.  相似文献   

2.
The poly(vinyl acetate) (PVAc)/zinc oxide (ZnO) microcapsule and PVAc/titanium dioxide (TiO2) microcapsule were synthesized via in-situ emulsion polymerization method. The PVAc/ZnO microcapsule and PVAc/TiO2 microcapsule were characterized by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis(TG), transmission electron microscopy (TEM), and UV-visible spectroscopy (UV-vis). Effect of PVAc/ZnO microcapsule and PVAc/TiO2 microcapsule on properties of poly(lactic acid) (PLA) was evaluated by UV-vis, SEM and mechanical properties test. The results showed that the addition of PVAc/ZnO and PVAc/TiO2 microcapsules as a UV-blocking additive could significantly enhance UV-blocking property of PLA/PVAc/ZnO microcapsule composites and PLA/PVAc/TiO2 microcapsule composites compared with pure PLA, PLA/ZnO composites and PLA/TiO2 composites. The mechanical properties of PLA/PVAc/ZnO microcapsule composites were better than those of PLA/ZnO composites due to good dispersability and compatibility of PVAc/ZnO microcapsule in PLA matrix. Also, the mechanical properties of PLA/PVAc/TiO2 microcapsule composites were better than those of pure PLA and PLA/TiO2 composites. This study demonstrates the great potentials of the intrinsically UV shield additive PVAc/ZnO and PVAc/TiO2 microcapsules in the application of high performance matrix resin and composite material.  相似文献   

3.
Nano-TiO2 based multilayer nanocomposite films were fabricated on cationically modified woven cotton fabrics by layer-by-layer molecular self-assembly technique. Cationization process was used to obtain cationic surface charge on cotton fabrics. Attenuated total reflectance Fourier transform infrared spectroscopy analyses were used to verify the presence of cationic surface charge and multilayer films deposited on the fabrics. Scanning electron microscope micrographs of poly(sodium 4-styrene sulfonate)/TiO2, nano polyurethane/TiO2, and TiO2/poly(diallyldimethylammonium chloride) multilayer films deposited on cotton fabrics were taken. With nano-TiO2 based multilayer film deposition, the protection of cotton fabrics against UV radiation is enhanced. The UV protection durability of the self-assembled multilayer films deposited on the cotton fabrics was analyzed after 10 and 20 washing cycles at 40 °C for 30 min. Air permeability and whiteness value analysis were performed on the untreated and multilayer film deposited cotton fabrics. The effect of layer-by-layer deposition process on tensile strength properties of the warp and weft yarns was determined.  相似文献   

4.
Titanium dioxide (TiO2) is one of the excellent photocatalysts used for degradation of environmetal pollutants. In this work, 2.5, 5.0 and 7.5 wt.% of silver (Ag)-loaded TiO2 nanofibers of mean size 52–134 nm were synthesized by electrospinning method. These electrospun nanofibers were calcined at 500 °C to enable the transformation of Rutile (R) phase to Anatase (A), elimination of reaction moieties from the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading on the morphology, crystal structure, phase transformation, and band gap of these electrospun nanofibers have been characterized by scannining electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), raman spectroscopy and UV-visible spectroscopy. These nanofibers exhibited a red-shift in the absorbance edge and a significant enhancement of light absorption in the wavelength range of 250–550 nm. These electrospun nanofibers were investigated for photodecomposition of methylene blue (MB), and photocatalytic decolorization rates were determined by pseudo-first-order equation. The rate constants for the pure and those of 2.5, 5.0, and 7.5 wt% Agloaded TiO2 nanofibers were computed to be 0.1439 min-1, 0.1608 min-1, 0.1876 min-1, and 0.2251 min-1 respectively.  相似文献   

5.
In this research work, multifunctional cotton fabric comprising of UV protection, superhydrophobicity and antibacterial activity has been developed using facile pad-dry-cure method. In the first step, the concentration of repellent chemical has been optimized. Then, formulations containing nanoparticles of ZnO or TiO2 along with optimized concentration of repellent chemical and organic-inorganic binder have been applied to cotton fabric followed by the evaluation of functional properties. The surface morphology and elemental composition of treated fabric has been characterized through SEM and EDX, respectively. The treated samples have shown promising UV protection, superhydrophobicity and antibacterial properties durable upto 20 washing cycles.  相似文献   

6.
For the first time, novel polyacrylonitrile (PAN)/electroconductive TiO2 (EC-TiO2) nanoparticles composite fibers have been successfully spun via wet-spinning. The composite fibers had uniform diameter and homogeneous surface. Moreover, at low content of EC-TiO2 nanoparticles, the composite fibers realized a transition from an insulator to a conductor. This work has provided a simple and effective avenue for the production of PAN/EC-TiO2 nanoparticles composite fibers that have great potential applications in the antistatic textiles.  相似文献   

7.
Facile embedding of TiO2 nanoparticles onto cotton fabric has been successfully attained by ultraviolet light irradiations. The adhesion of nanoparticles with fibre surface, tensile behaviour and physicochemical changes before and after ultraviolet treatment were investigated by scanning electron microscopy, energy dispersive X-ray and inductive couple plasma-atomic emission spectroscopy. Experimental variables i.e. dosage of TiO2 nanoparticles, temperature of the system and time of ultraviolet irradiations were optimised by central composite design and response surface methodology. Moreover, two different mathematical models were developed for incorporated TiO2 onto cotton and tensile strength of cotton after ultraviolet treatment and used further to testify the obtained results. Self-clean fabric through a synergistic combination of cotton with highly photo active TiO2 nanoparticles was produced. Stability against ultraviolet irradiations and self-cleaning properties of the produced fabric were evaluated.  相似文献   

8.
Zinc oxide (ZnO) and silicon carbide (SiC) nanoparticles were compounded with polyethylene terephthalate (PET) by using a twin screw extruder, and their effect on the UV absorption and heat transfer in PET/ZnO and PET/SiC composite films was investigated. The presence of ZnO and SiC in the PET matrix was verified by X-ray diffraction. The UV absorbance of both PET/ZnO and PET/SiC composite films increased with increasing particle content. The UV absorbance of PET/SiC was higher than that of PET/ZnO under the same particle content. A thermal imaging camera was used to analyze the heat transfer in PET/ZnO and PET/SiC composite films after heating them to 40 °C. As the content of ZnO and SiC particles increased, the temperature decreased more rapidly. PET/SiC showed faster cooling than PET/ZnO because of the higher thermal conductivity of SiC compared to that of ZnO. Response temperature surfaces for PET/ZnO and PET/SiC were obtained by using an exponential decay function and a second order equation, and the elapsed times to cool to room temperature were estimated.  相似文献   

9.
The aim of this research was to study TiO2 nanocoatings formation and to investigate their self-cleaning effects when applied on cellulose materials. Two different approaches for achieving nanocoatings were used. First, coatings were generated in situ through an acid and alkaline catalyzed sol-gel process with or without added water. Another type of coatings was prepared starting from commercial TiO2 P25 powder. In order to acquire homogeneous coatings from TiO2 P25 nanoparticles with uniform nanoparticles size distribution, pH of aqueous TiO2 P25 dispersions was varied. The dispersion preparation conditions were studied by dynamic light scattering (DLS) and zeta potential (ζ-potential) analysis. The resulting TiO2 nanocoatings were analyzed in terms of their surface morphology using scanning electron microscopy (SEM). Nanocoatings obtained from pure aqueous dispersions of TiO2 P25 nanoparticles were inhomogeneous with huge agglomerates; however by changing the pH of dispersion and consequently changing the surface charge of TiO2 P25 nanoparticles as well, more homogeneous nanocoatings with uniform TiO2 nanoparticles distribution were prepared. Significant differences between solgel derived coatings were observed. Sol-gel process without added water yielded more homogeneous coatings than sol-gel process with addition of water. Completely different surface morphologies were obtained using alkaline or acid catalyst. Acid catalyzed sol-gel process yielded nanocoatings with long, extended, thin structures; contrary, under alkaline conditions particles grow in size with decrease in number. Fourier transform infrared (FTIR) spectroscopy was used to study the coatings’ microstructure. Furthermore the formation of mono-disperse nanoparticles on the fiber surface resulted in enhanced photocatalytic activity. Degradation of colored stain applied on TiO2-treated samples was investigated by colorimetric measurements. Photocatalytic activity of nanocoatings prepared via acid catalyzed sol-gel process without water addition was comparable to that of nanocoatings derived from aqueous dispersions of commercial TiO2 P25 nanoparticles.  相似文献   

10.
Nylon 6 fabric with self-cleaning properties was prepared by corona discharge pre-treatment and coating with TiO2 nanoparticles (NPs) using pad-dry-cure technique. The self-cleaning property was studied by discoloration of methylene blue (MB), ketchup, tea and coffee stains from the corona+TiO2 treated nylon-6 fabric. Color difference (ΔΕ*), reflectance (R) and K/S of MB stain were investigated by diffuse reflectance spectrophotometry. The MB stain was almost completely removed from the corona+TiO2 treated nylon surface after 24 h under UV light/daylight irradiation. Both of these phenomena (corona and TiO2) led to an increase in the discoloration of stains under UV and daylight irradiations. The EDS analysis showed an increase in the concentration of deposited TiO2 NPs coating after corona treatment. The FE-SEM images revealed that the surface of nylon 6 was coarser after the corona treatment. Also, the FE-SEM micrographs exhibited that a uniform layer of TiO2 NPs was formed on the corona treated nylon fabric. The corona+TiO2 treated nylon illustrated antibacterial activity against E. coli and B. subtillis microorganisms. The EDS and FE-SEM analysis confirmed that after 5 washing cycles, the amount of TiO2 NPs was higher on the surface of corona+TiO2 treated nylon than that of the fabric only treated with TiO2 without corona pretreatment. This result justifies that the corona+TiO2 treated nylon fabric with appropriate self-cleaning property can be applied cost-effectively in the textile industry.  相似文献   

11.
A ternary composite consisting of carboxymethyl chitosan, hemicellulose, and nanosized TiO2 (CHNT) was prepared by incorporating TiO2 nanoparticles into the pre-synthesized carboxymethyl chitosan-hemicellulose polysaccharide network. The microstructure and chemical composition of the obtained CHNT was characterized by TEM, SEM, FTIR, and TGA. The adsorption of some toxic heavy metals including Ni(II), Cd(II), Cu(II), Hg(II), Mn(VII), and Cr(VI), onto the as-prepared CHNT composite was investigated. The effects of pH, temperature and contacting time on the adsorption process were studied. Results revealed that the CHNT composite exhibited efficient adsorption capacity of the above metal ions from aqueous solution due to its favorable chelating groups in structure. The adsorption process was best described by the pseudo-second-order kinetic model, while isotherm modeling revealed that the Langmuir equation better described the adsorption on CHNT as compared to Freundlich model. Moreover, the CHNT loaded metal ions can be easily regenerated with EDTA and reused repeatedly up to five cycles. The environmental friendly hybrids were expected to be a promising candidate for future practical application in heavy metal contaminated water treatment.  相似文献   

12.
In this study, a new finishing technique is introduced through treatment of wool fabric with graphene/TiO2 nanocomposite. Graphene oxide/titanium dioxide nanocomposite first applied on the wool fabric by hydrolysis of titanium isopropoxide in graphene oxide suspension and then this coating chemically converted by sodium hydrosulfite to graphene/TiO2 nanocomposite. The homogenous distribution of the graphene/TiO2 nanocomposite on the fiber surface was confirmed by field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS) and X-ray mapping. X-ray diffraction patterns proved the presence of titanium dioxide nanoparticles with a crystal size of 127 Å on the treated wool fabric. Also, the defect analysis based on X-ray photoelectron spectroscopy (XPS) established the composition of the nanocomposite. Other characteristics of treated fabrics such as antibacterial activity, photo-catalytic self-cleaning, electrical resistivity, ultraviolet (UV) blocking activity and cytotoxicity were also assessed. The treated wool fabrics possess significant antibacterial activity and photo-catalytic self-cleaning property by degradation of methylene blue under sunlight irradiation. Moreover, this process has no negative effect on cytotoxicity of the treated fabric even reduces electrical resistivity and improves UV blocking activity.  相似文献   

13.
We report a facile approach to fabrication and characterization of cationic titanium dioxide (TiO2+) on poly (vinyl alcohol)/poly (acrylic acid) (PVA/PAA) composite electro-spun nanofibrous mat. The aim of this study is to develop a “functional electrospun nanofibrous mat” as a sustainable approach to superior photocatalytic degradation of organic colorants. For that, the PVA/PAA nanofibrous mat was prepared by electrospinning of PVA and PAA solution according to an aspect ratio of 1:1 and later water stability was induced by the thermal cross linking at an elevated temperature of 145 °C for 30 minute. By means of electrostatic layer-by-layer (LbL) assembly, cationic titanium dioxide (TiO2+, ~19 nm) was immobilized on the surface of the water stable nanofibrous mat. As functionalized composited nanofibrous mat was characterized by using scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis and thermogravimetric analysis (TGA). Superior competency of the functionalized nanofibrous mat towards photocatalytic degradation of organic dye (methyl blue) in aqueous solution was observed by using UV-visible spectrophotometer with quantitative measuring method. The result indicates a complete degradation of methyl blue within 40 mins and superior reusability upto 5 cycles application. The study signifies the prospect of using electrospun nanofibers to manipulate the catalytic activity, which could be a foundation for further rational design of various composite nanofibrous materials.  相似文献   

14.
Present paper reports a method of preparing polymer composite electrolyte nanofiber mat using polyvinyl alcohol (PVA), ammonium thiocynate (NH4SCN) salt, and aluminium oxide (Al2O3) nano particles based on electrospinning technique. Two-stage process of preparation of nanofibers, namely, preparation of nano particles filled PVA electrolyte gel solution followed by its electrospinning has been used. The so obtained nanofibers have been characterized by XRD, DSC, SEM, and Conductivity measurements. XRD patterns affirm the formation of nanocomposite while SEM pictures reveal formation of fibers on a nano scale format (300–800 nm). Fibers of the electrolytes are seen to be thermally stable. Ionic conductivity of electrolyte fiber is seen to improve in the presence of nano filler at room temperature with a maximum at 5.31×10−3 Scm−1 for 4 wt% filler concentration, which is comparable to that for corresponding dried gel electrolyte films.  相似文献   

15.
Anatase TiO2 nanoparticles was in-situ formed on the cotton fabric by using tetrabutyl titanate (TBT) as a precursor through the normal pressure hydrothermal method. X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV visible spectra (UV-VIS), ATR-IR were used as the characterization techniques. Photocatalytic performance of TiO2 on the fabric surface was evaluated by methylene blue (MB), 4 kinds of the common living stains and three dyes under ultraviolet and visible light radiation. XRD analysis found that the TiO2 loaded on the fabric was mainly anatase crystalline phase with particle size of 6.4 nm. SEM observed that a large number of nano TiO2 particles are distributed on the fabric surface. UV-VIS test indicated that theTiO2-coated fabric possessed an obvious absorption for ultraviolet. ATR-IR analysis indicated that the nano-TiO2 possesses a strong affinity with the hydroxyl group of the cotton fabric, and the soaping tests showed that the TiO2 was firmly bonded with the fabrics. The treated fabrics have good degradation ability for MB aqueous solution, and could degrade azo, anthraquinone and phthalocyanine dyes. The order of degradation of the common life stains was: pepper oil> tea > coffee > soy sauce.  相似文献   

16.
Contaminants are often found in aquatic environments, for instance, heavy metals, dyes, parasites, pesticides, hormones and pharmaceuticals. Therefore, large amounts of these contaminants reaches wastewater via industrial and domestic effluents, causing major concern to human health. Heterogeneous photocatalysis is a technique for removing these contaminants in order to achieve better efficiency in water treatment. Then, bacterial cellulose (BC) produced in an agitated culture can form spherical bodies composed of nanofibers with high specific surface area. Moreover, Titanium dioxide (TiO2) is a semiconductor containing high photocatalytic activity capacity. Thus, the main objective in this work was to produce spherical BC/TiO2 nanocomposites for contaminants removal from wastewater by photocatalysis process. The incorporation of TiO2 nanoparticles in the spherical BC matrix was performed by ex situ and in situ methods. In addition, Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) were used as tools of morphological, chemical and thermal characterizations of the nanocomposites. Besides, photocatalysis tests were performed in order to evaluate the removal efficiency of methylene blue from aqueous solutions. The results of these tests exhibited a percentage of methylene blue removal of 70.83 and 89.58 % after 35 minutes for spherical BC/TiO2 nanocomposites both, in situ and ex situ, respectively. Therefore, these results demonstrated that BC/TiO2 to be a low cost material with high capacity of contaminants removing and a great potential for industrial applications.  相似文献   

17.
A simple and practical strategy has been developed for preparing polyaniline(PANi)-doped TiO2/poly(l-lactide) (P@TiP-C) fibers by a combination of coaxial-electrospinning and in-situ polymerization. The TiO2/PLLA composite fibers with TiO2 located on the surface were fabricated by coaxial-electrospinning, with PLLA as the core phase and a dispersion of TiO2 particles, a well-known photocatalyst, in the sheath phase. The aniline monomers were also located in the core phase and in-situ polymerized by ammonium persulfate (APS) after electrospinning. SEM images show that TiO2 particles were located on the surface of PLLA fibers. Photocatalytic degradation tests show that the P@TiP-C fibers exhibit enhanced photocatalytic activity for degradation of methyl orange under visible light, likely due to the synergistic effect of PANi and TiO2.  相似文献   

18.
Textile industry generate significant amount of waste fibres in form of short lengths during mechanical processing. However these short fibres possess excellent properties suitable for many other applications. The objective of this work was to use them for the preparation of nanoparticles/nanofibres as fillers in biodegradable composite applications such as food packaging, agriculture mulch films, automotive plastics, etc. The present paper concerns with jute fibres as a source of nanocellulose for reinforcement of PVA mulch films. Jute fibres were first refined to micro/nanoscale particles in form of nanofibrillar cellulose (NFC) by high energy planetary ball milling process in dry and wet condition. Wet milling was observed more efficient than dry milling in terms of unimodality of size distribution with reduction in size below 500 nm after milling for 3 hours. Later the obtained particles were used as fillers in Poly vinyl alcohol (PVA) films and their reinforcement evaluated based on thermal properties. It was observed that glass transition temperature (Tg) of PVA films improved from 84.36 °C to 95.22 °C after addition of 5 % jute particles without affecting % crystallinity and melting temperature (T m) of PVA. Dynamic mechanical analysis of composite films with 5 % jute particles showed higher value of 14×108 Pa for storage modulus in comparison to 9×108 Pa of neat composite film. The percolation effect was observed more above glass transition temperature which consequently resulted in improved transfer of stiffness from jute particles to PVA matrix above 50 °C. The percolation phenomena also explained the improvement in thermal stability by 10 °C for every increased loading of jute particles due to formation of hydrogen bonds with PVA matrix.  相似文献   

19.
High performance fibers have distinguished properties such as high tensile strength, good thermal and chemical resistance, dimensional stability, lightweight, and high electrical conductivity. Due to these superior properties, high performance fibers made it to the scene of broad range of applications such as aerospace, automotive, windmill, fiber reinforced composites, high strength tethers, tendons for scientific balloon, tension structures, protective clothing, and marine. Examples of such fibers are Zylon®, Kevlar®, and Vectran®. However, the fibers lose their strength significantly upon exposure to Ultraviolet (UV) and visible light. In this research, UV protective films from extruded low density polyethylene (LDPE) loaded with different content of UV stabilizers (TiO2 nanoparticles and White PE CC®) were investigated. To assess the degree of UV blockage of each extruded protective film, their transmittance to UV and visible (UV-VIS) light was measured. Additionally, Zylon® braids were sheathed with the protective films and the strength of the braids and yarns raveled from braids was measured before and after UV exposure for different number of days. LDPE loaded with White PE CC® and 10 % TiO2 showed the least transmittance to UV-VIS and their yarns and braids exhibited highest strength retention after exposure to artificial UV. Strength retention of braids was higher than that of individual yarns due to weak link effect and braid structure assistant.  相似文献   

20.
Methacrylated gelatin films with in situ-generated TiO2 nanoparticles containing varying weight percentages of gelatin (0 %, 0.5 %, 1 %, 2 % and 4 %) were successfully prepared as novel biomaterials. 1H-NMR spectroscopy confirmed their methacrylation with a 79 % degree of substitution. TiO2 nanoparticles were uniformly distributed in the films with the average particle size increasing from 85 to 130 nm in proportion to an increase in TiO2 concentration from 0.5 to 4 wt%. The water absorption of various gelatin methacrylamide/TiO2 films was in the range of 471–758 %, which was enough to prevent wound beds from exudates accumulation. And in vitro degradation test in PBS showed that the three-dimensional structure of all samples basically remained unchanged although more than or nearly half the mass of specimens decreased after 4 weeks’ degradation, and the pH levels of all sample solutions were maintained in an adequate range of 6.5–7.4 for cell and tissue growth during the whole process. The antibacterial activities of the films against E. coli and S. aureus were measured via a shake flask test and demonstrated good performance after the importation of TiO2 nanoparticles. Cytotoxicity testing revealed that all films had no cytotoxicity and showed favorable adherence in the presence of L929 cells. The results suggest that hybrid hydrogel films hold potential for antibacterial wound dressing and tissue engineering scaffold applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号