首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Feline leukemia is a useful model for malignant hematopoïetic tumor studies. It is caused by a type C, RNA virus, the Feline Leukemia virus (FeLV), transmitted horizontally, and widespread in the cat population.The presence of DNA sequences and virus specific RNA expression in cell cultures of SPF cats and cat embryos, indicates a vertical transmission may occur.These FeLV-related sequences in virus negative lymphosarcoma, almost from older cats, indicate that in certain FeLV related diseases the viral replication may not occur. An endogenous ecotropic feline virus may also explain this finding. The absence of FeLV gene expression in some lymphomatous cats—many older—suggest that, in these cats, spontaneous lymphoma may not be caused by FeLV.The widespread occurrence of feline xenotropic endogenous virus RD-114 gene, in feline lymphoma, suggest that expression of certain functions of this virus may be involved etiologically in the development of lymphoid tumors in the cat.Nevertheless, immunisation against FeLV would provide a good prevention against the main part of the feline lymphosarcomas and other FeLV-related diseases. Inactivated FeLV does not provide a good immunisation in young cats. By contrast a good protection against tumoral development is obtained by vaccination using the Feline oncogenic virus cell membrane antigen (FOCMA).  相似文献   

2.
Feline leukemia virus (FeLV) is a retrovirus with immunosuppressive properties. The mechanism(s) of immunosuppression is unknown. Calcium has been shown to be a second messenger in cellular activation and regulation. This study was designed to determine whether FeLV alters intracellular free calcium (IFC) levels in an FeLV-infected feline lymphoid cell line. Control cells and FeLV-infected cells were exposed to Concanavalin A, formyl-L-methionyl-L-leucyl-L-phenylalanine, and leukotriene B4. The basal IFC and post-stimulation IFC levels were recorded using Fura 2 AM and a luminescence spectrometer. Data collected indicate that FeLV-infected cells have a higher basal level of IFC and a reduced amount of increase in IFC after stimulation when compared to the control cells. The results would seem to indicate retrovirus-mediated interference occurring in the intracellular calcium signaling process.  相似文献   

3.
Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are retroviruses found within domestic and wild cat populations. These viruses cause severe illnesses that eventually lead to death. Housing cats communally for long periods of time makes shelters at high risk for virus transmission among cats. We tested 548 cats from 5 different sites across the island of Newfoundland for FIV and FeLV. The overall seroprevalence was 2.2% and 6.2% for FIV and FeLV, respectively. Two sites had significantly higher seroprevalence of FeLV infection than the other 3 sites. Analysis of sequences from the FeLV env gene (envelope gene) from 6 positive cats showed that 4 fell within the FeLV subtype-A, while 2 sequences were most closely related to FeLV subtype-B and endogenous feline leukemia virus (en FeLV). Varying seroprevalence and the variation in sequences at different sites demonstrate that some shelters are at greater risk of FeLV infections and recombination can occur at sites of high seroprevalence.  相似文献   

4.
Two hundred and seventy-seven sick pet cats living in Italy were tested for antibodies to feline immunodeficiency virus (FIV) and for feline leukemia virus (FeLV) antigen. Overall, 24% of the cats resulted positive for anti-FIV antibody and 18% for FeLV antigen. FIV was isolated from the peripheral mononuclear blood cells of ten out of 15 seropositive cats examined and from one out of eight saliva samples. No FIV isolations were obtained from six serum samples cultured. Feline syncytium forming virus (FeSFV) could be isolated from blood and/or saliva in ten out of 11 FIV seropositive cats examined, in six out of nine FeLV antigen positive cats, in two cats found positive for both infection markers, and in three out of 11 cats negative for both markers. Thus, the probability of isolating FeSFV was enhanced by infection with other exogenous retroviruses.  相似文献   

5.
Feline leukemia virus is an oncogenic retrovirus that can result in a wide variety of neoplastic and non-neoplastic diseases, including immunosuppression. Diagnosis of FeLV infection can be achieved by several methods, including virus isolation; IFA assay of a peripheral blood smear; and detection of a viral protein (called p27) by ELISA testing of whole blood, plasma, serum, saliva, or tears. Commercially available ELISA kits have revolutionized FeLV testing and have become very popular as "in-house" procedures. This article discusses the interpretation of ELISA results and compares them with IFA assay findings. Feline immunodeficiency virus is a lentivirus that causes immunosuppression, but not neoplasia, in cats. It originally was called feline T-lymphotropic lentivirus. Differentiating FIV infection from the immunosuppressive type of FeLV infection requires virus isolation or serology. The most rapid method for diagnosis of FIV infection is ELISA testing for antiviral antibody.  相似文献   

6.
Laboratory diagnosis of feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) usually involves both viruses, as the clinical signs are similar and coinfection may occur. Serological methods may not represent an accurate diagnosis: maternal antibodies or cross-reactions may give false positive results to FIV, and false negative results may occur in latent FeLV status, or in certain FIV infection stages. A nested polymerase chain reaction (PCR) technique was designed to detect FeLV, FIV and feline endogenous retrovirus simultaneously. The detection of endogenous sequences was considered indicative of successful DNA extraction. The technique was used to diagnose FIV and FeLV in the blood cells of 179 cats. The kappa value with the serological data was 0.69 for FeLV and 0.87 for FIV. The joint detection of FeLV and FIV by this novel nested PCR is sensitive, specific, fast and convenient, and its applicability for clinical diagnosis is promising, as the direct evidence of the presence of the virus is more realistic than the indirect data provided by the serological detection.  相似文献   

7.
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are common and important infectious diseases of cats in Canada. Prevalence data are necessary to define prophylactic, management, and therapeutic measures for stray, feral and owned cats. Recently, comprehensive data on the seroprevalence of retrovirus infections of cats in Canada have become available and are reviewed. Further investigation into geographic variations in retrovirus seroprevalence within Canada is warranted, and may provide information to improve recommendations for testing and prevention. As well, more information is needed on FIV subtypes in Canada to improve diagnostics and vaccines, as well as to provide information on disease outcomes.  相似文献   

8.
Feline leukemia virus (FeLV) infection was diagnosed immunohistologically on paraffin-embedded tissues obtained from 1,095 necropsied cats. Significant association of FeLV infection was demonstrated by chi 2 and Fisher's tests with various conditions and diseases (ie, anemia, tumors of the leukemia/lymphoma complex, feline infectious peritonitis, bacterial infections, emaciation, FeLV-associated enteritis, lymphatic hyperplasia, and hemorrhage). Unexpected findings associated with FeLV infection were icterus, several types of hepatitis, and liver degeneration. A negative association with FeLV infection was found for most parasitic and viral infections, including feline panleukopenia. Neither positive nor negative associations were established for FeLV infection and most forms of nephritis, including severe glomerulonephritis. Feline leukemia virus-infected cats were significantly (Kruskal-Wallis test) older than were FeLV-negative cats with the same nonneoplastic FeLV-associated diseases.  相似文献   

9.
Feline retroviruses are rarely reported in lynx species. Twenty-one Iberian lynx (Lynx pardinus) blood and tissue samples collected from Do?ana National Park and Los Villares (Sierra Morena) in southern Spain during 1993-2003 were analyzed by polymerase chain reaction to amplify nucleic acids from feline retroviruses. Six samples were positive for Feline leukemia virus (FeLV), but no samples tested positive for Feline immunodeficiency virus. The BLAST analysis indicated that 5 of the 6 sequences were closely related to FeLV strain Rickard subgroup A, whereas 1 sequence was identical to FeLV. To the authors' knowledge, this is the first report of FeLV in the endangered Iberian lynx.  相似文献   

10.
The lymphocyte phenotype of 70 formalin-fixed, paraffin-embedded feline lymphosarcomas (LSAs) was determined immunohistochemically using a T cell polyclonal antibody, and a B cell monoclonal antibody. Forty-seven of 70 (67%) tumors were T cell, 19/70 (27%) were B cell, and 4/70 (6%) did not stain with either marker. Thirty-eight of 70 (54%) tumors were positive for feline leukemia virus (FeLV) antigen by immunohistochemistry (IHC), and 52/70 (74%) tumors were positive for FeLV DNA using the polymerase chain reaction (PCR). B cell tumors were as frequently FeLV-positive as T cell tumors using either IHC or PCR. Intestinal tumors were more likely to be B cell than T. The incidence of B and T cell tumors was not different among young (< or = 3 y), middle-aged (> 3 y to < or = 8 y), and old (> 8 y) cats. Both B and T cell tumors from old cats were FeLV-positive more often by PCR than by IHC. Feline leukemia virus DNA but not antigen, was detected in B cell tumors and intestinal tumors from cats > 8 y as often as it was detected in B cell tumors and intestinal tumors from cats < or = 8 y. Previously, most B cell and intestinal tumors from old cats were considered to be negative for FeLV. Here, the results suggest involvement of latent or replication-defective forms of the virus in such tumors from old cats. This study supports a role for FeLV in feline B cell as well as T cell tumorigenesis.  相似文献   

11.
Feline leukemia virus (FeLV), Gammaretrovirus, and feline immunodeficiency virus, a Lentivirus, are members of the family Retroviridae, and may establish persistent infections in the domestic cat (Felis catus). Cytoproliferative and cytosuppressive disorders may result from infection with these viruses. Morbidity and mortality rates are high in domestic cats worldwide. Infection of endangered neotropic small felids with these viruses could be devastating. To investigate the prevalence of FeLV and feline lentiviruses in neotropic small felids kept in captivity in S?o Paulo state. Brazil, serum samples from 104 animals belonging to the species Leopardus pardalis, Leopardus tigrinus, Leopardus wiedii, Herpailurus yaguarondi, and Oncifelis geoffroyi were tested for FeLV and feline lentiviruses by commercially available immunoassays. All results were negative, suggesting that retrovirus infection is not an important clinical problem in these populations. Because domestic cats in S?o Paulo city are naturally infected with these pathogens, and feral cats are commonly found in zoologic facilities in Brazil, preventive measures should be taken to avoid transmission of retroviruses to naive populations of wild and captive neotropic felids in Brazil.  相似文献   

12.
Specimens obtained from feline leukemia virus (FeLV)-positive cats were examined for infectious FeLV. Feline leukemia virus was detected by a focus-forming assay and confirmed by florescent antibody. Techniques of sample processing were evaluated and adjusted for optimum detection of FeLV. Low levels of FeLV were detected in 2 of 10 oral samples; however, the majority of these samples (17 of 27 tested) produced cytopathic effects in tissue culture which prevented Fe LV detection. Three of 24 urine samples and 1 of 20 rectal specimens were positive for FeLV. One milk sample contained high levels of FeLV.  相似文献   

13.
14.
The safety and the efficacy of several feline leukemia virus (FeLV) vaccines for 16-week-old kittens were determined. Vaccines were derived from an FL74 lymphoblastoid cell line that has been in continuous tissue culture passage for about 4 years. The vaccines were made from living virus, formaldehyde-inactivated whole FL74 cells, and formaldehyde-inactivated whole virus. The efficacy of each produced vaccine was determined by challenge exposure of vaccinated cats with virulent FeLV. The two formaldehyde-inactivated vaccines were found to be safe for use in kittens. Neither vaccine produce a significant feline oncornavirus-associated cell membrane antigen or virus-neutralizing antibody response, nor did they prevent infection with virulent FeLV. The inactivated whole-virus vaccine, however, did substantially decrease the proportion of kittens infected with virulent FeLV that became persistently viremic. In contrast, the whole FL74 cell vaccine did not reduce the number of infected kittens that became persistently viremic. The live-virus vaccine was found to be both safe and efficacious. About a half of the kittens vaccinated with live virus had transient bone marrow infection that lasted from 2 to 4 weeks. Viral antigen was not detected in peripheral blood, and infective virus was not shed in saliva, urine, or feces during the period that the vaccinal virus could be recovered from the bone marrow. In addition, there was no horizontal spread of vaccinal virus from vaccinated to non-vaccinated cagemates. Within several weeks, vaccinated kittens demonstrated no clinical or hematologic abnormalities and had high serum levels of feline oncornavirus-associated cell membrane antigen and virus-neutralizing antibody. Kittens vaccinated with living FeLV were resistant to infection with virulent virus.  相似文献   

15.
16.
Six cats developed malignant lymphoma 3 to 45 months after treatment for vaccine site-associated sarcoma. During the same time period, 184 cats were evaluated in the teaching hospital for vaccine site-associated sarcomas. Feline vaccine site-associated sarcoma is not believed to be associated with feline leukemia virus (FeLV) infection. Five of six cats were negative by enzyme-linked immunosorbent assay for FeLV antigens at the times of diagnosis of both sarcoma and lymphoma, and no cats were infected with feline immunodeficiency virus.  相似文献   

17.
The conditions for the production of feline interleukin 2 (IL-2) from peripheral blood leukocytes (PBL) and splenocytes by concanavalin A (Con A) stimulation are described. Feline IL-2 was quantitated by measuring DNA synthesis in the murine IL-2-dependent cell line, CTLL-20. In addition, feline IL-2 was generated for the maintenance of long-term cultures of Con A-stimulated feline PBL and for biochemical characterization. Finally, IL-2 production was evaluated from the PBL of feline leukemia virus (FeLV)-infected cats. Con A at 9.6 micrograms/ml produced a plateau of peak IL-2 activity from 24 to 48 h following stimulation. The tumor promoter, phorbol myristic acetate, stimulated feline IL-2 production and enhanced Con A-stimulated feline IL-2 production. Fetal calf serum (FCS) was not required for IL-2 production; however, FCS at 5% (v/v) allowed for maximal Con A-stimulated IL-2 production. Feline IL-2 generated from Con A-stimulated splenocytes migrated with an apparent molecular size of 13.7 to 23 kD by gel filtration chromatography and supported the proliferation of Con A-activated feline PBL at a final concentration of 0.3 to 0.9 units/ml.  相似文献   

18.
Use of tears for diagnosis of feline leukemia virus infection   总被引:2,自引:0,他引:2  
A comparison was made of the use of serum, tears, and saliva for the detection of feline leukemia virus (FeLV) infection in cats. Cotton swabs were used to collect saliva, and tear-test strips were used to collect tears. Specimens were analyzed by a commercially available ELISA. Using a 10- to 15-minute specimen incubation period, FeLV was detected in 70% of the saliva specimens and in 73% of the tear specimens from viremic (serum-positive) cats. Feline leukemia virus antigen was not detected in saliva and tear specimens from serum-negative cats. The sensitivity of the tear assay was improved by increasing the incubation time to 24 hours. Tear strips could be air-dried and stored at room temperature for up to 7 days without any appreciable loss of activity. Client-owned and experimentally infected laboratory cats were tested for FeLV, using air-dried tear-test strips and a 24-hour incubation period. Tears were positive (contained FeLV antigen) in 65 of 72 (90%) serum-positive cats and did not contain antigen in 46 of 46 (100%) serum-negative cats. Results of ELISA obtained from serum and tears also were compared with results obtained from indirect fluorescent antibody testing of blood smears. Results of indirect fluorescent antibody and ELISA compared favorably with each other and with the results of tear testing.  相似文献   

19.
Feline leukemia virus is a naturally occurring, contagiously transmitted and oncogenic immunosuppressive retrovirus of cats. The effects of FeLV are paradoxical, causing cytoproliferative and cytosuppressive disease (eg, lymphoma and myeloproliferative disorders vs immunodeficiency and myelosuppressive disorders). In the first few weeks after virus exposure, interactions between FeLV and hemolymphatic system cells determine whether the virus or the cat will dominate in the host/virus relationship--persistent viremia and progressive infection or self limiting, regressive infection will develop. The outcome of these early host/virus interactions is revealed in the diagnostic assays for FeLV antigenemia and viremia. The latter, in turn, predict the outcome of FeLV infection in cats. Known host resistance factors include age and immune system functional status. Known virus virulence factors are magnitude of exposure and virus genotype. Molecular analysis of FeLV strains indicated that natural virus isolates exist as mixtures of closely related virus genotypes and that minor genetic variations among FeLV strains can impart major differences in pathogenicity. The genetic coding regions responsible for cell targeting and specific disease inducing capacity (eg, thymic lymphoma, acute immunosuppression, or aplastic anemia) have been mapped to the virus surface glycoprotein and/or long terminal repeat regions for several FeLV strains. Infection by specific FeLV strains leads to either malignant transformation or cytopathic deletion of specific lymphocyte and hemopoietic cell population, changes that prefigure the onset of clinical illness. Another notable feature of the biology of FeLV is that many cats are able to effectively contain and terminate viral replication, an important example of host immunologic control of a retrovirus infection and a process that can be selectively enhanced by vaccination. Thus, FeLV infection serves as a natural model of the multifaceted pathogenesis of retroviruses and as a paradigm for immunoprophylaxis against an immunosuppressive leukemogenic retrovirus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号